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Abstract
Motivated by the particle swarm optimization (PSO) and quantum computing theory,
we have presented a quantum variant of PSO (QPSO) mutated with Cauchy operator
and natural selection mechanism (QPSO-CD) from evolutionary computations. The
performance of proposed hybrid quantum-behaved particle swarm optimization with
Cauchy distribution (QPSO-CD) is investigated and compared with its counterparts
based on a set of benchmark problems. Moreover, QPSO-CD is employed in well-
studied constrained engineering problems to investigate its applicability. Further, the
correctness and time complexity of QPSO-CD are analyzed and compared with the
classical PSO. It has been proved that QPSO-CD handles such real-life problems
efficiently and can attain superior solutions in most of the problems. The experimental
results shown that QPSO associated with Cauchy distribution and natural selection
strategy outperforms other variants in context of stability and convergence.

Keywords Quantum-behaved algorithm · Particle swarm optimization · Engineering
design problems · Cauchy distribution · Quantum computing

1 Introduction

In the late nineteenth century, the theory of classical mechanics experienced sev-
eral issues in reporting the physical phenomena of light masses and high velocity
microscopic particles. In 1920s, Bohr’s atomic theory [1], Heisenberg’s discovery of
quantum mechanics [2] and Schrödinger’s [3] discovery of wave mechanics influ-
enced the conception of a new field, i.e., the quantum mechanics. In 1982, Feynman
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Fig. 1 Particles movement in PSO and QPSO algorithm

[4] stated that quantum mechanical systems can be simulated by quantum computers
in exponential time, i.e., better than with classical computers. Till then, the concept of
quantum computing was thought to be only a theoretical possibility, but over the last
three decades the research has evolved such as to make quantum computing applica-
tions a realistic possibility [5].

In the last two decades, the field of swarm intelligence has got overwhelming
response among research communities. It is inspired by nature and aims to build
decentralized and self-organized systems by collective behavior of individual agents
with each other and with their environment. The research foundation of swarm intel-
ligence is constructed mostly upon two families of optimization algorithms, i.e., ant
colony optimization (Dorigo et at. [6] and Colorni et al. [7]) and particle swarm opti-
mization (PSO) (Kennedy and Eberhart [8]). Originally, the swarm intelligence is
inspired by certain natural behaviors of flocks of birds and swarms of ants.

In the mid 1990s, particle swarm optimization technique was introduced for con-
tinuous optimization, motivated by flocking of birds. The evolution of PSO-based
bio-inspired techniques has been in an expedite development in the last two decades.
It has got attention from different fields such as inventory planning [9], power systems
[10], manufacturing [11], communication networks [12], support vector machines
[13], to estimate binary inspiral signal [14], gravitational waves [15] and many more.
Similar to evolutionary genetic algorithm, it is inspired by simulation of social behav-
ior, where each individual is called particle, and group of individuals is called swarm.
In multi-dimensional search space, the position and velocity of each particle represent
a probable solution. Particles fly around in a search space seeking potential solution.
At each iteration, each particle adjusts its position according to the goal of its own
and its neighbors. Each particle in a neighborhood shares the information with others
[16]. Later, each particle keeps the record of best solution experienced so far to update
their positions and adjust their velocities accordingly.

Since the first PSO algorithm proposed, the several PSO algorithms have been
introduced with plethora of alterations. Recently, the combination of quantum com-
puting, mathematics and computer science have inspired the creation of optimization
techniques. Initially, Narayanan and Moore [17] introduced quantum-inspired genetic
algorithm (QGA) in 1995. Later, Sun et al. [16] applied the quantum laws of mechan-
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ics to PSO and proposed quantum-inspired particle swarm optimization (QPSO). It is
the commencement of quantum-behaved optimization algorithms, which has subse-
quently made a significant impact on the academic and research communities alike.

Recently, Yuanyuan and Xiyu [18] proposed a quantum evolutionary algorithm
to discover communities in complex social networks. Its applicability is tested on
five real social networks, and results are compared with classical algorithms. It has
been proved that PSO lacks convergence on local optima, i.e., it is tough for PSO
to come out of the local optimum once it confines into optimal local region. QPSO
with mutation operator (QPSO-MO) is proposed to enhance the diversity to escape
from local optimum in search [19]. Protopopescu and Barhen [20] solved set of global
optimization problems efficiently using quantum algorithms. In future, the proposed
algorithm can be integrated with matrix product state-based quantum classifier for
supervised learning [21–23].

In this paper, we have combined QPSO with Cauchy mutation operator to add long
jump ability for global search and natural selection mechanism for elimination of
particles. The results showed that it has great tendency to overcome the problem of
trapping into local search space. Therefore, the proposed hybrid QPSO strengthened
the local and global search ability and outperformed the other variants of QPSO and
PSO due to fast convergence feature.

The illustration of particles movement in PSO and QPSO algorithm is shown in
Fig. 1. The big circle at center denotes the particle with the global position and other
circles are particles. The particles located away from global position are lagged par-
ticles. The blue color arrows signify the directions of other particles, and the big red
arrows point toward the side in which it goes with high probability. During iterations,
if the lagged particle is unable to find better position as compared to present global
position in PSO, then their impact is null on the other particles. But, in QPSO, the
lagged particles move with higher probability in the direction of gbest position. Thus,
the contribution of lagged particles is more to the solution in QPSO in comparison
with PSO algorithm.

The organization of rest of this paper is as follows: Sect. 2 is devoted to prior
work. In Sect. 3, the quantum particle swarm optimization is described. In Sect. 4,
the proposed hybrid QPSO algorithm with Cauchy distribution and natural selection
mechanism is presented. The experimental results are plotted for a set of benchmark
problems and compared with several QPSO variants in Sect. 5. The correctness and
time complexity are analyzed in Sect. 6. QPSO-CD is applied to three constrained
engineering design problems in Sect. 7. Finally, Sect. 8 is the conclusion.

2 Prior work

Since the quantum-behaved particle swarmoptimizationwas proposed, various revised
variants have been emerged. Initially, Sun et al. [16] applied the concept of quantum
computing to PSO and developed a quantum Delta potential well model for classical
PSO [24]. It has been shown that the convergence and performance of QPSO are
superior as compared to classical PSO. The selection and control of parameters can
improve its performance, which is posed as an open problem. Sun et al. [25] tested
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the performance of QPSO on constrained and unconstrained problems. It has been
claimed that QPSO is a promising optimization algorithm, which performs better than
classical PSO algorithms. In 2011, Sun et al. [26] proposed QPSO with Gaussian
distribution (GAQPSO) with the local attenuator point and compared its results with
several PSO and QPSO counterparts. It has been proved that GAQPSO is efficient and
stable with superior features in quality and robustness of solutions.

Further, Coelho [27] applied GQPSO to constrained engineering problems and
showed that the simulation results of GQPSO are much closer to the perfect solution
with small standard deviation. Li et al. [28] presented a cooperativeQPSOusingMonte
Carlo method (CQPSO), where particles cooperate with each other to enhance the per-
formance of original algorithm. It is implemented on several representative functions
and performed better than the other QPSO algorithms in context of computational
cost and quality of solutions. Peng et al. introduced [29] QPSO with Levy probability
distribution and claimed that there are very less chances to be stuck in local optimum.

Researchers have appliedPSOandQPSO to real-life problems and achievedoptimal
solutions as compared to existing algorithms. Ali et al. [30] performed energy-efficient
clustering in mobile ad-hoc networks (MANET) with PSO. The similar approach can
be followed to analyze and execute mobility over MANET with QPSO-CD [31].
Zhisheng [32] used QPSO in economic load dispatch for power system and proved
superior to other existing PSO optimization algorithms. Sun et al. [33] applied QPSO
for QoS multicast routing. Firstly, the QoS multicast routing is converted into con-
strained integer problems and then effectively solved byQPSOwith loop deletion task.
Further, the performance is investigated on random network topologies. It has been
proved that QPSO is more powerful than PSO and genetic algorithm. Geis and Mid-
dendorf [34] proposed PSO with Helix structure for finding ribonucleic acid (RNA)
secondary structures with same structure and low energy. The QPSO-CD algorithm
can be usedwith two-way quantum finite automata tomodel the RNA secondary struc-
tures and chemical reactions [35–37]. Bagheri et al. [38] applied the QPSO for tuning
the parameters of adaptive network-based fuzzy inference system (ANFIS) for fore-
casting the financial prices of future market. Davoodi et al. [39] introduced a hybrid
improvedQPSOwith NeldarMead simplexmethod (IQPSO-NM), where NMmethod
is used for tuning purpose of solutions. Further, the proposed algorithm is applied to
solve load flow problems of power system and acquired the convergence accurately
with efficient search ability. Omkar [40] proposed QPSO for multi-objective design
problems, and results are compared with PSO. Recently, Fatemeh et al. [41] proposed
QPSO with shuffled complex evolution (SP-QPSO) and its performance is demon-
strated using five engineering design problems. Prithi and Sumathi [42] integrated the
concept of classical PSO with deterministic finite automata for transmission of data
and intrusion detection. The proposed algorithmQPSO-CD can be used with quantum
computational models for wireless communication [43–49].

3 Quantum particle swarm optimization

Before we explain our hybrid QPSO-CD algorithm mutated with Cauchy operator
and natural selection method, it is useful to define the notion of quantum PSO. We
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assume that the reader is familiar with the concept of classical PSO; otherwise, reader
can refer to particle swarm optimization algorithm [50,51]. The specific principle of
quantum PSO is given as:

In QPSO, the state of a particle can be represented usingwave functionψ(x, t). The
probability density function |ψ(x, t)|2 is used to determine the probability of particle
occurring in position x at any time t [16,33]. The position of particles is updated
according to equations:

xi, j (t + 1) = pi, j (t) ± α.|mbesti, j (t) − xi, j (t)|.ln(1/u) (1)

pi, j (t) = (φ.Pi, j (t) + (1 − φ).G j (t)), (1 ≤ i ≤ N , 1 ≤ j ≤ M) (2)

where each particlemust converge to its local attractor p = (p1, p2, . . . , pD), whereD
is the dimension,N andM are the number of particles and iterations, respectively, Pi, j
and G j denote the previous and optimal position vector of each particle respectively,
φ = c1.r1/(c1r1+c2r2), where c1; c2 are the acceleration coefficients, r1; r2 and u are
normally distributed random numbers in (0, 1), α is contraction-expansion coefficient
and mbest defines the mean of best positions of particles as:

mbesti, j (t) = 1

N

N ,M∑

i=1, j=1

Pi, j (t) =
(

1

N

N∑

i=1

Pi,1(t),
1

N

N∑

i=1

Pi,2(t), ...,
1

N

N∑

i=1

Pi,D(t)

)
(3)

In Eq. (1), α denotes contraction-expansion coefficient, which is setup manually to
control the speed of convergence. It can be decreased linearly or fixed. In PSO, α <

1.782 to ensure convergence performance of the particle. In QPSO-CD, the value of
α is determined by α = 1− (1.0− 0.5)k/M, i.e., decreases linearly from 1.0 to 0.5 to
attain good performance, where k is present iteration and M is maximum number of
iterations.

4 Hybrid particle swarm optimization

The hybrid quantum-behaved PSO algorithm with Cauchy distribution and natural
selection strategy (QPSO-CD) is described as follows:

The QPSO-CD algorithm begins with the standard QPSO using Eqs. (1), (2) and
(3). The position and velocity of particles cannot be determined exactly due to varying
dynamic behavior. So, it can only be learnedwith the probability density function. Each
particle can be mutated with Gaussian or Cauchy distribution.Wemutated QPSOwith
Cauchy operator due to its ability to make larger perturbation. Therefore, there is a
higher probability with Cauchy as compared to Gaussian distribution to come out of
the local optima region. The QPSO algorithm is mutated with Cauchy distribution
to increase its diversity, where mbest or global best position is mutated with fixed
mutation probability (Pr). The probability density function ( f (x)) of the standard
Cauchy distribution is given as:

f (x) = 1

π(1 + x2)
− ∞ < x < ∞, (4)
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It should be noted thatmutation operation is executed on each vector by addingCauchy
distribution random value (D(.)) independently such that

x
′ = x + φD(.) (5)

Algorithm 1 QPSO-CD algorithm
1: The swarm is initialized with random numbers distributed uniformly: random xi .
2: Do
3: α decreases linearly from 1.0 to 0.5
4: for k=1 toM do do
5: α = 1 − (1.0 − 0.5).k/M
6: if Pr < rand(0, 1) then
7: Calculate the mbest of the swarm using Eq (3)
8: end if
9: for i=1: to N do do
10: if Fitness(pi ) < Fitness(xi ) then pi = xi ;
11: G = argmin(Fitness(pi ));
12: end if
13: for j:1 to D do do
14: r1 = rand(0, 1); r2 = rand(0, 1);
15: φ = c1.r1/(c1r1 + c2r2);
16: pi, j = φ.Pi, j + (1 − φ).G j ;
17: if rand(0, 1) < 0.5 then
18: xi, j = pi, j + α.abs(mbesti, j − xi, j ).log(1/u)

19: else
20: xi, j = pi, j − α.abs(mbesti, j − xi, j ).log(1/u)

21: end if
22: end for
23: Fx(i)=Fitness(x(i, :));
24: end for
25: [SF, Sx] = sort(Fx);
26: Z = round((N − 1)/S); � S is selection parameter
27: x(Sx((N − Z + 1) : N )) = x(Sx(1 : Z)); � Sort the particles from best to worst position
28: end for
29: Until termination criterion is met

where x
′
is new location after mutated with random value to x. At last, the position of

particle is selected and the particles of swarm are sorted on the basis of their fitness
values after each iteration. Further, substitute the group of particles havingworst fitness
values with the best ones and optimal solution is determined. The main objective of
using natural mechanism is to refine the capability and accuracy of QPSO algorithm.

The natural selection method is used to enhance the convergence characteristics of
proposedQPSO-CDalgorithm,where the fitter solutions are used for the next iteration.
The procedure of selection method for N particles is as follows:

F(X(t)) = {F(x1(t)), F(x2(t)), . . . , F(xN (t))} (6)

where X(t) is position vector of particles at time t and F(X(t)) is the fitness function
of swarm. Next step is to sort the particles according to their fitness values from best
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Table 1 Details of benchmark functions

Test function Initial range

Sphere function

f1(x) =
n∑

i=1
x2i (− 100, 100)

Rosenbrock function

f2(x) =
n∑

i=1
100(xi+1 − x2i )2 + (xi − 1)2 (− 5.12, 5.12)

Greiwank function

f3(x) = 1

4000

n∑
i=1

x2i − ∏n
i=1 cos(

xi√
i + 1

) + 1 (− 600, 600)

Rastrigrin function

f4(x) =
n∑

i=1
(x2i − 10 cos(2πxi ) + 10) (− 5.12, 5.12)

one to worst position such that

F(X
′
(t)) = {F(x

′
1(t)), F(x2

′(t)), . . . , F(xN
′(t))}

X
′
(t) = {x ′

1(t), x2
′(t), . . . , xN ′(t)} (7)

In Algorithm 1, SF and Sx are the sorting functions of fitness and position, respec-
tively. On the basis of natural selection parameters and fitness values, the positions of
swarm particles are updated for the next iteration,

X
′
(t) = {x ′′

1(t), x2
′′(t), . . . , xS ′′(t)},

X
′′
k (t) = {x ′

1(t), x2
′(t), . . . , xZ ′(t)} (8)

where (1 ≤ k ≤ S), S denotes the selection parameter, Z signifies the number of best
positions selected according to fitness values such that S = N/Z and X

′′
(t) is updated

position vector of particles. The selection parameter S is generally set as 2 to replace
the half of worst positions with the half of best positions of particles. It improves
the precision of the direction of particles, protects the global searching capability and
speeds up the convergence.

5 Experimental results

The performance of proposed QPSO-CD algorithm is investigated on representative
benchmark functions, given in Table 1. Further, the results are compared with classical
PSO (PSO), standard QPSO, QPSO with delta potential (QDPSO) and QPSO with
mutation operator (QPSO-MO). The details of numerical benchmark functions are
given in Table 1.
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Fig. 2 Effectiveness of QPSO-CD for sphere function f1
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Fig. 3 Effectiveness of QPSO-CD for Rosenbrock function f2
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Table 2 Comparison results of Sphere and Rosenbrock functions

P D G PSO QPSO QDPSO QPSO-MO QPSO-CD

Sphere function

20 10 1000 0.0 4.01e−40 1.513e−49 1.508e−48 1.738e−50

20 1500 0.0 2.58e−21 1.339e−30 1.296e−31 1.032e−30

30 2000 0.0 2.08e−13 1.953e−21 1.918e−21 1.808e−21

40 10 1000 0.0 2.73e−67 1.087e−73 1.146e−51 1.154e−72

20 1500 0.0 4.84e−28 1.397e−42 1.417e−42 1.237e−41

30 2000 0.0 2.02e−25 2.850e−30 2.471e−28 1.946e−23

80 10 1000 0.0 7.66e−95 5.553e−90 4.872e−71 6.437e−72

20 1500 0.0 1.62e−60 1.654e−54 1.677e−58 1.609e−62

30 2000 0.0 2.05e−44 1.042e−40 1.131e−42 1.128e−41

Rosenbrock function

20 10 1000 95.10 58.41 14.22 22.18 34.67

20 1500 204.38 110.5 175.31 68.40 54.76

30 2000 314.46 148.5 242.37 113.30 122.5

40 10 1000 70.28 10.42 15.86 7.985 8.843

20 1500 178.98 48.45 112.46 52.93 41.77

30 2000 288.58 58.32 76.42 64.19 58.04

80 10 36.29 8.853 36.34 5.715 7.419

20 1500 84.78 34.88 23.54 24.45 21.78

30 2000 202.58 52.17 70.81 45.22 40.97

The performance of QPSO has been widely tested for various test functions. Ini-
tially, we have considered four representative benchmark functions to determine the
reliability of QPSO-CD algorithm. For all the experiments, the size of population is
20, 40 and 80 and dimension sizes are 10, 20 and 30. The parameters for QPSO-CD
algorithm are as follows: the value of α decreases from 1.0 to 0.5 linearly; the natural
selection parameter S = 2 is taken, c1, c2 correlation coefficients are set equal to 2.

The mean best fitness values of PSO, QPSO, QDPSO, QPSO-MO and QPSO-
CD are recorded for 1000, 1500 and 2000 runs of each function. Figures 2, 3, 4
and 5 depict the performance of functions f1 to f4 with respect to mean best fitness
against the number of iterations. In Table 2, P denotes the population, dimension is
represented by D and G stands for generation. The numerical results of QPSO-CD
showed optimal solution with fast convergence speed and high accuracy. The results
showed that QPSO-CD performs better on Rosenbrock function than its counterparts
in some cases. When the size of population is 20 and dimension is 30, the results of
proposed algorithm are not better thanQPSO-MO, but QPSO-CD performs better than
PSO,QPSO andQDPSO. The performance ofQPSO-CD is significantly better than its
variants on Greiwank and Rastrigrin functions. It has outperformed other algorithms
and obtained optimal solution (near zero) for Greiwank function. In most of the cases,
QPSO-CD is more efficient and outperformed the other algorithms.

123



345 Page 10 of 23 A. S. Bhatia et al.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of Iterations

lo
ga

rit
hm

 o
f F

itn
es

s 
(m

ea
n 

be
st

)

 

 

PSO
QPSO
QDPSO
QPSO−CD

Fig. 4 Effectiveness of QPSO-CD for Greiwank function f3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

1

10
2

10
3

Number of Iterations

Lo
ga

rit
hm

 o
f F

itn
es

s 
(m

ea
n 

be
st

)

 

 

PSO
QDPSO
QPSO
QPSO−CD

Fig. 5 Effectiveness of QPSO-CD for Rastrigrin function f4
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Table 3 Comparison results of Greiwank and Rastrigrin functions

P D G PSO QPSO QDPSO QPSO-MO QPSO-CD

Greiwank function

20 10 1000 0.089 0.078 0.1003 0.0732 0.072

20 1500 0.0300 0.2001 0.0086 0.0189 0.0078

30 2000 0.0181 0.0122 0.0544 0.0103 0.0026

40 10 1000 0.0826 0.055 0.048 0.0520 0.041

20 1500 0.0272 0.0149 0.0004 0.0247 0.0106

30 2000 0.0125 0.0117 0.0009 0.0105 0.0102

80 10 1000 0.0723 0.0341 0.0 0.0542 0.0702

20 1500 0.0274 0.0189 0.0 0.0194 0.0161

30 2000 0.0123 0.0118 0.0 0.0082 0.0031

Rastrigrin function

20 10 1000 5.526 5.349 4.969 4.478 4.051

20 1500 23.17 21.28 17.08 15.63 13.22

30 2000 46.29 32.57 48.61 27.80 31.48

40 10 1000 3.865 3.673 2.032 3.383 2.100

20 1500 15.68 14.37 10.94 11.01 10.77

30 2000 37.13 23.01 21.37 21.01 21.19

80 10 1000 2.562 2.234 0.923 2.183 1.943

20 1500 12.35 9.66 6.955 8.075 7.021

30 2000 26.89 17.48 18.13 14.99 11.73

6 Correctness and time complexity analysis of a QPSO-CD algorithm

In this Section, the correctness and time complexity of a proposed algorithmQPSO-CD
is analyzed and compared with the classical PSO algorithm.

Theorem 1 The sequence of random variables {Sn, n ≥ 0} generated by QPSO with
Cauchy distribution converges to zero in probability as n approaches infinity.

Proof Recall, the probability density function of standard Cauchy distribution and its
convergence probability [52] are given as

f (s) = 1

π(1 + s2)
for − ∞ < s < ∞,

P(x ≤ Sn ≤ y) = 1

π

∫ x

y

ds

(1 + s2)
, ∀x ≤ y (9)

Consider a random variable Qn interpreted as

Qn = αSn, α = 1

nλ
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where λ denotes a fixed positive constant. Correspondingly, the probability density
function can be calculated as

P(Qn ≤ q) = P(αSn ≤ q)

= P
(
Sn ≤ q

α

)

=
∫ q

α

−∞
f (s)ds.

dP(qn ≤ q)

dq

= 1

α
f
(q
α

)

i.e., the probability density function of random variable Qn .

P(|Qn| > ξ) = P(|Sn| > ξnλ)

= P(Sn > ξnλ) + P(Sn > −ξnλ)

= P(ξnλ < Sn < ∞) + P(−∞ < Sn < −ξnλ)

Using Eq. (9), the probability density function of random variable Qn becomes

P(|Qn| > ξ) = 1

π

∫ ∞

ξnλ

ds

π(1 + s2)
+ 1

π

∫ −ξnλ

∞
ds

π(1 + s2)

=
[
1 + 1

π

∫ −ξnλ

ξnλ

ds

π(1 + s2)

]

= 1 − 1

π

∫ ξnλ

−ξnλ

ds

π(1 + s2)
= 0 as n → ∞

This completes the proof of the theorem. 
�
Definition 1 Let {Sn} a random sequence of variables. It converges to some random
variable s with probability 1, if for every ξ > 0 and λ > 0, there exists n1(ξ, λ) such
that P(|Sn − s| < ξ) > 1 − λ,∀n > n1 or

P
(
lim
n→∞ |Sn − s| < ξ

)
= 1 (10)

The efficiency of theQPSO-CDalgorithm is evaluated by number of steps needed to
reach the optimal region R(ξ). The method is to evaluate the distribution of number of
steps needed to hit R(ξ) by comparing the expected value andmoments of distribution.
The total number of stages to reach the optimal region is determined asW (ξ) = inf{n |
fn ∈ R(ξ)}. The variance V (W (ξ)) and expectation value E(W (ξ)) are determined
as

E(W (ξ)) =
∞∑

n=0

nxn, (11)
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Table 4 Results of the time complexity for QPSO-CD algorithm

Dimension (N) Mean Variance SD SE Mean/N

2 302.38 4164.3 64.532 10.203 151.19

3 452.18 4541.9 67.394 10.655 150.72

4 621.29 5208.2 72.168 11.410 155.32

5 755.88 6675.0 81.701 12.918 151.17

6 879.13 8523.7 92.324 14.597 146.52

7 1022.06 9575.4 97.854 15.472 146.00

8 1158.52 10269.7 101.341 16.023 144.81

9 1308.17 12053.4 109.788 17.359 145.35

10 1459.3 12648.3 112.465 17.782 145.93

V (W (ξ)) = E(W 2(ξ)) − {E(W (ξ))}2

=
∞∑

n=0

n2xn −
( ∞∑

n=0

nxn

)2

(12)

In fact, the E(W (ξ)) depends upon the convergence of
∑∞

n=0 nxn . It is needed that∑∞
j=0 xn = 1, so that QPSO-CD can converge globally. The number of objective

function evaluations are used to measure time. The main benefit of this approach is
that it shows relationship between processor and measure time as the complexity of
objective function increases. We used Sphere function f (x) = xT.x with a linear
constraint g(x) = ∑n

j=0 x j ≥ 0 to compute the time complexity. It has minimum

value at 0. The value of optimal region is set as R(ξ) = R(10−4). To determine the
time complexity, the algorithms PSO and QPSO-CD are executed 40 times on f (x)
with initial scope [− 10, 10]N , where N denotes the dimension. We determine the
mean number of objective function evaluations (W (ξ)), the variance (V (W (ξ))), the
standard deviation (SD) (σW (ξ)), the standard error (SE) (σW (ξ)/

√
40) and ratio of

mean and dimension (W (ξ)/N ). The contraction coefficient α = 0.75 is used for
QPSO-CD and constriction coefficient χ = 0.73 for PSO with acceleration factors
c1 = c2 = 2.25.

Tables 1 and 2 show the statistical results of time complexity test for QPSO-CD and
PSO algorithm, respectively. Figure 6 indicates that the time complexity of proposed
algorithm increases nonlinearly as the dimension increases. However, the time com-
plexity of PSO algorithm increases adequately linearly. Thus, the time complexity of
QPSO-CD is lower than PSO algorithm. A Pearson correlation coefficient method is
used to show the relationship between the mean and dimension [53]. In Fig. 7, QPSO-
CD shows a strong correlation between W (ξ) and N, i.e., the correlation coefficient R
= 0.9996. For PSO, the linear correlation coefficient R = 0.9939, which is not so phe-
nomenal as that in case of QPSO-CD. The relationship between mean and dimension
clearly shows that the value of correlation coefficient is fairly stable for QPSO-CD as
compared to PSO algorithm.
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Table 5 Results of the time complexity for PSO algorithm

Dimension (N) Mean Variance SD SE Mean/N

2 691.4 17297.5 131.52 20.795 345.7

3 979.1 22281.5 149.27 23.601 326.3

4 1167.2 24282.9 155.72 24.638 291.8

5 1328.7 21853.7 147.83 23.373 265.7

6 1489.9 32008.7 178.91 28.288 248.3

7 1744.3 502297 224.12 35.436 249.1

8 1978.5 41233.3 203.06 31.106 247.3

9 2259.1 36217.8 190.31 30.090 251.0

10 2604.2 43559.8 208.71 32.999 260.4
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Fig. 6 Time complexity results for PSO and QPSO-CD

7 QPSO-CD for constraint engineering design problems

There exists several approaches for handling constrained optimization problems. The
basic principle is to convert the constrained optimization problem to unconstrained
by combining objective function and penalty function approach. Further, minimize
the newly formed objective function with any unconstrained algorithm. Generally, the
constrained optimization problem can be described as in Eq. (13).

The objective is tominimize the objective function f(x) subjected to equality (h j (x))
and inequality (gi (x)) constrained functions, where p(i) is the upper bound and q(i)
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Fig. 7 Comparison of correlation coefficients of PSP and QPSO-CD

denotes the search space lower bound. The strict inequalities of form gi (x) ≥ 0 can
be converted into −gi (x) ≤ 0 and hi (x) equality constraints can be converted into
inequality constraints hi (x) ≥ 0 and hi (x) ≤ 0. Sun et al. [25] adopted non-stationary
penalty function to address nonlinear programming problems using QPSO. Coelho
[27] used penalty function with some positive constant, i.e., set to 5000. We adopted
the same approach and replace the constant with dynamically allocated penalty value.

min
x

= f (x)

subject to

gi (x) ≤ 0, i = 0, 1, . . . n − 1

h j (x) = 0, j = 1, 2, . . . r

p(i) ≤ xi ≤ q(i), 1 ≤ i ≤ m

x = {x1, x2, x3, . . . , xm} (13)

Usually, the procedure is to find the solution for design variables that lie in search space
upper and lower bound constraints such that xi ∈ [p(i), q(i)]. If solution violates any
of the constraint, then the following rules are applied

xi = xi + {p(xi ) − q(xi )}. rand[0, 1]
xi = xi − {p(xi ) − q(xi )}. rand[0, 1] (14)

where rand[0, 1] is randomly distributed function to select value between 0 and 1.
Finally, the unconstrained optimization problem is solved using dynamically modified
penalty values according to inequality constraints gi (x). Thus, the objective function
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is evaluated as

F(x) =
⎧
⎨

⎩

f (x) if gi (x) ≤ 0

f (x) + y(t).
n∑

i=1
gi (x) if gi (x) > 0

⎫
⎬

⎭ (15)

where f (x) is the main objective function of optimization problem in Eq. (13), t is
the iteration number and y(t) represents the dynamically allocated penalty value.

In this Section, QPSO-CD is tested for three-bar truss, tension/compression spring
and pressure vessel design problems consisting different members and constraints.
The performance of QPSO-CD is compared and analyzed with the results of PSO,
QPSO, and SP-QPSO algorithms as reported in the literature.

7.1 Three-bar truss design problem

Three-bar truss is a constraint design optimization problem, which has been widely
used to test several methods. It consists cross section areas of three bars x1 (and x3)
and x2 as design variables. The aim of this problem is to minimize the weight of truss
subject to maximize the stress on these bars. The structure should be symmetric and
subjected to two constant loadings P1 = P2 = P as shown in Fig. 8. Themathematical
formulation of two design bars (x1, x2) and three restrictive mathematical functions
are described as:

Min f (x) = (2
√
2x1 + x2).l

Subject to:

g1(x) =
√
2x1 + x2√

2x21 + 2x1x2
P − σ ≤ 0,

g2(x) = x2√
2x21 + 2x1x2

P − σ ≤ 0 (16)

g3(x) = 1

x1 + √
2x2

P − σ ≤ 0, where

0 ≤ x1, x2 ≤ 1, l = 100cm, P = σ = 2K N/cm2

The results are obtained byQPSO-CDare comparedwith its counterparts in Table 6.
For three-bar truss problem, QPSO-CD is superior to optimal solutions previously
obtained in literature. The difference of best solution obtained by QPSO-CD among
other algorithms is shown in Fig. 9.

7.2 Tension/compression spring design problem

Themain aim is to lessen the volume V of a spring subjected to tension load constantly
as shown in Fig. 10. Using the symmetry of structure, there are practically three design
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Fig. 8 Structure of three-bar
truss

Table 6 Comparison of optimal results for three-bar truss problem

Variables PSO QPSO SP-QPSO QPSO-CD

x1 0.78911058 0.788649 0.788796 0.788658

x2 0.40702683 0.408322 0.407898 0.40828488

g1(x) − 6.6720e−06 1.6313e−07 6.4748e−06 9.00037e−06

g2(x) − 1.4655 − 1.4640 − 1.4644 − 1.4640

g3(x) − 0.5345 − 0.5359 − 0.5354 − 0.5359

f (x) 263.89686 263.89584 263.89500 263.89465

Fig. 9 Optimal results of PSO, QPSO, SP-QPSO and QPSO-CD algorithms for three-bar truss problem
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Fig. 10 Structure of tension/compression spring

Table 7 Comparison of optimal results for tension spring design problem

Variables PSO QPSO SP-QPSO QPSO-CD

x1 0.0516 0.0524 0.05 0.0513

x2 0.3542 0.2505 0.25 0.2502

x3 11.7942 2 2 2

g1(x) − 2.3006e−02 0.93145095 0.93034756 4.11004e−06

g2(x) − 5.6059e−03 − 0.17471558 − 0.16568318 − 0.17352479

g3(x) − 3.9057 − 50.67 − 48.180 − 49.561

g4(x) − 0.7294 − 0.79986567 − 0.80 − 0.799

f (x) 0.01305 0.00275 0.00250 0.00263

variables (x1, x2, x3), where x1 is the wire diameter, the coil diameter is represented
by x2 and x3 denotes the total number of active coils. The mathematical formulation
for this problem is described as:

Min f (x) = (x3 + 2)x2x
2
1 ,

Subject to:

g1(x) = 1 − x32 x3
71785x164

≤ 0,

g2(x) = 4x22 − x1x2
12566(x2x31 − x41 )

+ 1

5108x21
− 1 ≤ 0,

g3(x) = 1 − 140.45x1
x22 x3

≤ 0,

g4(x) = x2 + x1
1.5

− 1 ≤ 0,

where

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2,≤ 1.3, 2 ≤ x3 ≤ 15, (17)

It has been observed that QPSO algorithm with Cauchy distribution and natural
selection strategy is robust andobtains optimal solutions thanPSOandQPSO, shown in
Table 7. The difference between best solutions found by QPSO-CD ( f (x) = 0.00263)
and other algorithms for tension spring design problem are reported in Fig. 11.
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Fig. 11 Results of PSO, QPSO, SP-QPSO and QPSO-CD methods for tension spring design problem

Fig. 12 Design of pressure vessel

7.3 Pressure vessel design problem

Initially, Kannan and Kramer [54] studied the pressure vessel design problem with
the main aim to reduce the total fabricating cost. Pressure vessels can be of any shape.
For engineering purposes, a cylindrical design capped by hemispherical heads at both
ends is widely used [55]. Figure 12 describes the structure of pressure vessel design
problem. It consists four design variables (x1, x2, x3, x4), where x1 denotes the shell
thickness (Ts), x2 is used for head thickness (Th), x3 denotes the inner radius (R) and
x4 represents the length of vessel (L). The objective function and constraint equations
are described as:

Min f (x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.166x21 x4

+19.84x21 x3,

Subject to:

g1(x) = −x1 + 0.0193x3 ≤ 0,

g2(x) = −x2 + 0.00954x3 ≤ 0,
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Table 8 Comparison of optimal results for Pressure vessel design problem

Variables PSO QPSO SP-QPSO QPSO-CD

x1 0.8125 0.7783 0.7782 0.7776

x2 0.4375 0.3849 0.3845 0.3848

x3 42.0984 40.3289 40.3206 40.3278

x4 176.6365 199.8899 199.9988 199.8865

g1(x) − 4.500e−15 4.777e−05 − 1.242e−05 7.2654e−04

g2(x) − 0.035880 − 1.62294e−04 1.58523e−04 − 7.2787e−05

g3(x) − 1.164e−10 − 97.39720071 − 63.63686942 − 0.734359

g4(x) − 63.3634 − 40.1100 − 40.0012 − 40.1135

f (x) 6059.714 5886.189 5885.268 5886.137

Fig. 13 Optimal results of PSO, QPSO, SP-QPSO and QPSO-CD techniques for pressure vessel design
problem

g3(x) = −πx23 x4 − 4

3
πx33 + 1296000 ≤ 0,

g4(x) = x4 − 240 ≤ 0,

where

1 × 0.0625 ≤ x1, x2 ≤ 99 × 0.0625, 10 ≤ x3, x4 ≤ 200 (18)

The optimal results of QPSO-CD are compared with the SP-QPSO, QPSO and
PSO best results noted in the previous work and are given in Table 8. The best solution
obtained from QPSO-CD is better than other algorithms as shown in Fig. 13.
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8 Conclusion

In this paper, a new hybrid quantum particle swarm optimization algorithm is proposed
with natural selection method and Cauchy distribution. The performance of the pro-
posed algorithm is experimented on four benchmark functions, and the optimal results
are comparedwith existing algorithms. Further, theQPSO-CD is applied to solve engi-
neering design problems. The efficiency of QPSO-CD is successfully presented with
superiority than preceding results for three engineering design problems: three-bar
truss, tension/compression spring and pressure vessel. The efficiency of QPSO-CD
algorithm is evaluated by number of steps needed to reach the optimal region, and
it is proved that time complexity of proposed algorithm is lower in comparison to
classical PSO. In the context of convergence, the experimental outcomes show that
the QPSO-CD converge to get results closer to the superior solution.
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