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Abstract

The reliability of quantum channels for transmitting information is of profound impor-
tance from the perspective of quantum information. This naturally leads to the question
as how well a quantum state is preserved when subjected to a quantum channel. We
propose a measure of quantumness of channels based on non-commutativity of quan-
tum states that is intuitive and easy to compute. We apply the proposed measure
to some well-known noise channels, both Markovian and non-Markovian, and find
that the results are in good agreement with those from a recently introduced /;-norm
coherence based measure.
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1 Introduction

Quantifying the degree of quantumness of a channel has both theoretical and practical
significance in quantum information science [1]. Quantum channels refer to com-
pletely positive and trace-preserving maps and can be practically applied to transfer
quantum information in a given environment [2]. To this end, it is important that a
channel should preserve the integrity of transmitted quantum states and resist classical-
ization of the states. Clearly, it is important to quantify such a degree of quantumness of
a quantum channel [3]. Considering that classical states are usually identified as those
whose correlations can be described in terms of classical probabilities, the quantum-
ness of a channel will indicate how well nonclassical correlations such as entanglement,
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discord and related quantities [4] of a transmitted state are preserved by the channel.
One particularly simple approach to quantifying the quantumness of a channel is to
build it on the quantumness measure for a single system, essentially asking how well
it preserves the non-commuting property of two states of the system that initially pos-
sess this property. This approach has the advantage that it makes no reference to the
correlations and requires no complicated optimization procedures [5].

Channel noise is usually known for its detrimental role in reducing the degree of
coherence in a system and thus tends to undermine the quantumness of a channel [6].
For example, the deteriorating effect of the environment on a quantum state has been
studied in the context of coherence-breaking channels and coherence sudden death
[7]. An interesting class of channels known as semi-classical channels Agc map all
the input states p to Asc(p), such that the later are diagonal in the same basis. Such
channels are realized by complete decoherence after which only diagonal elements of
the density matrix are nonzero [8].

However, factors such as squeezing [9—11] or non-Markovianity [12—-14] can coun-
terbalance the effect of decoherence for some states and thus are conducive to the
quantumness of the channel. Refs. [15—-17] show that local environments can enhance
the average fidelity of quantum teleportation for certain entangled states. Enhancement
in quantum discord by local Markovian (i.e., memoryless) noise channels was reported
in [18,19]. In [20], it was shown that the quantum channels need not be decohering, but
could also have cohering power [21], which is upper bounded by the corresponding
unitary operation.

Unitary operations may be considered as noiseless channels, and they can give
rise to a notion of quantumness based on their entangling power. The entangling
capabilities of unitary operations acting on bipartite systems was reported in [22],
with the maximum entanglement being created with product input states [23].

On the specific question of quantumness of channels, it may be worth noting that
in [24-26], coherence of quantum channels was analyzed using Choi-Jamiolwski
isomorphism. A coherence-based measure of quantumness of channel was proposed
in [27], by defining the measure as the average quantum coherence of the state after the
quantum channel acts on it, and minimized over all orthonormal basis sets of the state
space. This measure was studied in the context of various (non-)Markovian channels
[28]. Further, this measure connects different coherence and entanglement measures,
and is also the upper bound for another important coherence measure called robustness
of coherence for all qubit states [29].

A necessary and sufficient condition for the creation of quantum correlations via
local channels in finite dimensions is that they should not be commutativity preserving
[30]. Commutative quantum channels preserve the commutation relation of any two
compatible states, i.e., if [p,o] = 0, then [E(p), E(o)] = 0. It is clear that the
semiclassical channels, defined above, are commutativity preserving, implying that a
departure from semiclassicality is necessary to create quantum correlations. In that
spirit, here we propose a simple measure for the quantumness of channels, based
on commutation properties of the states evolving under a given channel. The degree
to which a quantum channel preserves the non-commutativity of two states can be
attributed as the quantumness of the channel.
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This paper is organized as follows: in Sect. 2, we introduce a measure of quantum-
ness of channels. Section 3 is devoted to applying this measure to various well-known
quantum channels. The experimental relevance of this measure is discussed in Sect. 4.
Results and their discussion are presented in Sect. 5. We conclude in Sect. 6.

2 Quantumness of channels

Given two arbitrary states p and o, one can quantify their mutual incompatibility by the
Hilbert-Schmidt (HS) norm of their commutator M (p, o) = 2|| C| |%, g =2 Tr[C C].
The measure is defined in terms of the HS norm of their commutator C = po — op.
This measure was motivated in [5] with the aim of identifying nonclassicality with
the incompatibility of states. Consider two qubit states p, = %(H‘ +a-ce)and pp =
%(H‘ +b-@),witha,b € R3 and & = (o, oy, 07) represents the three Pauli spin
matrices. We have o, 0p — pppa = i%(a x b) - e, and

M (pa, pp) = 2Tt{(papp — PoPa) (PaPs — PrPa)} = |a x b|%. (H

This quantity attains its maximum value of one for orthogonal a and b and vanishes
when a and b are parallel, 0 < M(p, o) < 1.

Here we try to exploit this approach to probe the quantumness of a channel. Consider
a channel described by a linear, completely positive and trace preserving map @ :
L(Ha) — L(Hp) [31,32]. The action of this map on an input state p leads to an
output state p’ and can be summarized as

o' =@[pl. (2)
In the context of quantum channels, we start with two states p, and pp which are
maximally noncommuting in the sense that M(p,, p») = 1. By subjecting these

states to a quantum channel, the quantumness of the channel can be attributed to the
extent to which p/, and p;, (the outputs) are incompatible

M(p,. py) = 2Tr[CT C], 3)

with C = p], /01/9 — ,o[; p,,- This quantity when maximized over all input states serves as
a measure for the quantumness of the channel

n = max M(p), = @lpal. o = Plos)). @)

As an example, cqnsider the states |a) = cos(x/2) |0) + e~? sin(x/2) |1) and |b) =
cos(y/2) |0) + e~€ sin(y/2) |1), with the respective density matrix representations

2 i Sin(x)
Pa = %(H‘+a-03) = (COS (x/2) el(meX)v

¢TI0 in?(x/2)
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)

1 2 i sin(y)
PbZE(H‘er-(B):(COS(y/z) 2 )

e iEI) i (y /2)

The states p, and p; are maximally non-commuting for y = x + 7 /2 and £ = ¢,
as can be seen by calculating the commutator

0 ¢
C=papp—poPa=| o 2] (6)

Therefore M (pq, pp) = 2 Tr[CJr C] = 1. Thus the states are maximally noncommut-
ing and in this sense share maximum nonclassicality. In this example, no optimization
is required since the quantity M(p,, pp) is independent of input state parameters.
However, as discussed ahead, subjecting these states to quantum channels can make
M((pa, pp) dependent on input state parameters. In such cases, we need to maximize
over all such parameters to compute the degree of incompatibility of the output states.

3 Application to quantum channels

We will now apply the above definition to some well-known quantum channels.
We consider the dephasing channels like random telegraph noise (RTN) [33],
non-Markovian dephasing (NMD) [34], phase damping (PD) [35] and generalized
depolarizing channel (GDC) [36]. The generalized amplitude damping channel (GAD)
[9,37], which represents a dissipative channel is also studied. The Kraus operators for
these channels are given in Table 1.

Random Telegraph Noise (RTN): The dynamical map is represented by the Kraus

operators Ko(t) = k4 I and K(¢t) = k_ o, where k4 = #, such that the
action on a general qubit state
1—p «x

p—(x* p>, (M)
is given by

11— 1 - A(t)

/ _ #RTN p X\ _ p X
p=3> ( x* P) = (x*A(t) p ) (8)

Let us use the maximally nonclassical pair of states given in Eq. (5), subject to the
constraints enunciated below it. The states p, and pp, defined in Eq. (5) are subjected
to RTN evolution

L cos? () 3¢ sin(0) A1)
Pa =\ lei®sin(ya) ~ sin2(5) )

o = <cos2 (4—1‘(2x + 7)) %elﬂ’ cos(x) A(r) )
b -_ .

%e""p cos(x)A(t) sin? (3—‘(2)6 + rr)) ©)
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The pertinent commutator in this case becomes

_ 0 Lel® A1)
C_<—% A0 0 ) (10)

Therefore, the quantumness measure for the RTN channel turns out to be u© =
max,, p, M(p}. p,) = 2Tr[C" C] = [A(1)]?. Similarly, for non-Markovian dephas-
ing (NMD) and phase damping (PD) channels, characterized by the Kraus operators
in Table 1, the quantumness measure turns out to be

NMD: = /rjn%);/\/l(p;, o) = [2(p)71, (11)

PD: M=£neg;/\/l(p;,p2,)=l—y. (12)

It may be pointed out that the channels RTN, NMD and PD are all types of dephasing
channels, and hence they are not expected to show dissimilar behavior. However,
they are all included, partly for two reasons: (a) comparison with previous literature
reporting on the quantumness of these channels; (b) they illustrate different specific
principles of decoherence, and thus indicate distinct underlying physics. Specifically,
RTN is a non-Markovian (P-indivisible) channel having infinitely many singularities,
and NMD is a non-Markovian (also, P-indivisible) channel with a single singularity,
whereas PD can be Markovian.

Next, we consider an example of non-dephasing class of quantum channel, namely
the amplitude damping (AD) channel. This channel models the processes like sponta-
neous emission and is characterized by Kraus operators Ag, A given in Table 1. Here
y € [0, 1]. The action of AD channel on a qubit state can be described as

l—-p ¢ l—p(d—y) q/1-y
N (13)

q* P g J1—y  pl—vy)

Following the recipe given above, the quantumness in this case turns out to be
u=g1%/\/l(p;,p;’,) =1-y. (14)

It follows that as y — 1, the quantumness parameters becomes zero, and the state
loses coherence in the given basis, see Eq. (13).

We next consider the example of the Unruh channel. The Unruh effect is the emer-
gence of finite temperature recorded by an observer undergoing acceleration a in a
vacuum bath. Yet, paradoxically, it is a rank 2 (rather than full rank) noise effect
and in that sense is similar to the AD channel, which represents the effect of a zero
temperature thermal bath. The parameter » appearing in Kraus operators is related to
acceleration by cos(r) = (1 +e~27®/4)~1/2 where w is the Dirac particle frequency
and c is speed of light in vacuum. The quantumness parameter for this channel is given
by

w= COSZ(F) — (1 +e—27rwc/a)—l’ (15)
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and approaches one in the limit ¢ <K 27 ¢ w.

Our final example is the generalized depolarizing channel (GDC), represented by
the following Kraus operators M; = ,/p;o; withi =0, 1, 2, 3, where o; are the Pauli
matrices. The states p, and p, given by Eq. (5) evolve under the action of this channel
such that the new Bloch vectors are given by

(po + p1 — p2 — p3) sinx cos ¢
a=|(—po+p1— p2+p3)sinxsing |,
(po — p1 — p2 + p3) cosx

(po+ p1 — p2 — p3) COs x cOS ¢
b= |(=po+ p1— p2+ p3)cosxsing | . (16)
(=po+ p1+ p2 — p3)sinx

Therefore,

M(p,, p,) = la x bl
= (po — p1 — p2 + p3)*[2(po — p3)(p1 — p2) cos(2¢)
+(po — p3)* + (p1 — p2)°1. (17)

This is maximum for ¢ = 0, i.e., u = M(p},. p})lp=0 = (po + p1 — P2 — p3)*(po —
p1 — p2 + p3)?. The various results discussed above are summarized in Table 1, and
compared with the prediction of a coherence-based measure of the quantumness of
channels.

4 Experimental relevance of the measure

It is important to note that the quantity M(p,, p;) can be given an experimental
interpretation using an interferometric setup [38]. This useful technique can be easily
incorporated to our purpose of quantifying quantumness of channels. One can write

= max M(p;, py) = 4 max Trl(0,)*(p})* — (03], (18)
PasPb PasPb

The two quantities Tr[(p,)? (,0};)2] and Tr[(p,, p}’))z] can be obtained from two separate
measurements. The input state p = [0)(0] ® p, ® p, ® p;, ® p,,, where |0) is the
control qubit, is subjected to the controlled unitary gate U. This modifies the inter-
ference of the controlled qubit by the factor Tr[pU] = ve'®, with v and « being the
visibility and phase shift of the interference fringes, respectively [39-42]. Two such
schemes (corresponding to Tr[(pc’z)z(pl;)z] and Tr[(p,, pl’))z] ) lead to the quantumness
M(p}, p,) = 4(vi — v2), where vy and v, correspond to the respective visibilities
obtained by the action of relevant unitary gates. We motivate the present discussion
by illustrating this notion on some of the channels discussed above.
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(a) For RTN, the two visibilities (with x = ¢ = 0) correspond to
, 1 1
Tel(pgop)’1 = 7o Trl(p)*(op)*) = (1L + [ADP). (19)

Making use of these in Eq. (18), we obtain M(p,, p,) = [A(1)]?, consistent with
the definition in Eq. (3), see Eq. (10).
(b) For GDC, the two visibilities (with x = ¢ = 0) turn out to be

Tr[(papp)*] = 1/4 — 2(=1 4 p1 + p2)(p1 + p2) (=1 + p2 + p3)(p2 + p3),
Trl((p))?(pp)*1 = 1/2(1 +2p} +2(=1 + p2)pa + p1 (=2 + 4p2))(1 +2p3
+ 2(=14 p3)p3 + pa(=2 4+ 4p3)). (20)

These lead to the expression . = M(p),, p})lp=0 = (po + p1 — p2 — p3)*(po —
p1 — p2 + p3)? in accord with the definition in Eq. (3), see Eq. (17).

What makes this approach particularly attractive is that here the quantumness of
the channel can be experimentally determined.

5 Results and discussion

The quantumness of two arbitrary states p and o can be identified with their incom-
patibility and quantified by i = max, , M(p, o) as defined in Sect. 2. For a mixed
initial diagonal state po = ), A;[i)(i|, which evolves to p; under some dynamics, the
following inequality holds [43]

M(po, pr) Cr, (po, pr)

< F(po, < 21
2 < F(po, pr) < > (21)

Here, F(po, p) is the quantum Fisher information and Cj, (oo, p;) is the /;-norm

coherence of p;, defined as Z# y |,o,” [; both well known measures of quantumness.
The commutator-based measure provides a lower bound and a reliable witness of
quantumness.

In this work, we extend the approach of quantifying the quantumness of states, in
terms of their incompatibility, to explore the quantumness of channels. This method
involves starting with two states which are maximally non-commuting and subjecting
them to a quantum channel. The incompatibility of the resulting output states can
be attributed to the degree of quantumness of the channel. We have computed the
quantumness of various well-known channels and compared them with the analogous
estimation of quantumness from a coherence based measure [27]. These are listed
in Table 1. Specifically, we investigated the quantumness of the dephasing channels
such as RTN, non-Markovian dephasing (NMD), phase damping (PD), and Unruh
channels. These channels model the phenomenon of decoherence without dissipation.
The dissipative channels considered here are amplitude damping (AD) and generalized
amplitude damping (GAD) channels. The quantumness is given in terms of the channel

@ Springer



J. Naikoo et al.

32 Page8of11

U U+ A
[sz] T‘zu u ﬁ#@

S
= 1 pue NA 3 - :NC - avm = w ‘a10y ‘popraoid osfe are [87] :U@ QINSLAUW PASeq DUAIAYOD Y} UO paseq s)nsar Surpuodsarrod ay) ‘uostiedwod Jo ayes Yy 10
.Ao mu\(v _ G,Am\ 0 v —¢o
0 0 0 39/
= T _ _ _ of 0 0 _ 532" 0)_,
sog+sfa<ns =9 o<y (G-9gr-9)3 A%.ov on on) =00 avo
— A—
PS5 @+Ag— AT (F < A—1] A—1 @ﬁmvu:ﬁﬁ\oﬁ\(@uo,\ av
o Cousy T 0 —0
(1) 509 (1) 509 Ao 0 v =1In 0 (1ys0a) = n yniun)
A—1 A—1 A%\(OV“FNAAE\/OV”OR ad
01 0 I
1=0\_, _ [T 0 —
@Dl Aol A o ﬂv u=1InN Ao _v Tu =0y ANN
I—0)\_ 10
1 1 . =1ly* +y =0
JdOV] J1OV] A 0 ﬁv y=1y Ao ﬁv =0y NIY
:o@ 7 s1ojerodo snery [ouuey)

02 0 o

= 7/ 2Inseow paseq-uonEINWWOd Jursn ssouwnjuenb o) pue siojerado snery AW YNM ‘¢ 109§ Jo Suruurdeq Ay) Je padnponur ‘sfouueyd wnjuenb snomep | 3jqel

pringer

As



Quantumness of channels Page9of 11 32

parameters. In particular, for the channels with memory, the quantumness turns out to
be a function of the memory kernel, which, in turn, decides the Markovian and non-
Markovian nature of the dynamics. As reported in [28], the non-Markovian dynamics
helps to sustain the quantumness over longer time as compared to Markovian case. Itis
interesting to note that quantumness from the proposed measure is in good agreement
with that with the coherence-based measure [28]. This is consistent with our intuition
as coherence is related to the off-diagonal elements of the density matrix as would be
the cause for noncommutativity between the states. It should be noted that in the case
of GDC, the coherence-based measure leads to quantumness (pg — p1)> + (p2 — p3)2,
different from that obtained by the commutation-based measure adapted here. This is
consistent with Eq. (21).

The attractive feature here is that the measure proposed can be calculated easily and
is also amenable to experimental determination. Further, from the cases of the RTN
and NMD channels, it is evident that quantumness reflects the non-Markovian nature
of the channel under consideration.

6 Conclusion

The quantum channels provide a way to describe the processes where pure states go
over to mixed ones. Therefore, it is natural to ask how well a quantum channel preserves
the quantumness of the states which are subjected to it. Recently, a measure based on
the /1-norm coherence was introduced to quantify the quantumness of channels. In
this work, we have addressed the problem by using an intuitive approach based on the
incompatibility of the states. The quantumness of a system is identified with the mutual
non-commutation of all its accessible states. We illustrated the approach developed
here by considering various examples of quantum channels, both Markovian and as
non-Markovian, and found that our results are in good agreement with the coherence-
based measure. An added attraction of this method is that it is easy to compute and
can be probed experimentally.
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