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Abstract
Quantum computation improves the efficiency and security of cryptography by 
utilizing characteristics of quantum mechanics. In this paper, a novel three-level 
quantum image encryption algorithm based on Arnold transform and logistic map 
is proposed. To obtain satisfactory encryption results, three-level encryption proce-
dures including block-level permutation, bit-level permutation and pixel-level dif-
fusion are performed on the original image. First, the classical plaintext image is 
transformed into quantum form with novel enhanced quantum representation model. 
Then, quantum Arnold transform (QArT) is used to scramble the image sub-blocks 
by processing the qubits that denote position information. By iterating block-level 
permutation procedure with different block-size and different parameter of QArT, 
the period defect of QArT can be made up to some extent. Next the bit-level permu-
tation is performed by scrambling the bit-plane order according to a sequence gener-
ated with logistic map. Finally, the ciphertext image can be obtained by performing 
bit-level diffusion through XOR operation between bit-level permutated image and 
a pseudo-random sequence acquired from logistic map. The corresponding quantum 
circuits realization are given, and simulations results show that the proposed three-
level quantum image encryption scheme has high level of security and outperforms 
its classical counterpart in terms of efficiency.
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1  Introduction

With the rapid development of communication and computation technology, 
information exchange through various kinds of carriers such as text, image, video, 
and so on has become omnipresent and important in modern life. The images 
including gray images and color images are widely used to transmit information 
as they contain rich visual content [1, 2]. However, the high-volume data and 
redundancy of image also rise the serious issues of secure transmission and stor-
age [3]. To effectively protect image contents and prevent unauthorized access to 
obtain original image information, a variety of image encryption methods have 
been introduced in recent years [4–8].

According to actual development status as concerned, the image encryption 
methods can be roughly classified into two branches, and one kind is traditional 
image encryption algorithm that runs on a classical computer and the other is 
quantum image encryption algorithm that needs to be run on a quantum hardware 
system. For the traditional image encryption algorithm, a lot of research works 
have been carried out [9]. However, the traditional cryptosystems are threatened 
as the quantum computation improves the efficiency of cracking. Therefore, the 
research of quantum image encryption will be more and more crucial in the field 
of information security [10].

To conveniently store and process quantum images, several representation 
models for quantum images were designed. Similar to the representation of clas-
sical image, a flexible representation of quantum images (FRQI) model [11] was 
proposed, which stores the color and corresponding position information into 
quantum superposition states. Afterward, a novel enhanced quantum representa-
tion (NEQR) model [12] was proposed by extending FRQI, which used an entan-
gled qubit sequence to exactly represent the color information, and therefore, the 
original pixel values can be retrieved accurately. In addition, some other quan-
tum image representation models, such as normal arbitrary superposition state 
(NASS) model [13], multi-channel quantum image (MCQI) model [14], are pro-
posed to improve the efficiency of specific applications.

With the introduction of quantum representation models, numerous quantum 
image encryption approaches have been proposed [15–19]. The majority of the 
proposed quantum image encryption algorithms is realized in spatial domain with 
pixel scrambling and XOR operations. Zhou accomplished the quantum image 
encryption algorithm through several quantum image geometric transforms, 
and the quantum circuits were given [20]. Liang utilized logistic map to gener-
ate key map, and the original image can be encrypted with XOR operation [21]. 
Zhu made the original image chaotic by using the proposed dual-scrambling 
scheme including bit-plane transformation and position transformation [22]. 
There are also some quantum image encryption algorithms proposed in the trans-
form domain. Yang performed a quantum image encryption method in Fourier 
transform domain by using the double random phase encoding (DRPE) technique 
[23]. The DRPE algorithm is improved by Du, and the results are more uniformly 
mixed [24]. Hu proposed a quantum image encryption algorithm based on Arnold 
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scrambling and wavelet transforms, which combines the spatial and transform 
scrambling to achieve good encryption results [25]. Li used quantum Haar wave-
let packet transform to encrypt quantum image and obtained satisfactory results 
[26]. Some quantum multiple image encryption algorithms are proposed to fur-
ther improve efficiency. Wang proposed a double quantum color image encryption 
algorithm and verify the validity in the quantum field [27]. Liu used the Arnold 
transform and qubit random rotation to encrypt two quantum images simulta-
neously [28]. To effectively encrypt the region of interest, a quantum selective 
encryption algorithm for medical images is proposed by manipulating bit-planes 
of original images [29]. Because the chaotic systems have good ergodicity and 
cross-correlation properties, they are extensively used in the quantum image 
encryption algorithms. Two-dimensional Henon chaotic mapping is introduced in 
the quantum image encryption algorithm, and the encryption results have good 
randomness [30]. A 5D hyper-chaotic system is used in Zhou’s scheme to real-
ize higher security since it has more complex dynamic behavior [31]. The Chen’s 
hyper-chaotic system is also applied in the quantum image encryption algorithm 
to generate pseudo-random sequences [32]. In addition, some scholars proposed 
several quantum image encryption algorithms by combining the permutation 
maps and chaotic systems [33, 34].

The aforementioned quantum image encryption algorithms encrypt the original 
image in bit level or pixel level, and the least processing unit is one bit or one pixel. 
Actually, the block-level-based classical image encryption algorithms have been pre-
sented to improve the security of image encryption algorithms. Wang proposed a cha-
otic block image encryption algorithm based on dynamic random growth technique 
[35]. Chai used plain image-related swapping block permutation and block diffusion 
operations to design a chaos-based image encryption scheme [36]. In addition, Ye pro-
posed a block chaotic image encryption scheme based on self-adaptive modeling [37]. 
Although the block-level-based image encryption algorithms can enhance the security, 
they also led to high computational complexity. With the help of parallelism, quan-
tum computation can greatly improve operation efficiency. In order to further improve 
the efficiency and security of the quantum image encryption, the sub-block scrambling 
of image is considered and a novel three-level quantum image encryption algorithm 
including block-level permutation, bit-level permutation and pixel-level diffusion is 
proposed. First, the original image is represented with NEQR model, and then, the 
obtained quantum image can be divided into sub-blocks by setting block-size. Then, 
the image blocks are scrambled by quantum Arnold transform (QArT), and the order 
of sub-blocks is changed. By setting different block-size and different iteration param-
eter of QArT, the defects of period can be made up to some extent. Next the bit-level 
permutation is performed by random scramble the bit-planes order using sequence 
generated with logistic map. Finally, the ciphertext image can be obtained by perform-
ing bit-level diffusion through XOR operation between bit-level permutated image and 
a pseudo-random sequence acquired from logistic map. As the quantum operation is 
invertible, the decryption is exactly the inverse process of encryption. Since the NEQR 
model is adopted, the original information can be accurately recovered with correct 
keys by quantum measurement. Through the introduction of sub-blocks permutation 
operation, the encryption process includes a block-level permutation and therefore 
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the key space is increased. Moreover, by changing the size of sub-blocks and iteration 
times, the key space can be further expanded. As a result, the security of the algorithm 
is improved by applying the sub-blocks permutation operation. The main contributions 
of this method can be summarized as follows: (1) the introduction of block-level scram-
bling enlarge the period of QArT and further improve the security, (2) the order of 
bit-level is random scrambled to change pixel values, and (3) the logistic map is used to 
accomplish pixel-level diffusion and achieve good encryption results. Numerical simu-
lation and performance comparison demonstrate that the proposed method is effective 
in securing quantum image information and the security is verified by statistical analy-
sis, key space analysis and robustness analysis.

The rest of this paper is organized as follows: In Sect. 2, some fundamental theories 
including NEQR representation model, QArT, and logistic map are briefly introduced. 
In Sect. 3, the proposed three-level quantum image encryption scheme is described in 
detail. To verify the performance, Sect. 4 gives the numerical experiment results and 
the theoretical security analysis is shown. Finally, conclusions are drawn in Sect. 5.

2 � Preliminary knowledge

2.1 � NEQR representation model

The fundamental task for quantum image processing is fed the digital image into quan-
tum hardware. The NEQR model is an excellent quantum image representation model 
[12], which adopts the basic state to store gray-scale values appropriately, and there-
fore, the original information can be accurately retrieved using quantum measurement.

In NEQR model, the pixel value can be stored in a binary sequence, i.e., the gray-
scale information is represented as {�00000000⟩, �00000001⟩,… �11111111⟩} . In 
addition, the spatial location information is stored in a pair of qubits sequences �y⟩ and 
�x⟩ , which denote the indices of rows and columns. For a 2n × 2n digital image, the cor-
responding NEQR model can be expressed as follows:

where the gray-scale value in position (y, x) is denoted as 
�C(y, x)⟩ = ���c

q−1
yx c

q−2
yx ⋯ c1

yx
c0
yx

�
 and the range of pixel value is 

[
0, 2q−1

]
 . The vertical 

position and horizontal position are represented with qubits �yx⟩ . Thus, the digital 
image I can be stored into a normalized superposition state �I⟩ . Figure 1 shows an 
example of 2 × 2 NEQR and its corresponding quantum representation.

2.2 � Quantum Arnold transform (QArT)

The classical two-dimensional Arnold transform is generally used as a pre-process-
ing tool to scramble image in watermarking and encryption applications. The matrix 
form of Arnold transform can be defined as follows:

(1)�I⟩ = 1

2n

2n−1�
y=0

2n−1�
x=0

�C(y, x)⟩⊗ �yx⟩
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where (x, y) denotes the coordinate information of original image before scrambling 
and 

(
x′, y′

)
 represents the scrambled coordinate. The symbol N denotes the size of 

image to be processed.
According to the transform equation, the transformed coordinate 

(
x′, y′

)
 can be 

obtained as:

The classical Arnold transform is extended to the quantum version by Jiang 
et al., and the QArT can be accomplished with quantum plain adder network and 
adder modulo N network. The corresponding quantum circuits for QArT is shown 
in Fig. 2, and the detailed description can be found in [38].

The QArT only changes the information of coordinates and the gray-scale 
information is remain unchanged. For a quantum image denoted as �I⟩ , one itera-
tion of QArT operation can be expressed as:

(2)
(
x�

y�

)
=

(
1 1

1 2

)(
x

y

)
(mod 2n), x, y = 0, 1,… , 2n − 1

(3)
{

x�=(x + y) mod 2n

y� = (x + 2y) mod 2n

(4)

��I�
�
= QArT(�I⟩) = 1

2n

2n−1�
y=0

2n−1�
x=0

�C(y, x)⟩QArT(�yx⟩)

=
1

2n

2n−1�
y=0

2n−1�
x=0

�C(y, x)⟩QArT(�y⟩)QArT(�x⟩)

192 65

2 255

Fig. 1   The NEQR representation of a 2 × 2 image
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Fig. 2   The quantum circuits for QArT



	 X. Liu et al.

1 3

23  Page 6 of 22

Similar to the classical Arnold transform, the scrambled coordinates of quantum 
image �I⟩ can be written as:

Based on Eq. (5), the inverse QArT can be easily derived as follows:

2.3 � Logistic map

The chaotic systems are suitable for designing quantum image encryption algo-
rithms as they have excellent random characteristics, such as deterministic, ergodic-
ity, sensitive to initial and control parameters [39]. The logistic map is a commonly 
used chaotic systems to secure the transmission of images, which is defined as:

where �0 ∈ (0, 1) is initial value of chaotic system called seed and � is control 
parameter. When � ∈ [3.85, 4] , the logistic map is in chaotic state and the generated 
sequence is pseudo-random.

3 � Three‑level quantum image encryption scheme

In this section, the proposed three-level quantum image encryption scheme based on 
QArT and logistic map is presented in detail, and the flowchart is shown in Fig. 3. 
The whole scheme includes three main procedures, i.e., block-level permutation, bit-
level permutation and pixel-level diffusion. The original image is firstly represented 
with NEQR model, and then, the image sub-blocks are permutated with QArT. 
Next, the bit-level permutation is performed by randomly changing the order of bit-
planes. Finally, the pixel-level diffusion is accomplished by using XOR operation 
and logistic map, and thus, the encrypted quantum image is obtained. More details 
of the proposed quantum image encryption scheme are illustrated in the following 
subsections.

3.1 � Block‑level permutation

Suppose the original image with size 2n × 2n to be encrypted is denoted as �I⟩ and its 
NEQR representation can be written as:

(5)

���x�
�
= QArT(�x⟩) = �x + y⟩ mod 2n

��y�
�
= QArT(�y⟩) = �x + 2y⟩ mod 2n

(6)

��x⟩=�2��x�
�
− ��y�

��
mod 2n

�y⟩ = �
−��x�

�
+ ��y�

��
mod 2n

(7)�k+1 = ��k

(
1 − �k

)
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To effectively accomplish block-level permutation, firstly, the original image 
should be divided into sub-blocks. By processing the qubits that represent position 
information in NEQR model, the image blocks can be easily divided. Assume that 
the block size is set to 2w × 2w , then keep the least significant w bits unchanged and 
the indices of image blocks are determined with the other n − w qubits. After divi-
sion, the total number of blocks is 2n−w × 2n−w . Next, the QArT is applied on the 
n − w qubits which represent position information of image sub-blocks and the per-
mutated block image ��Ib⟩ can be obtained. As the block size is 2w × 2w , the qubits ��yn - 1yn−2 ⋯ yw⟩ and ��xn−1xn−2 ⋯ xw⟩ are transformed using QArT.

According to the definition of QArT expressed as Eq. (5), the permutated posi-
tion qubits |||y�n−1y�n−2 … y�

w

⟩
 and |||x�n−1x�n−2 … x�

w

⟩
 can be obtained as:

(8)

�I⟩ = 1

2n

2n−1�
y=0

2n−1�
x=0

�C(y, x)⟩⊗ �yx⟩

=
1

2n

2n−1�
y=0

2n−1�
x=0

�C(y, x)⟩⊗ ��yn−1yn−2 ⋯ y2y1y0⟩��xn−1xn−2 ⋯ x2x1x0⟩

(9)

��Ib⟩ = QArT(�I⟩) = 1

2n

2n−1�
y=0

2n−1�
x=0

�C(y, x)⟩⊗ QArT(�yx⟩)

=
1

2n

2n−1�
y=0

2n−1�
x=0
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�
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1
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�C(y, x)⟩⊗ QArT
���yn−1yn−2 … yw⟩

���yw−1 … y2y1y0⟩
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���xw−1 … x2x1x0⟩

=
1

2n

2n−1�
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�C(y, x)⟩⊗ ���y
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n−1
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… y�
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�
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Fig. 3   The flowchart of the proposed quantum image encryption scheme
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The corresponding circuit for image sub-block permutation based on QArT is 
shown in Fig. 4, which is completed with ADDER module and ADDER-MOD mod-
ule [38].

To further improve the performance of image blocks permutation and overcome 
the short period defect of QArT, an iteration framework is designed. Through set-
ting different size of image sub-block and different parameter of QArT, the permuta-
tion procedures described in Eq. (9)–(10) are executed several times. Thus, the spa-
tial position of original image blocks can be sufficiently scrambled. Take the image 
“boat” shown in Fig. 5a as example, the result of first-time block-level permutation 
with parameter w = 8 is shown in Fig. 5b and the second-time block-level permuta-
tion with parameter w = 4 is shown in Fig. 5c. It can be seen from the permutation 
results that original image is thoroughly scrambled and any useful information can-
not be directly obtained.

(10)

⎧
⎪⎨⎪⎩

���y
�
n−1

y
�
n−2

… y
�
w

�
= QArT

���yn−1yn−2 … y
w
⟩� = ���xn−1xn−2 … x

w
⟩ + 2��yn−1yn−2 … y

w
⟩� mod 2n−w

���x
�
n−1

x
�
n−2

… x
�
w

�
= QArT

���xn−1xn−2 … x
w
⟩� = ���xn−1xn−2 … x

w
⟩ + ��yn−1yn−2 … y

w
⟩� mod 2n−w

Fig. 4   The quantum circuit for image block permutation based on QArT
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3.2 � Bit‑level permutation

After block-level permutation, the position of image blocks has been preliminar-
ily changed. To change pixel value information of the original image, bit-level per-
mutation procedure is performed in this stage. Generally, the pixel value range of 
gray-scale image is 256, and therefore, 8 bit-planes can be decomposed as shown in 
Fig. 6.

To achieve bit-level permutation, the order of 8 bit-planes needs to be randomly 
exchanged and the permutated order is determined with logistic map. By inputting 
the control parameter � and initial value �0 into the logistic map, a chaotic sequence {
s1(m) ∈ (0, 1),m = 1,… ,N + 1,N + 2… ,N + 8

}
 is obtained. The former N num-

bers are discarded to avoid transient effect and in the simulation experiment N is 
set to 105 . Next, the rest 8 numbers are sorted in ascending order. According to the 
change of numbers order, the bit-planes make the same change and thus the order 
is randomly permutated. For example, the generated pseudo-random sequence is 
{0.9782, 0.0854… 0.0160} and the sorted sequence is {0.0040, 0.0160… 0.0854} ; 
then, the permutation order can be obtained as shown in Fig. 7. The corresponding 
quantum circuit for bit-planes permutation procedure is shown in Fig. 8, where the 
cross symbol denotes the exchange of bit-planes and it is completed with quantum 
swap gate.

For specific pixel, the bit-planes permutation operation can be accomplished with 
controlled quantum swap gate GYX defined as follows:

Fig. 5   The iterative block-level permutation by using QArT for image “boat”

Fig. 6   The diagram of 8 bit-planes decomposition

Fig. 7   The diagram of acquiring permutation order of bit-planes
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Then, the controlled swap gate GYX is used to build a quantum sub-operation HYX 
as follows to perform the bit-planes permutation.

By applying quantum sub-operation HYX on the block-permutated image ��Ib⟩ , the 
bit-plane of pixel at position (Y ,X) is scrambled.

To achieve bit-planes permutation of all the pixels, the following quantum opera-
tion H should be implemented.

(11)
GYX(�C(y, x)⟩) = GYX

����c
7
yx
c6
yx
c5
yx
c4
yx
c3
yx
c2
yx
c1
yx
c0
yx

��

=
���c

1
yx
c0
yx
c6
yx
c5
yx
c3
yx
c4
yx
c7
yx
c2
yx

�

(12)HYX = I ⊗

2n−1�
y=0

2n−1�
x=0

�yx⟩⟨yx� + GYX ⊗ �YX⟩⟨YX�
YX≠yx

(13)

HYX

���Ib⟩
�
=HYX

���Ib⟩
�
=HYX

�
1

2n

�

=
1

2n
HYX

⎛⎜⎜⎜⎝

2n−1�
y=0

2n−1�
x=0

�C(y, x)⟩⊗ �yx⟩
YX≠yx

+�C(Y ,X)⟩⊗ �YX⟩
⎞⎟⎟⎟⎠

=
1

2n

2n−1�
y=0

2n−1�
x=0

�C(y, x)⟩⊗ �yx⟩
YX≠yx

+HYX

����c
7
yx
c6
yx
c5
yx
c4
yx
c3
yx
c2
yx
c1
yx
c0
yx

�
⊗ �YX⟩

�

=
1

2n

2n−1�
y=0

2n−1�
x=0

�C(y, x)⟩⊗ �yx⟩
YX≠yx

+
���c

1
yx
c0
yx
c6
yx
c5
yx
c3
yx
c4
yx
c7
yx
c2
yx

�
⊗ �YX⟩

Fig. 8   The quantum circuit for 
bit-planes permutation
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After bit-level permutation, the quantum image is further scrambled and the 
obtained image is denoted as ��Ik⟩ . Take the image “boat” as an example, the bit-plane 
permutated image is shown in Fig. 9, from which can be seen that the visual informa-
tion is meaningless.

3.3 � Pixel‑level diffusion

The aim of pixel-level diffusion is to make the pixels distribute uniformly and 
this stage is completed with logistic map. Firstly, a pseudo-random sequence {
s2(l) ∈ (0, 1), l = 1,… ,N + 1,N + 2…N + 22n

}
 is generated using Eq.  (7), where 

the control parameter is � set to 3.99999 and the initial value �0 is set through the infor-
mation of plaintext information in order to resist chosen-plaintext attack.

(14)

H
���Ib⟩

�
=

2n−1�
Y=0

2n−1�
X=0

HYX

���Ib⟩
�

=
1

2n

2n−1�
Y=0

2n−1�
X=0

���c
1
YX
c0
YX
c6
YX
c5
YX
c3
YX
c4
YX
c7
YX
c2
YX

�
⊗ �YX⟩

=
1

2n

2n−1�
y=0

2n−1�
x=0

��C�(y, x)
��yx⟩ = 1

2n

2n−1�
y=0

2n−1�
x=0

���c
7�
yx
c6�
yx
c5�
yx
c4�
yx
c3�
yx
c2�
yx
c1�
yx
c0�
yx

�
�yx⟩ = ��Ik⟩

(15)
�0 =

2n−1∑
y=0

2n−1∑
x=0

(�C(y, x)⟩)
28 × 22n

Fig. 9   The bit-level permutation 
result of image “boat”



	 X. Liu et al.

1 3

23  Page 12 of 22

Then, the former N numbers are also discarded to avoid transient effect, and 
then, the remaining elements of sequence 

{
s2(l)

}
 are transformed to integers.

where the function floor(⋅) represents the operation of rounded down.
The ciphertext ��Ie⟩ can be finally obtained through implementing XOR opera-

tion between the pseudo-random sequence ��S2⟩ and bit-level permutated image ��Ik⟩ . The corresponding quantum realization circuit is shown in Fig. 10.

3.4 � Quantum image decryption scheme

As the quantum operations are invertible, the decryption process is exactly the 
inverse process of encryption. According to the diagram of quantum image 
encryption scheme, the corresponding decryption flowchart is shown in Fig. 11 
and the detailed decryption procedures are described as follows:

(16)S2(l) = floor
(
s(l) × 1015

)
mod 256

(17)

��Ie⟩ = ��Ik⟩⊕ ��S2⟩

=
1

2n

2n−1�
y=0

2n−1�
x=0

��C�(y, x)⊕ S2(y, x)
��yx⟩

=
1

2n

2n−1�
y=0

2n−1�
x=0

�E(y, x)⟩�yx⟩

=
1

2n

2n−1�
y=0

2n−1�
x=0

���e
7
yx
e6
yx
e5
yx
e4
yx
e3
yx
e2
yx
e1
yx
e0
yx

�
�yx⟩

Fig. 10   The quantum circuit for 
pixel-level diffusion
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Step 1. By using the same parameter and initial value �0 as the encryption 
scheme, the integer sequence S2(l) is obtained. Then, the encrypted image ��Ie⟩ is 
XORed with S2 to retrieve the bit-level permutated image ��Ik⟩.

Step 2. The inverse bit-planes exchange operation H−1 is implemented on ��Ik⟩ to 
obtain the block-level permutated image ��Ib⟩.

Step 3. The original image can be recovered by performing inverse QArT on 
quantum image ��Ib⟩ according to the parameters used in the encryption.
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Fig. 11   The decryption process of the proposed scheme
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4 � Numerical simulation results and security analysis

Since the quantum computers are not available at present to store and manipu-
late quantum states, the experiments are simulated with MATLAB on a classi-
cal computer. The quantum states and operations can be easily simulated with 
complex vectors and unitary matrices. The keys of the proposed scheme include 
the block size, the iteration parameter of QArT, the order of bit-planes and the 
parameters of logistic map. The relevant parameters are set as follows: There are 
two iterations in the stage of block-level permutation, and the block size is set 
to w1 = 8 and w2 = 4 in the first and second iterations, respectively. The param-
eters of Arnold in the first and second iteration are set to r1 = 20 and r2 = 38 , 
respectively. In the stage of bit-level permutation, the control parameter of logis-
tic map is set to � = 3.99999 and the initial value �0 is set to 0.5. The test images 
“Elaine”, “Lake”, “Peppers” and “Cameraman” with size of 256 × 256 are shown 
in Fig.  12a–d. The corresponding encryption and decryption results of tested 
images are shown in Fig. 12e–h, i–l, respectively. It can be seen from experimen-
tal results that any useful information cannot be recovered from the encrypted 
images, which verify that the proposed scheme has good encryption effect.

(a) Elaine (b)  Lake (c) Peppers (d) Cameraman

(e) Encrypted Elaine (f) Encrypted Lake (g)  Encrypted Peppers (h)  Encrypted Cameraman

(i) Decrypted Elaine (j) Decrypted Lake (k) Decrypted Peppers (l) Decrypted Cameraman

Fig. 12   The encryption and decryption results of tested images
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4.1 � Statistical analysis

4.1.1 � Histogram analysis

Image histogram reflects the gray value distribution, which is an important statisti-
cal feature. For a good image encryption scheme, the histogram of ciphertext image 
should be uniform. Figure  13a–d shows the histograms of plaintext images, and 
corresponding histograms of ciphertext images are shown in Fig. 13e–h. The histo-
grams of the original images are very different, but the histograms of the ciphertext 
are similar, which indicates that the attackers cannot obtain useful information from 
statistical analysis.

In addition, the histogram variances defined as follows are used to measure the 
uniform distribution of plaintext images and ciphertext images.

where histi and histj denote the pixel number that gray value equal to i and j , respec-
tively. Table  1 shows the histogram variances of plaintext images and ciphertext 
images. For the convenience of comparison, the histogram variances of ciphertext 

(21)var(hist) =
1

256 × 256

255∑
i=0

255∑
j=0

1

2

(
histi − histj

)2

Fig. 13   Histograms of a Elaine, b Lake, c Peppers, d Cameraman, e Encrypted Elaine, f Encrypted Lake, 
g Encrypted Peppers, h Encrypted Cameraman

Table 1   The histogram 
variances of plaintext images 
and ciphertext images

Images Plaintext image Ciphertext image

Elaine 35,301.8359 211.0625
Lake 44,650.5937 269.2578
Peppers 34,877.9687 271.0625
Cameraman 110,973.3046 283.6589
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images are highlighted in bold. It can be seen from table that the histograms of 
plaintext images distribute not even, but the ciphertext images have uniformly dis-
tributed histograms. The quantitative results further verify that the proposed scheme 
can resist histogram attack.

4.1.2 � Correlation between adjacent pixels

The correlation between adjacent pixels in a natural image is strong; therefore, 
the corresponding ciphertext images should have sufficiently low correlation 
between adjacent pixels. The correlation coefficient (CC) defined as follows is 
generally calculated to evaluate the correlation between the adjacent pixels in 
horizontal, vertical and diagonal directions.

where xu and yu denote pixel values of a pair adjacent pixels. The x and y represent 
the average value of variables x and y . Table 2 lists the CC values of plaintext and 
ciphertext images in three directions, the CC values of encrypted images are high-
lighted in bold, from which can be seen that the CC values of original images are 
close to 1 and the CC values of ciphertext images are close to 0. Therefore, the cor-
relation of the adjacent pixels is decreased in the ciphertext images.

Take the image “Elaine” as an example, by randomly selecting 10,000 pairs 
of adjacent pixels in original and ciphertext images, the correlation distribution 
in three directions is shown in Fig.  14. It is obvious seen from Fig.  14d–f that 
there is almost no correlation between adjacent pixels and therefore, the proposed 
scheme can resist correlation attack.

(22)CC =
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�
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��
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�
�

2n∑
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�
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�2 N∑
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yu − y

�2

Table 2   The CC values of plaintext and ciphertext images in three directions

Correlation coefficient Horizontal direction Vertical direction Diagonal direction

Elaine 0.9693 0.9432 0.9185
Encrypted Elaine 0.0005  − 0.0133 0.0419
Lake 0.9302 0.9298 0.8987
Encrypted Lake  − 0.0036  − 0.0295  − 0.0174
Peppers 0.9479 0.9105 0.8621
Encrypted Peppers 0.0295 0.0187 0.0393
Cameraman 0.9793 0.9789 0.9562
Encrypted Cameraman  − 0.0279  − 0.0062  − 0.0089
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4.1.3 � Information entropy

The information entropy (IE) defined as follows can describe the statistical fea-
ture of uncertainty. The probability of gray value i is P(i) and the corresponding 
IE can be calculated as:

If the gray values distribute randomly, the information entropy is close to 8. 
The information entropy of the plaintext images and ciphertext images is listed in 
Table 3. For the convenience of comparison, the entropy of ciphertext images are 
highlighted in bold. It can be seen from table that information entropy encrypted 
image is very close to ideal value, and therefore, the proposed scheme can resist 
entropy attack.

(23)IE = −

255∑
i=0

P(i) log2 P(i)

Fig. 14   a–c Correlation distribution in three directions of original images, d–f correlation distribution in 
three directions of ciphertext images

Table 3   The information 
entropy of the plaintext images 
and ciphertext images

Images Plaintext image Ciphertext image

Elaine 7.5046 7.9977
Lake 7.4898 7.9970
Peppers 7.5693 7.9970
Cameraman 7.0097 7.9969
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4.1.4 � Fourier spectrum analysis

To further analyze the statistical property of ciphertext images, the spectrums of 
which are plotted in Fig. 15. In addition, the spectrums of plaintext images are also 
depicted and compared. It can be easily seen that after the encryption process, the 
spectrum amplitude becomes extremely uniform. Therefore, the attackers cannot 
achieve useful statistical information from Fourier spectrums of ciphertext images.

4.2 � Key sensitivity analysis

For a satisfactory image encryption scheme, a slight change of key will lead to the 
failure of obtaining original information. The image “Lake” is taken as an exam-
ple to test the key sensitivity. The decrypted image with correct keys shown in 
Fig. 16a–e shows the decrypted image by slightly changing one key and keep other 
keys correct. The decryption results by changing the Arnold parameter in two itera-
tions are shown in Fig. 16b, c, from which can be seen that the block information is 
still cannot recognized. By changing the block size in two iterations, the decrypted 
images are shown in Fig. 16d, e, from which can be seen that decrypted images are 
still permutated. The decryption with random bit-planes order is shown in Fig. 16f, 
and the decrypted images is noise-like. The parameters deviation of logistic map 
will also cause the noise-like decryption results as shown in Fig. 16g, h, where the 
deviation of � is 10−15 and the deviation of �0 is 10−16 . Based on the analysis above, 
it can be seen from experimental results that the keys in the proposed scheme is 
sensitive.

4.3 � Key space analysis

To resist brute-force attack, the key space of the image encryption scheme should be 
large enough. In the proposed scheme, the total keys include the parameter of QArT, 
the order of bit-planes and the parameters of logistic map. If the block size is set to 

Fig. 15   Spectrums of plaintext and ciphertext images
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4, the period of QArT is 48 for an image sized 256 × 256 . The possible orders of bit-
planes are about 8! . The valid precision of logistic map parameters including control 
parameter and initial value is up to 10−15 , and therefore, the key space is more than 
1030 . As the keys are independent, the overall key space of the proposed scheme is 
about 482 × 8! × 1030 > 2100 , which is safe under current computation ability.

4.4 � Noise attack

During the transmission process of ciphertext image, it is usually influenced with 
noises. Therefore, the encryption algorithm should robust to resist noise attack. In 
the experiment, Gaussian random noise G with zero mean and standard deviation 
is added on the encrypted image and k is used to represent the noise strength. The 
ciphertext with noise is denoted as:

The image cameraman is used to simulate the retrieval result of noisy ciphertext, 
and the corresponding decrypted images are shown in Fig.  17a–d. The decrypted 
images are become more and more fuzzy with the increase in k , but the main con-
tent can still be recognized. As a result, the proposed quantum image encryption 
scheme is robust to resist noise attack.

4.5 � Computational complexity

The proposed quantum image encryption scheme includes three main procedures, 
and therefore, the computational complexity mainly depends on the QArT, bit-
planes permutation and XOR operation. Generally, the complexity of quantum 

(24)I�
e
= Ie + kG

Fig. 16   The decrypted images with correct keys and incorrect keys
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algorithm is calculated with the number of logical gates. In the block-level permu-
tation stage, the QArT containing ADDER module and ADDER-MOD module is 
implemented, where the complexity of ADDER module is 28n − 12 and complex-
ity of the ADDER-MOD module is about 140n [40]. Therefore, the computational 
complexity of the QArT is O(n) . In the bit-plane permutation stage, the swap gates 
are used and each swap gate contains 3 CNOT gates. As the quantum computation 
has parallel characteristic, the is also O(n) . In the pixel-level permutation, the XOR 
operation is accomplished with a 2n - CNOT gate, which contains 128n − 256 basic 
gates. Thus, the computational complexity of bit-level permutation stage is O(n) . 
Therefore, it is easy to draw a conclusion that the whole computational complexity 
of the proposed scheme is O(n) . In comparison, the complexity of same operations 
in the classical image encryption algorithm is O

(
22n

)
 ; therefore, the quantum algo-

rithm has a superior performance in terms of computational complexity.

5 � Conclusion

In this paper, an efficient three-level quantum image encryption scheme is presented 
based on QArT and logistic map. To improve the security of the proposed algo-
rithm, three-level quantum image encryption scheme including block-level permu-
tation, bit-level permutation and pixel-level diffusion is designed and correspond-
ing quantum circuits are given. To make up the period defect of QArT, an iteration 
framework for block-level permutation is proposed. By setting different block-size 
and different parameter of QArT, the key-space is dramatically increased. The order 
of bit-level is random scrambled according to the pseudo-random sequence gener-
ated with logistic map. In addition, the pixel-level diffusion is accomplished with 
XOR operation between bit-level permutated image and a pseudo-random sequence 
acquired from logistic map. The introduction of logistic map not only simplifies the 
keys transmission but also enhances the security of the proposed scheme. Numerical 
simulations results and theoretical analysis show that the proposed three-level quan-
tum image encryption scheme has high level of security and efficiency.

The proposed three-level quantum image encryption algorithm achieves good per-
formance in security and efficiency, and this encryption frame can still be improved 
such as enlarge the key space in block permutation stage. The main emphasis of our 

(a) 0k = (b) 1k = (c) 10k = (d) 20k =

Fig. 17   The decrypted images with different noise strength
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future research will be the design of quantum permutation transforms superior to 
Arnold transform.
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