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Abstract
Quantum coherence (QC) as a crucial physical resource plays the vital role in recent
researches of quantum information science, whereas the QC within an open system
unavoidably deteriorates due to the system–environment interacting. In this paper, we
analyze the dynamics of QC when the initial state is exposed to Markovian and non-
Markovian reservoirs, respectively. We analytically derive the dynamical conditions
under which the QC is frozen in the Markovian reservoir and explore the underlying
physical mechanisms by investigating the trade-off relation between QC and mixed-
ness of system. In the non-Markovian reservoir, we demonstrate the damped revivals of
QC and show that these revivals can be effectively enhanced by increasing thememory
degree of reservoir. These findings might provide an insightful physical interpretation
for the dynamical phenomena of QC exhibiting in complex systems.

Keywords QC · Freezing and revival · Decoherent reservoirs

1 Introduction

As is well known, superposition of quantum states is recognized as one of the most
fundamental features that mark the departure of quantummechanics from the classical
one [1]. In theory, QC arising from the superposition principle constitutes a powerful
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resource for quantum metrology [2, 3] and entanglement creation [4]. It is also at the
root of fulfillingwide-ranging quantum information processing tasks, such as quantum
optics [5, 6], quantum thermodynamics [7, 8], quantum information [9] and solid-state
physics [10]. Recently, Baumgratz et al. [11] introduced a rigorous resource-theoretic
framework for quantifying the QC. Based on it, they proposed two bona fidemeasures,
i.e., l1 norm of coherence and relative entropy of coherence. Afterward, researches on
the presence and functional roles of QC in various systems have attracted considerable
interest [12–30]. For example, Streltsov et al. [12] demonstrated that all measures of
entanglement can be artfully used to define a family of valid measures for quantifying
QC. Shao et al. [13] proved that the trace norm of coherence is a promising candidate
for coherence monotone, while fidelity does not satisfy the monotonicity requirement
as a measure of QC.

In the realistic quantum system, a long-standing and significant issue concerning
quantum dynamics is the decoherence induced by the inevitable interaction between
the quantum system and environment, so the quantum system is rarely isolated and
should be regarded as open [31–35]. Based on Pollock’s theorem [36] that whether
the future processes implemented on quantum system depend on the past controls,
that is, whether these processes involve memory effects, one can divide the open
dynamical process into two categories, i.e., Markovian and non-Markovian dynami-
cal regimes [37, 38]. Moreover, coherence is an intrinsically fragile property which
typically vanishes at macroscopic scales of space, time and temperature: the disap-
pearance of coherence in quantum systems exposed to environmental noise is one
of the major hindrances still threatening the scalability of most quantum machines.
Therefore, it is extremely intriguing and important to probe the dynamical behaviors
of QC when quantum system is coupled with environment [29, 30]. Yadin et al. [29]
introduced QC as the speed of evolution of a system under decoherence and proven
that coherence is the ability to estimate a dephasing channel, quantified by the quan-
tum Fisher information. Despite all this, it recently has been found that the QC in open
system can be frozen, and the conditions of sustaining long-livedQCwere investigated
[39–44]. Especially, Zhang [39] derived a criterion under which QC of two comoving
atoms on a stationary trajectory is frozen to a nonzero value. Bromley et al. [40] found
the freezing conditions in which the coherence remains unchanged during the entire
evolution, whose prediction has been confirmed in a recent nuclear magnetic resonant
experiment [44]. Naturally, a challenge for the study of QC is to explore the underlying
mechanisms of interactions between the dynamics behaviors and environment.

Inspired by these works, we aim to investigate the open dynamics of QC from
the geometric and entropic perspectives, respectively. When the Bell-diagonal state
is coupled with Markovian channels, we analytically derive some dynamical condi-
tions under which QC can be frozen and maintains in a nonzero value. The results
indicate that the l1 norm of coherence exhibits freezing phenomena, whereas the rel-
ative entropy of coherence remains as a monotonically decreasing function of time.
In this sense, the l1 norm of coherence is more robust against the decoherence than
the relative entropy of coherence. In parallel, we demonstrate the damped revivals and
oscillations of QC in the non-Markovian evolutions, which is contributed by mem-
ory effects involved in quantum processes. Moreover, we presented that the reservoir
degree plays a positive role in these revivals, as it increasing the revival peak of coher-
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ence gradually increases, whereas it also prolongs the critical moment at when QC
revealing. To address the physical mechanisms behind these dynamical behaviors of
QC, we introduce the mixedness based on the normalized linear entropy which is an
intuitive parameter to understand decoherence [45]. From the perspective of resource
theory of purity, the mixedness can be obtained as a complementary quantity to global
information [46, 47]. Our analysis shows that when quantum state is interacted with
environment the degree of mixedness always is increased, while the state can hold
on a fixed QC. Compared with the results given by Zhang who using system evolu-
tion to study coherent freezing conditions [39], we provide another way to explain
the freezing QC from the perspective of entropy. In a word, progresses on this fun-
damental question lead to a more efficient exploitation of coherence to empower the
performance of real-world quantum technology.

This paper is structured as follows. In Sect. 2, we firstly discuss the theory of QC
from resource theory perspective and introduce two quantifiers, i.e., l1 norm of coher-
ence and relative entropyof coherence. In Sect. 3,we investigate the dynamic behaviors
of QC when Bell-diagonal state is coupled with Markovian and non-Markovian
channels, respectively. We then analytically address the mechanisms behind these
dynamical behaviors based on the trade-off relation between QC and mixedness in
Sect. 4. Finally, conclusions are presented in Sect. 5.

2 Measures of quantifying QC

QC as a direct consequence of the quantum mechanical superposition principle is
conventionally associated with the capability of a quantum state to exhibit interference
phenomena. It is usually attributed to the size of the nonzero off-diagonal elements of
density matrix with respect to a specific reference basis, whose choice is dictated by
the physical scenario under consideration. Here, for a 2-qubit system in Hilbert space
C
2N , we fix the computational basis {|0〉, |1〉}⊗2 as the reference basis.
In the context of quantum information, coherence can be rigorously characterized

in the context of quantum resource theory. Recently, Baumgratz et al. [11] formulated
a set of physical requirements which should be satisfied by any valid measure of QC
labeled by C , which are as follows:

A. A. C(�) � 0 for any incoherent state �;
B. Monotonicity under incoherent completely positive and trace-preserving (ICPTP)

maps (ΛIC PT P ), C(ΛIC PT P (ρ)) ≤ C(ρ);
C. Monotonicity under selective measurements on average, C(ρ) ≥ ∑

n
pnC(ρn),

where ρn �
(
KnρK

†
n

)/
pn and pn � Tr

(
KnρK

†
n

)
, for any set of Kraus oper-

ators {Kn} satisfying ∑

n
KnK

†
n � I and Kn�K

†
n ∈ � for each n;

D. Convexity, C(pρ1 + (1 − p)ρ2) ≤ pC(ρ1) + (1 − p)C(ρ2) for any states ρ1 and
ρ2 and p ∈ [0, 1].
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Based on abovementioned criteria, two different types quantifier of coherence are
introduced. The l1 norm of coherence is defined as

Cl1(ρ) �
∑

i, j,i �� j

∣
∣ρi j

∣
∣, (1)

which is equal to a summation over the absolute values of all the off-diagonal elements
ρi j of a given density matrix ρ. Moreover, by virtue of the von Neumann entropy S
(ρ) � −tr(ρ log ρ), the relative entropy of coherence is formed as

CRE(ρ) � S
(
ρdiag

) − S(ρ), (2)

where ρdiag denotes the diagonal state obtained from state ρ by deleting all the
off-diagonal elements. Methodologically, the l1 norm of coherence is an geometric
measure, which can intuitively characterize the coherence by quantifying the minimal
distance between quantum state and its nearest incoherent state, while the relative
entropy of coherence is an entropic measure and has a clear physical interpretation,
which equals the optimal rate of the distilled maximally coherent states by incoherent
operations in the asymptotic limit of many copies of ρ. On the other hand, when the
initial state is either incoherent or maximally coherent, they can get same quantity [27,
30].

3 Dynamic behaviors of QC in decoherent reservoirs

Upon above definitions, we proceed by discussing the dynamic behaviors of QCwhen
a two-qubit state is coupled with decoherent reservoirs. To this aim, we focus on the
Bell-diagonal state because of its analytical simplicity in calculation and crucial roles
in quantum tasks. In the Bloch representation, the initial state is expressed as [48]

ρAB(0) � 1

4

[

I A ⊗ I B +
∑3

i�1
ci (0)

(
σ A
i ⊗ σ B

i

)]

, (3)

which is identified by vector 	ci (0) � {c1(0), c2(0), c3(0)}. Here, I A(B) is the identity

operator, and
{
σ
A(B)
i�1,2,3

}
denote the Pauli matrices. Following, we will consider two

dynamic cases in which the initial state ρAB(0) is coupled with Markovian and non-
Markovian reservoirs, respectively.

To delineate the state-reservoir dynamics, we use the operator-sum representation
formalism to characterize the interaction. Based on the completely trace-preserving
quantum operation ε(·) in terms of Kraus operators, the reduced time-evolved system
state is [34]

ε
(
ρAB

)
�

∑

i, j

(
K A
i ⊗ K B

j

)
ρAB(0)

(
K A
i ⊗ K B

j

)†
, (4)
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where K A
i and K B

j are the Kraus operators associated with decoherent processes of

subspaces A and B, which satisfy the trace-preserving condition
∑

i, j
K †
i, j Ki, j � I .

3.1 Markovian reservoir

Some well-known channels such as bit flip and bit-phase flip channels are important
for decoherent mechanisms in qubit system, and they are also the typical Markovian
reservoirs. In the computational basis {|0〉, |1〉}, their Kraus operators are

Bit flip channel:K0 �
√
1 − p

/
2I , K1 �

√
p
/
2σ1, (5)

Bit-phase flip channel:K0 �
√
1 − p

/
2I , K1 �

√
p
/
2σ2. (6)

These Kraus operators acting on qubit are interpreted as probability 1 − p
/
2 of

qubit remaining in the same, and probability p
/
2 of having an error.

Through the calculation, we show that both decoherent processes given in Eqs. (5)
and (6) can fully preserve the Bell-diagonal form of the time-evolved state ε

(
ρAB

)
.

Under this constraint, the state ε
(
ρAB

)
is completely identified by the time-dependent

vector 	ci (t) � {c1(t), c2(t), c3(t)}, whose concrete expressions are

Bit flip channel : 	ci (t) �
{
c1(0), c2(0)(1 − p)2, c3(0)(1 − p)2

}
, (7)

Bit-phase flip channel : 	ci (t) �
{
c1(0)(1 − p)2, c2(0), c3(0)(1 − p)2

}
. (8)

From these time-dependent vectors, we clearly suggest that different initial con-
ditions 	ci (0) lead to various dynamics of QC independently of the measure used to
quantify coherence.

According to the definitions, the l1 norm of coherence for the time-evolved state ε(
ρAB

)
is analytically derived as

Cl1

(
ε
(
ρAB

))
� 1

2
(|c1(t) − c2(t)| + |c1(t) + c2(t)|) (9)

and the relative entropy of coherence is

CRE

(
ε
(
ρAB

))
�

4∑

i�1

λ′
i log2 λ′

i − 1 ± c3(t)

2
log2(1 ± c3(t)) + 2 (10)

with nonzero eigenvalues λ′
i (i � 1, 2, 3, 4) of state ε

(
ρAB

)
.

We take the case of the initial state interacted with bit flip channel as an illustration,
which is mainly based on a fact that the results obtained in bit-phase flip channel are
in good agreement with that behaved in the bit flip channel. In Fig. 1, we plot the
variation of l1 norm of coherence and relative entropy of coherence under different
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(a) (b)

(c) (d)

Fig. 1 Quantum coherence within bit flip channel as functions of the noise parameter p. The initial state
parameters are fixed as a |c1| � |c2|

/
2, c2 � c3, b |c1| � |c2|

/
2, c2 � −c3, c |c1| � |c2|

/
4, c2 � c3

and d |c1| � |c2|
/
4,c2 � −c3, respectively (Color online)

initial correlation functions 	ci (0) as functions of the noise parameter p. It is evident
that both of themmonotonously degrade at the beginning of the growth of parameter p,
meaning that the environment’s action of continuously affecting the system gradually
causes a loss of information and therefore resulting in a decrease in QC. Afterward, the
l1 norm of coherence is frozen when the noise intensity expands to the finite intensity,
i.e., it becomes more robust as the noise increases. At the same time, the value of these
inflection points at which QC become frozen are determined by the formulations of
initial correlation function 	ci (0). On the contrary, the relative entropy of coherence
remains as a monotonically decreasing function of time. In this sense, the l1 norm of
coherence is more robust against the decoherent reservoir than the relative entropy of
coherence.

In what follows, we aim to derive the dynamical conditions under which the QC is
frozen. To do so, we differentiate the coherence with respect to the noise parameter p,
namely ∂pC , and then solve the equation of the differential which is equaled to zero.
In this circumstances, the coherence will be unaffected during the evolution. Taking
the p derivative of the l1 norm of coherence, we derive the dynamical conditions as
shown in following inequation. For the bit flip channel, the conditions are

|c1(0)| < |c2(0)| with p > 1 −
√

|c1(0)|
/ |c2(0)|. (11)

Similarly, for the bit-phase flip channel, they are

|c1(0)| > |c2(0)| with p > 1 −
√

|c2(0)|
/ |c1(0)|. (12)

123



Freezing and revival of quantum coherence in decoherent… Page 7 of 13 385

These findings may provide some guidance in the preparation of robust quantum
resource states for the practical quantum tasks.

3.2 Non-Markovian reservoir

We start by developing the single qubit non-Markovian dissipative dynamics, which
is modeled by the Hamiltonian [37]

H � ω0σ+σ− +
∑

k

ωkb
†
kbk +

(
σ+B + σ−B†

)
, (13)

where B � ∑
k gkbk with gk being coupling constant, σ± are the raising and lowering

operators of qubit with a transition frequencyω0. Moreover, the index k labels the field
modes of reservoir with frequency ωk , and b†k (bk) is the creation (annihilation) oper-
ators. Particularly, Ref. [37] declared that the Hamiltonian given in Eq. (13) describes
various systems such as a qubit formed by one exciton in a potential well reservoir
that represents a quantum well. This reservoir is represented by a bath of harmonic
oscillators, and the effective spectral density is [49]

J (ω) � 1

2π

γ0λ
2

(ω0 − ω)2 + λ2
, (14)

where γ0 is the system–reservoir coupling constant which is related to the decay rate of
the system, and link with the inverse of the system relaxation time τR ≈ 1

/
γ0. λ is the

spectral width of distribution, which is in turn the inverse of the reservoir correlation
time τB ≈ 1

/
λ. We define the reservoir degree R � γ0

/
λ in order to distinguish the

strong coupling regime from the weak coupling regime. Strong coupling R > 1
/
2

corresponds to the non-Markovian regime and weak coupling R < 1
/
2 Markovian

regime. Besides, themagnitude of reservoir degree can use to characterize thememory
effects of environment. They are consistent, i.e., the lager reservoir degree the stronger
memory effects. In the remainder of this work, we focus on the non-Markovian regime.

Based on the computational basis {|0〉, |1〉}, the dynamical map for single qubit
interacted with the non-Markovian reservoir can be described by the reduced density
matrix [37]

ρ(t) �
(

ρ00(0)Pt ρ01(0)
√
Pt

ρ10(0)
√
Pt ρ11(0) + ρ00(0)(1 − Pt )

)

, (15)

where Pt is an oscillation term describing the decay of qubit’ excited state. It is induced
by the interaction between the qubit system and the reservoir. For the effective spectral
density J (ω) as shown in Eq. (14), the oscillation term Pt is given by

Pt � e−λt
[

cos

(
dt

2

)

+
λ

d
sin

(
dt

2

)]2
(16)
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(a) (b)

(c) (d)

Fig. 2 Quantum coherence within non-Markovian reservoir (reservoir degree is taken as R � 10) as func-
tions of the scaled time γ0t . The initial state parameters are fixed to same as what chosen in Fig. 1 (Color
online)

with d � √
2γ0λ − λ2. It will lead to a nonmonotonic dynamics behavior of the qubit

system when the term Pt starts to oscillate. Then, using the reduced density matrix ρ

(t) for the single qubit, we able to construct the reduced density matrix ρAB(t) of the
two-qubit Bell-diagonal state interacted with non-Markovian reservoir. For the sake
of simplicity, we here do not list its explicit form which has been detailed by Bellomo
[37]. According to the definition, one can easier to obtain the explicit expression of l1
norm of coherence based on its calculable, which is

Cl1

(
ρAB(t)

)
� 1

2
[|c1(0) − c2(0)| + |c1(0) + c2(0)|]ζ (R) (17)

with function ζ (R) � e− γ0 t
R

[
cos

( γ0t
2R

√
2R − 1

)
+ 1√

2R−1
sin

( γ0t
2R

√
2R − 1

)]2
.

In Fig. 2, we first display the dynamic behaviors of QC versus the scaled time γ0t
when different initial states are interacted with a specific environment with reservoir
degree R � 10. One can clearly observe that both twoQCs exhibit damped oscillations
and suffer damped revivals during the evolution. This non-monotonicity appears in
this non-Markovian reservoir because of the presence of memory effects involved
in environment which can cause the back-flow of information from environment to
system. In the asymptotic limitation of evolution, both two QCs eventually evolve to
a stable value at last.

As a supplement, we explore the effects of reservoir degree R on the QC of a
specific initial state (specified by the initial state parameters satisfying 2c1 � c2�c3)
interactedwith non-Markovian reservoir. InFig. 3,weplot the dynamicbehaviors verse
the scaled time γ0t , which clearly suggests that the reservoir degree plays a positive
role in the QC revivals. As the reservoir degree increasing, the revival peak gradually
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(a) (b)

(c) (d)

Fig. 3 Quantum coherence as functions of the scaled time γ0t when a specific initial state (2c1 � c2�c3)
coupled with the different degree non-Markovian reservoirs: the degrees are taken as a R � 2; b R � 5,
c R � 10 and d R � 20 (Color online)

increases, meaning that the memory effects are enhanced and more information flow
back from the environment to system. At the same time, the critical moment at which
QC revealing is prolonged.

4 Mechanisms underlying these dynamic phenomena of QC

To get a better understanding about the freezing and revivals ofQC in the open systems,
we will address the underlying physical mechanisms from the perspective of system
entropy. From literatures [45–47], we find that coherence and mixedness of system
always satisfy a dynamical trade-off relation, which derive the limits imposed by
mixedness on the amount of coherence. In Ref. [47], the trade-off relation, for any
arbitrary quantum system ρ in d dimensions, between coherence, as quantified by l1
norm, and mixedness in terms of the normalized linear entropy is

Ω(ρ) � C2
l1
(ρ)

(d − 1)2
+ Ml(ρ) ≤ 1, (18)

where Ml(ρ) � d
d−1

(
1 − Trρ2

)
.

By approaching this dynamical relation, we try to give a physical representation
about the freezing behaviors of QC. Taking the bit flip channel as an example, the
mixedness of the time-evolved system is

Ml(ρ) � 1 − 1

3

(
c1(t)

2 + c2(t)
2 + c3(t)

2
)
. (19)
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Fig. 4 The dynamical behaviors of Ml (ρ) and Ω(ρ) versus parameter p. Here, taking bit flip channel as
example and the initial state is fixed at |c1| � |c2|

/
2, c2 � c3 (Color online)

To attain a better quantitative understanding of these freezing behaviors, we will

study the derivatives of three quantities
dCl1 (ρ)

dp , dMl (ρ)
dp and dΩ(ρ)

dp . Particularly, there

are two consecutive time-intervals, namely T (1) � [
0, p∗] and T (2) � [

p∗, 1
]
with p∗

being the critical time when the QC be frozen. In the time-interval T (1), dCl1(ρ)
dp � −2

|c2(0)|(1 − p), and dMl (ρ)
dp � 2

3 (|c2(0)| + |c3(0)|)(1 − p). During the second time-

interval T (2),
dCl1 (ρ)

dp � 0. To sum up, the results are

dΩ(ρ)

dp
�

{
− 4|c2(0)|2

9 (1−p)3+ 2
3 (|c2(0)|+|c3(0)|)(1−p), p∈[

0,1−√|c1(0)|/ |c2(0)|
]

2
3 (|c2(0)|+|c3(0)|)(1−p), p∈[

1−√|c1(0)|/ |c2(0)|,1
] . (20)

Therefore,QCcan be frozen under environmentwhen the initial state evolves during
the second time-interval T (2). At the same time, we illustrate the dynamic behaviors
of Ω(ρ) and Ml(ρ) as a function of the noise parameter p in Fig. 4. It is shown that
they first evolve in different trajectories, while always evolve parallel each other after
the critical time p∗.

5 Conclusion

In conclusion, we have investigated the dynamic behaviors of QC witnessed by l1
norm of coherence and relative entropy of coherence when the Bell-diagonal state
is coupled with Markovian and non-Markovian reservoirs, respectively. The results
showed that the QC exists dynamical freezing and revival phenomena during their
decoherent evolutions. Concretely, in the Markovian regime, we determined exact
conditions such that the l1 norm of coherence is dynamically frozen when the qubits
initialized in a particular class of states and undergone local dissipative flip channels.
By contrast, the relative entropy of coherence remains as a monotonically decreasing
function of time. In this sense, the l1 norm of coherence is more robust against the
decoherent reservoir than the relative entropy of coherence. In the non-Markovian
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regime, both coherences exhibit damped oscillations and suffer damped revivals at
critical time due to the memory effects involved in environment which can induce the
back-flow of information from the environment to the quantum system. Moreover,
we presented a detailed investigation of reservoir degree on the dynamics of QC and
suggested that the reservoir degree plays a positive role in these revivals, as the reservoir
degree increasing the revival peak gradually increases, whereas it prolongs the critical
moment at when QC revealing. At last, we probed the physical mechanism underlying
the freezing behaviors based on the trade-off relation between QC and mixedness.
The degree of mixedness of system always increases, while quantum state can hold
on a fixed coherence for finite evolution time. The results presented in our work show
that the features of system–environment coupling can be utilized for the purpose of
preserving coherence or invoking coherence back into the system. It also may provide
impetus and alternative directions to study the effect of noise on quantum resources.
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