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Abstract
The ping-pong protocol adapted for quantum key distribution is studied in the trusted
quantum noise scenario, wherein the legitimate parties can add noise locally. For a
well-studied attack model, we show how non-unital, quantum non-Markovianity of
the added noise can improve the key rate. We also point out that this noise-induced
advantage cannot be obtained by Alice and Bob by adding local classical noise to their
post-measurement data.

Keywords Ping-pong · Non-Markovianity · Quantum key distribution · Amplitude
damping noise

1 Introduction

Quantum key distribution (QKD) protocols are known to offer information theoretic
security of information, unlike their classical counterparts which can only offer com-
putational security. Over the time, a number of QKD protocols have been proposed
(cf. the review [1]), since their foundation was laid over three decades ago by Bennett
and Brassard [2]. While QKD protocols typically involve the probabilistic generation
of a secret key, [3] proposed a deterministic version thereof using entanglement in
a two-way protocol (called the “ping-pong protocol,” described below), but it turns
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out that the idea can also be realized without entanglement [4]. Certain attacks or
modifications to the ping-pong protocol were proposed in [5–8], which were analyzed
in [9]. Subsequently, further modifications or attacks on the ping-pong protocol were
studied by other authors [10–14].

Noise is especially detrimental to quantum information processing, given the
fragility of quantum resources [15]. Yet, recently, there have been a few reports point-
ing out that the addition of classical or quantum noise by information sender Alice
or receiver Bob can be advantageous to QKD [16–18]. Here, we shall refer to such
user added noise as “trusted.” Note that this terminology differs from that used by
[19], who in the context of continuous variable QKD protocols [20] refer to noise
that is security breaking as “untrusted” and noise that is merely key rate reducing as
“trusted.”

Quantum non-Markovianity of noise is the quantum analogue of classical memory
effects and manifests itself through the backflow of quantum information or increase
in the distinguishability of two states subjected to a noisy channel [21–23], though
we may reasonably posit weaker manifestations of quantum non-Markovianity (cf.
[24,25]). Thus, it is intuitive to expect that quantum non-Markovianity can be helpful
to information processing [26,27], especially at low temperatures [28,29] . However,
this is by no means automatic (cf. e.g., [30]).

In an earlier work, it was shown [26] that non-unital noise helps cryptographic secu-
rity for QKD based on the ping-pong communication protocol for a specific attack,
essentially because the noise turns out to be more detrimental for Eve than Alice
and Bob. In this paper, we show that non-Markovianity can further boost the advan-
tage given by the non-unitality of quantum channels under certain circumstances. As
before, unital channels provide no advantage. We consider two different scenarios in
which amplitude damping noise is deliberately applied by a legitimate party (Bob,
specifically) before a Bell measurement, and study the increase in secure key rate.
In both cases, we find that if the quantum noise is non-Markovian, then the secure
key rate increases significantly in comparison with Markovian noise in certain time
ranges.

There do not seem many works that have explored this practically useful aspect.
Notably, Ref. [18] shows that deliberately adding depolarizing noise increases secure
key rate for BB84 [2] and for entanglement-based six-state protocols [31,32]. This was
somewhat inspired from the work [17] where for the six-state protocol, white noise
added by the sender to the message qubit either prior to sending the qubit or prior to
measurement on the qubit gives rise to an increased secure key rate in the sense we
consider in this paper.

This paper is arranged as follows. In Sect. 2, we introduce the protocol, which is
the “ping-pong” communication protocol adapted for QKD. In Sect. 3, we discuss
the phenomenologically motivated model of amplitude damping noise and describe
how it can be added during the protocol. We consider in Sect. 3.1 the first scenario
involving a single-qubit noise and in Sect. 3.2 the second scenario involving two-qubit
incoherent noise. In Sect. 4, we show that the noisy joint statistics cannot be simulated
by locally adding classical randomness to the noiseless joint quantum statistics of the
protocol. Then, we conclude in Sect. 6.
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Fig. 1 General scheme of the ping-pong protocol [3]: Bob prepares an entangled qubit pair in polarization
degrees of freedom, and transmits the travel qubit to Alice and retains the home qubit. All channel noise
is conservatively assumed to be due to Eve’s attack. In addition, Bob adds noise to the qubit(s) prior to
his measurements. The same layout is used when the protocol is adapted for QKD, except that the control
mode is dropped (cf. text) (Color online)

2 The basic protocol and the optimal individual attack

The ping-pong protocol, adapted as a scheme for QKD, runs as follows: Bob prepares
the Bell state |ψ+〉 = 1√

2
(|01〉 + |10〉), in particular pair of photons entangled in the

polarization degree of freedom, out of which he sends one photon (travel photon) to
Alice through a quantum channel, ideally assumed to be noiseless and lossless. Alice
then encodes the travel qubit by applying either I or σz with probability 1

2 , and sends
it back to Bob. Once the travel qubit returns to Bob, he is left with either of the two
Bell states |ψ±〉 = 1√

2
(|01〉± |10〉), corresponding to the bit 0 or 1 encoded by Alice,

which he distinguishes through a Bell measurement.
In the original ping-pong quantum direct communication protocol, the security

requires alternating between the above message mode and a control mode, wherein
Alice measures the travel qubit for error checking, and does not return it. Here, for
the requirement of QKD, we drop the control mode and consider only the message
mode. As a security check, both parties compute the quantum bit error rate (QBER) by
sampling a fraction of the qubits transmitted. On them, Alice announces her encoded
bit and Bob announces the Bell state he detected. The fraction of cases where their
records differ is an estimate of QBER and a potential indicator of eavesdropper Eve’s
presence. If QBER is found to be less than a threshold value, they proceed ahead with
key distillation, or else they abort the protocol.

The interesting aspect of the ping-pong protocol is that in the ideal case, Eve only
finds the onward and return photons to be in the maximally mixed state. Wojcik [5]
proposed a strategy by attacking the onward and return legs. In this attack, Eve includes
two ancillary particles: the first (labeled x) prepared in a vacuum state, denoted |2〉,
and the other (labeled y) in the state denoted |y〉 = |0〉. Then the composite initial
state is |�〉initialhtxy = |ψ+〉|2〉x |0〉y , where h and t are labels for “home” and “travel”
qubit states, respectively. In the onward leg, Eve attacks the travel qubit by applying
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the operation given by:

Qtxy :
|020〉
|021〉
|120〉
|121〉

⎫
⎪⎪⎬

⎪⎪⎭

−→

⎧
⎪⎪⎨

⎪⎪⎩

|002〉 + |201〉
|002〉 − |201〉
|210〉 + |112〉
|210〉 − |112〉

(1)

with CPBS denoting the “controlled polarization beam splitter” operation. On the
return leg (after Alice’s encoding action), Eve applies the operation Q−1

t xy on the travel
qubit and forwards it to Bob.

After the end of the quantum round, Bob receives the final states |�〉fin =
1√
2
(|012 j〉+|1020〉),with j ∈ {0, 1}, corresponding toAlice’s operation Ô j ∈ {I , Z}.

The joint probabilities of Alice, Eve and Bob, PAEB, are found to be

P000 = 1

2
; P1 jk = 1

8
, (2)

for j, k ∈ {0, 1}.
The secure (or secret) key rate for this individual attack on each travel by Eve is

lower bounded by kmin = I (A : B) − χ(A : E), where I (A : B) is the mutual
information between the trusted parties Alice and Bob, and χ(A : E) is the Holevo
information between trusted party Alice and malicious Eve. In practice, the key rate
may be as high as determined kmax = I (A : B) − I (A : E). For the noiseless case of
(2) , it turns out that I (A : B) = I (A : E) = χ(A : E) ≈ 0.31 implying that the key
rate vanishes and that Eve’s attack strategy is indeed optimal for this protocol.

3 Noise advantage

In general, it is known that noise can degrade the quantum information processing
tasks, in particular QKD. In Ref. [26], we pointed out the surprising fact of advantage
that noise can bestow on QKD. Here, we extend that analysis, by including the role
of memory in the quantum dynamics. Because the noise brings an advantage, we can
visualize the scenario wherein Bob (or Alice) deliberately adds such beneficial noise
to the particles.

We consider two scenarios, wherein Bob, before making Bell measurements on the
entangled pair of particles, but after receiving the travel qubit, introduces noise into
the system. In the first case, he subjects the travel qubit alone to an optical setup that
simulates AD. In the second case, he subjects both the photons to noisy devices in the
above manner. In both scenarios, Eve is still assumed to act according to the attack
described in Sect. 2. Note that we may also assume that the noise occurs naturally
because of Bob’s noisy devices, and he merely takes advantage of it.

For the noisy dynamics introduced by Bob, we consider a non-Markovian ampli-
tude damping (NMAD) channel, modeled by damped Jaynes–Cummings model with
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operator-sum representation given by the Kraus operators [33]

E A
0 =

[
1 0
0

√
1 − λ(t)

]

; E A
1 =

[
0

√
λ(t)

0 0

]

, (3)

where

λ(t) = 1 − e−gt
(
g

l
sinh

[
lt

2

]

+ cosh

[
lt

2

])2

, (4)

with l = √
g2 − 2γ g. Here, g is the spectral band width of the noise and γ is the

system–environment coupling strength. One readily sees that the system exhibits
Markovian and non-Markovian evolution when 2γ � g and 2γ � g, respectively
[34].

The above noise may be simulated in an all-optical setup [35–37] by associating the
qubit with polarization degrees and the reservoir to the path degrees. With a suitable
mapping of the parameters of JCmodel to the parameters of the optical setup, one may
obtain Markovian and non-Markovian effects experimentally. Interestingly, similar
to [35], the authors of [38] propose an optical simulation of Markovian and non-
Markovian AD. However, we consider the former approach for our case in this paper.

3.1 Case 1: Only travel qubit subjected to NMAD

When the photon returns back to Bob, the state of the system hty for either encod-
ing “ j” can be shown to have support of dimensionality 4, spanned by the states
|000〉, |010〉, |100〉 and |011〉, with the state of the x particle being |2〉, as in the noise-
less attack case.

After receiving the returned noisy travel qubit, Bob further subjects it to the damping
noise, described byEq. (3).Accordingly, the final stateswithBob forAlice’s encodings
j = 0 and j = 1 are:

ρ j=0 := 1
2

⎛

⎜
⎜
⎝

λ 0 0 0
0 1 − λ

√
1 − λ 0

0
√
1 − λ 1 0

0 0 0 0

⎞

⎟
⎟
⎠ ; ρ j=1 := 1

2

⎛

⎜
⎜
⎝

λ 0 0 0
0 0 0 0
0 0 1

√
1 − λ

0 0
√
1 − λ 1 − λ

⎞

⎟
⎟
⎠ . (5)

From Eq. (5), we obtain the following joint probabilities PAEB :

P000 = (
√
1 − λ + 1)2

8
; P001 = (

√
1 − λ − 1)2

8
,

P002 = P003 = P102 = P103 = λ

8
; P100 = P101 = 1

8
,

P110 = P111 = (1 − λ)

8
, (6)
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Fig. 2 Plot of secure key rate as a function of the dimensionless time gt , for the Case 1, where the travel
qubit alone is subject to NMAD. Here, γ is the coupling strength and g := 1 in all the cases. In the
considered time range, non-Markovian noise provides improvement in the key rate as seen for the cases of
γ = 4 (dashed, orange curve) and γ = 15 (dot dashed, green curve), as opposed to the Markovian case
with γ = 0.1 (bold, blue curve) (Color online)

with all other joint probability terms vanishing. Note that in the presence of amplitude
damping noise, Bob will also obtain outcomes |φ±〉 = 1√

2
(|00〉 ± |11〉) in his Bell

state measurement, which corresponds to the outcome symbols 2 and 3 in Eq. (6).
The probabilities Eq. (6) imply the mutual information between Alice and Bob is

I (A : B) = − 1

8

(

−2λ +
(
λ − 2

(√
1 − λ + 1

))
log

(
−λ + 2

√
1 − λ + 2

−λ + √
1 − λ + 2

)

+(λ − 2) log

(
λ − 2

λ − √
1 − λ − 2

)

+ (λ − 2) log

(
λ − 2

λ + √
1 − λ − 2

)

+λ log

(
λ + 2

√
1 − λ − 2

λ + √
1 − λ − 2

)

+ 2
(√

1 − λ − 1
)
log

(
λ + 2

√
1 − λ − 2

λ + √
1 − λ − 2

))

,

(7)

while that between Alice and Eve:

I (A : E) =
2 log

(
2

λ+3

)
+ (λ + 1) log

(
λ+1
λ+3

)
+ log(16)

log(16)
. (8)

A plot of the key rate κ ≡ IAB − IAE w.r.t (dimensionless) time is given in Fig. 2.
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3.2 Case 2: Both the qubits are subject to NMAD

After receiving the returned noisy travel qubit, Bob subjects both qubits individually
to NMAD, described by Eq. (3). Accordingly, the final states with Bob for the Alice’s
encodings j = 0 and j = 1 are:

ρ
( j=0)
hty = 1

2

⎛

⎜
⎜
⎝

2λ 0 0 0
0 1 − λ 1 − λ 0
0 1 − λ 1 − λ 0
0 0 0 0

⎞

⎟
⎟
⎠ ; ρ

( j=1)
hty = 1

2

⎛

⎜
⎜
⎝

0 0 0 0
0 1 − λ 1 − λ 0
0 1 − λ 1 − λ 0
0 0 0 2λ

⎞

⎟
⎟
⎠ . (9)

From Eq. (9), we obtain the following joint probabilities PAEB , as follows:

P000 = 1 − λ

2
,

P002 = P003 = P102 = P103 = λ

4
,

P100 = P101 = 1 − λ

8
,

P110 = P111 = 1 − λ

8
, (10)

with all other joint probability terms vanishing.
From the above probabilities PAEB , one derives the mutual information between

Alice and Bob and that between Alice and Eve, to be

I (A : B) = 3

4
(1 − λ) log

(
4

3

)

= 0.31(1 − λ),

I (A : E) = 1 + 1

2
log

(
2

λ + 3

)

+ 1

4
(λ + 1) log

(
λ + 1

λ + 3

)

. (11)

The key rate κ ≡ IAB − IAE is shown in Fig. (3).
For both the above cases, from Eqs. (5) and (9), one can calculate the Holevo bound

for Alice–Bob by tracing out Eve’s systems x, y. It is found that mutual information
between Alice and Bob I (A : B) is always lesser than the Alice–Bob Holevo bound
suggesting that Bob’s measurement strategy is sub-optimal. However, the Holevo
bound between Eve’s states for Alice’s encoding j ∈ {0, 1} equals I (A : E), with or
without added noise, suggests that Eve’s attack strategy in indeed optimal.

4 On the classical simulation of the quantum advantage

In Ref. [16], it was shown that adding classical noise to measurement data by a trusted
party can improve information security. In contrast, here we show that this is not
possible for the cases of quantum advantage reported in Sects. 3.1 and 3.2. That is
adding classical noise locally on the part of Bob or even Alice cannot reproduce the
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Fig. 3 Plot of secure key rate with respect to the dimensionless time gt , for the Case 2, where the both travel
and home qubits are subject to NMAD noise. Here, γ is the coupling strength and g := 1 in all the cases.
In the considered time range, non-Markovian noise provides improvement in the key rate as seen for the
cases of γ = 4 (dashed, orange curve) and γ = 15 (dot dashed, green curve), as opposed to the Markovian
case with γ = 0.1 (bold, blue curve) (Color online)

benefit of adding the quantum noise. This non-simulability of the quantum advantage
may be attributed to the fact that in the regime where the quantum noise is beneficial, it
leaves the Bell pair entangled, and thus, the resulting joint probability statistics cannot
be captured by local classical noise.

Consider that Alice and Bob try to locally (i.e., with no communicationwhatsoever)
reproduce PAEB

002 , PAEB
012 and PAEB

112 of joint probabilities (10) from the noiseless data
(2). Let a jk define the probability with which Alice uses a pseudorandom number
generator (PRNG) to make a transition from a bit value of A in the noiseless data (2)
to a bit value of A′ in the noisy data (10), where A′ is the bit value locally reproduced
by Alice. Similarly, we define the probability b jk for Bob’s local transitions using a
PRNG to produce a bit value of B ′. Consider the case of reproducing the following
joint probabilities from Eqs. (2) and (10):

PA′EB′
0′12′ = PAEB

110 a10b02 + PAEB
111 a10b12 = 0

= a10
8

(b02 + b12) = 0, (12)

PA′EB′
1′12′ = PAEB

110 a11.b02 + PAEB
111 a11b12 = 0

= a11
8

(b02 + b12) = 0, (13)

and

PA′EB′
0′02′ = PAEB

000 a00b02 + PAEB
100 a10b02 + PAEB

101 a10b12
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= a00b02
2

+ a10
8

(b02 + b12) = λ

4
. (14)

From Eq. (12), it is implied that either a10 = 0 or b02 + b12 = 0 or both are zero.
Note that since

∑
k a jk = 1, a11 = 1. This implies that if a10 = 0 then, from Eq. (13),

necessarily b02 + b12 = 0.
Now, from Eqs. (12) and (14),

a00.b02 = λ

2
(15)

which implies that a00 �= 0 and b02 �= 0. Hence, we arrive at a contradiction that
b02 + b12 �= 0.

Now consider that a10 �= 0 and a11 �= 0. Then from Eqs. (12) and (13), necessarily
b02 + b12 = 0. Again from Eqs. (14) and (15), observe that b02 > 0. Hence, we arrive
at a contradiction again. It follows that Alice and Bob cannot unilaterally simulate the
quantum advantage due to the NMAD channel by adding uncorrelated local classical
noise to their measurement data.

5 Effect of temperature

A generalized amplitude damping (GAD) channel models the effect of temperature of
the bath along with damping on the qubit state. As in our previous work [26], here we
find that unital noise favors Eve in this scenario. We show below that an increase in
temperature leads to an increase in the unitality of the channel, and correspondingly
to a greater disadvantage for Alice and Bob. One way to understand this effect is as

follows. A qubit channel E is unital if E[I ] = I , where I =
(
1 0
0 1

)

. Now, one may

compute

ρid = EGAD[I ] =
(
1 − 2pλ + λ 0
0 (2p − 1)λ + 1

)

, (16)

where p ∈ {0, 1
2 }. The action of a GAD channel EGAD on a qubit is given by the

quantum operation representation E[ρ] = ∑
k AkρA

†
k , where the Ak are the Kraus

operator, which for GAD take the form

A1 = √
1 − p

(
1 0
0

√
1 − λ

)

; A2 = √
1 − p

(
0

√
λ

0 0

)

;

A3 = √
p

(
0 0√
λ 0

)

; A4 = √
p

(√
1 − λ 0
0 1

)

, (17)

where the noise mixing p ∈ {0, 1
2 } and the damping parameter λ ∈ {0, 1}.
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Note that the trace distance (TD) between ρid and I evaluates to (2p− 1)λ, so that
as p → 1

2 , the TD → 0, i.e., ρid → I . Therefore, increasing temperature enhances
the unital part of the noise.

6 Discussions and conclusions

Weconsider aQKDbased on the ping-pong communication protocol,with a non-unital
non-Markovian noise deliberately added by the legitimate party before measurement
and prior to key distillation. The noise used is the non-Markovian amplitude damping
(NMAD). We show that adding this noise improves the security, when Eve uses an
optimal individual attack. Conservatively, all the channel noise is attributed to Eve’s
attack. Within a noise parameter range, non-Markovianity is shown to boost the key
rate. We considered two cases. In one, Bob adds noise only to the travel qubit, while
in the other, noise it is added to both the travel and home qubits. The former is shown
to lead to a higher key rate than the latter in the considered range of time. This
provides a cautionary indication that the benefits of non-Markovianity of the noise
are conditional and depend on the full context considered. We also studied a non-
Markovian generalized amplitude damping (GAD) noise in this context, but in this
case we found that temperature tends to diminish the quantum advantage.

In the matter of local classical non-simulability of the quantum advantage of the
considered non-Markovian noise, it is important to stress that the model of classical
noise considered in Sect. 4 is Markovian, in that at each round the random bit assign-
ment depends only on the measurement outcomes of the current round, and does
not require memory of the data from previous rounds. This is a non-trivial assump-
tion, but one that is natural in the current scenario, where the Bell pair used in each
round is uncorrelated with any other pair, and furthermore, we restrict Eve to attacks
on individual qubits. This ensures that the measurement probabilities in each round
are independent. Therefore, one expects that classical memory across rounds is not
advantageous for the simulation. It is an interesting question whether non-Markovian
classical noise can perform better than Markovian classical noise, if one or both of the
above assumptions are relaxed. That is, the protocol may involve Bob’s travel qubits
being entangled across the rounds and/or Eve launching a joint or collective attack on
multiple travel qubits.

Here, it may be pointed out that the quantum noise models given by Eqs. (3) and
(4) are considered non-Markovian despite being applied to individual rounds of the
protocol. The reason is that the memory in this context is with respect to an external
environment, rather than preceding rounds of the protocol. In particular, quantum non-
Markovianity arises when the dynamics of the system–environment correlation makes
the system’s intermediate map (or, propagator) to deviate from complete positivity.
[21].
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