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Abstract
The anisotropic Heisenberg two-spin-1/2 model in an inhomogeneous magnetic field
with both antisymmetric Dzyaloshinsky–Moriya and symmetric Kaplan–Shekhtman–
Entin-Wohlman–Aharony cross interactions is considered at thermal equilibrium.
Using a group-theoretical approach,wefindfifteen spinHamiltonians and asmany cor-
responding Gibbs density matrices (quantum states) whose eigenvalues are expressed
only through square radicals. We also found local unitary transformations that connect
nine of this fifteen state collection, and one of them is the X quantum state. Since such
quantum correlations as quantum entanglement, quantum discord, one-way quantum
work deficit, and others are known for the X state, this allows to get the quantum
correlations for any member from the nine state family. Further, we show that the
remaining six quantum states are separable and that they are also connected by local
unitary transformations, but, however, now the case with known correlations beyond
entanglement is generally not available.

Keywords Quantum correlation theory · Group-theoretical analysis · Local unitary
transformations · X density matrix · Non-X quantum states

1 Introduction

To explain the phenomenon of weak ferromagnetism observed in some rhombohe-
dral antiferromagnets, Dzyaloshinsky [1,2] developed a phenomenological approach
based on the Landau theory of second-order phase transitions and showed that the
antisymmetric mixed (in magnetization components) term in the expansion of the
thermodynamic potential is responsible for the appearance of nonzero net magnetiza-
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tion of the system. Shortly after [3], he also noticed that in antiferromagnetic crystals
with the tetragonal lattices, weak ferromagnetism can be caused by the symmetric
mixed term in the expansion of the corresponding thermodynamic potential.

Later on, in 1960, Moriya [4,5] developed a microscopic theory of anisotropic
superexchange interaction by extending the Anderson theory of superexchange to
include spin–orbit coupling. Using perturbation theory, he found that the leading
anisotropy contribution to the interaction between two neighboring spins σ 1 and σ 2
is given by

HDM = D · (σ 1 × σ 2), (1)

where D = (Dx , Dy, Dz) is a constant vector that characterizes a substance. This
interaction reproduces Dzyaloshinsky’s antisymmetric term and is now referred to as
the Dzyaloshinsky–Moriya (DM) interaction. In addition, Moriya found the second-
order correction term [4,5]

HKSEA = σ 1 · �̃ · σ 2, (2)

where �̃ is a symmetric traceless tensor. For a long time, this interactionwas assumed to
be negligible compared with the antisymmetric contribution (1). However, more later
Kaplan [6] and then Shekhtman et al. [7,8] argued the importance of the symmetric
term because it can restore the O(3) invariance of the isotropic Heisenberg system
which is broken by the DM term. For this reason, the interaction (2) began to be
called the Kaplan–Shekhtman–Entin-Wohlman–Aharony (KSEA) interaction [9,10]
(see also reference 14 in [11]).

We will discuss two-site systems with the Hamiltonian

H = HZ + HH + HDM + HKSEA, (3)

where HZ is the Zeeman energy and HH the anisotropic exchange Heisenberg inter-
actions. Behavior of quantum correlations in different particular cases of the model
(3) was considered in numerous papers. The behavior of thermal entanglement in two-
qubit completely isotropic (XXX)Heisenberg chain in the absence of an external field,
but in the presence of DM interaction with a nonzero of only one, Dz , component of
the Dzyaloshinsky vectorDwas considered in [12]. The author of this paper found that
the DM interaction can excite entanglement. Thermal entanglement in the partially
anisotropic (XXZ) Heisenberg model with Dz or Dx component of Dzyaloshinsky
vector was studied in [13]. Quantum entanglement in anisotropic Heisenberg XXZ
chain with only Dz component was also discussed in [14]. The authors established
that while the anisotropy suppresses the entanglement, the DM interaction can restore
it. The effect of DM interaction on the quantum entanglement in the Heisenberg XYZ
chain was observed in [15] in the absence of magnetic field. Thermal quantum dis-
cord in the anisotropic Heisenberg XXZ model with DM interaction and without any
external field was investigated in [16]. Concurrence and quantum discord in two-qubit
anisotropic Heisenberg XXZ model with DM interaction along the z-direction was
considered in [17] where it was found that the tunable parameter Dz may play a con-
structive role to the quantum correlations in thermal equilibrium. Quantum discord of
two-qubit anisotropyXXZHeisenberg chain with DM interaction under uniformmag-
netic field was investigated in [18]. In the recent papers [19,20], the thermal quantum
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entanglement and discord in two-qubit XYZ chain with DM interaction were dis-
cussed. As a whole, one can conclude that the most results have been obtained for the
spin pairs with DM interactions when the exchangeHeisenberg couplings are isotropic
or, rarer, anisotropic. The external magnetic field was taken into account much less
frequently. Finally, there are no publications where the quantum correlations (entan-
glement, discord, etc.) in Heisenberg dimers were discussed in the presence of KSEA
interactions. Our research fills these gaps to a certain extent.

The structure of this paper is as follows. In the next section, we write down the
Hamiltonian in an expanded form and establish its relationshipwith the densitymatrix.
Sections3 and 4 deal with the X and CS quantum states what gives the key that opens
the way, first, to the group-theoretical analysis in Sect. 5 and then, in Sect. 6, to the
results for the Dy and �y pair components of Dzyaloshinsky vector and �̂ tensor.
Section7 is devoted to the classification of fifteen Hamiltonians and density matrices.
Finally, in the last Sect. 8, we briefly summarize the results obtained and note the
remaining unsolved problems.

2 Hamiltonian and density matrix

The DM interaction (1) can be written in an expanded form as

D · (σ 1 ×σ 2) = Dx (σ
y
1 σ z

2 −σ z
1σ

y
2 )+ Dy(σ

z
1σ x

2 −σ x
1 σ z

2 )+ Dz(σ
x
1 σ

y
2 −σ

y
1 σ x

2 ), (4)

where σ i denotes the vector of Pauli matrices at site i = 1, 2; σ i = (σ x
i , σ

y
i , σ z

i ).
Similarly for the KSEA term (2):

σ 1 · �̃ · σ 2 = (σ x
1 , σ

y
1 , σ z

1 )

⎛
⎝
0 �z �y

�z 0 �x

�y �x 0

⎞
⎠

⎛
⎝

σ x
2

σ
y
2

σ z
2

⎞
⎠

= �x (σ
y
1 σ z

2 + σ z
1σ

y
2 ) + �y(σ

z
1σ x

2 + σ x
1 σ z

2 ) + �z(σ
x
1 σ

y
2 + σ

y
1 σ x

2 ), (5)

where �x , �y , and �z are the elements of the tensor �̃. As a result, the Hamiltonian
(3) is rewritten as

H = Bx
1 σ x

1 + By
1 σ

y
1 + Bz

1σ
z
1 + Bx

2 σ x
2 + By

2 σ
y
2 + Bz

2σ
z
2

+ Jxσ
x
1 σ x

2 + Jyσ
y
1 σ

y
2 + Jzσ

z
1σ z

2

+ Dx (σ
y
1 σ z

2 − σ z
1σ

y
2 ) + Dy(σ

z
1σ x

2 − σ x
1 σ z

2 ) + Dz(σ
x
1 σ

y
2 − σ

y
1 σ x

2 )

+ �x (σ
y
1 σ z

2 + σ z
1σ

y
2 ) + �y(σ

z
1σ x

2 + σ x
1 σ z

2 ) + �z(σ
x
1 σ

y
2 + σ

y
1 σ x

2 ), (6)

where Bα
i (i = 1, 2;α = x, y, z) are the components of the externalmagnetic fieldsB1

and B2 (with the incorporated gyromagnetic ratios or g-factors) and Jα (α = x, y, z)
are the Heisenberg exchange couplings.

We will be able to study the systems only in some special cases of the Hamilto-
nian (6). For them, we will be interested in systems in a state of thermal equilibrium.
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The corresponding Gibbs density matrix is given as

ρ = 1

Z
exp(−H/T ), (7)

where T is the temperature in energy units and Z the partition function. Thus, the
Hamiltonian and densitymatrix of any systemare connected via the functional relation.

Quantum correlations contained in composite quantum states are the focus of
quantum information science. Many measures have been proposed to quantify these
correlations, such as quantum entanglement, quantum discord, and one-way quantum
work deficit [21–28]. It should be emphasized that the quantum correlation measures
must satisfy a number of criteria [29] (see also the review [24]). In particular, as a
necessary condition, the measures must be invariant under any local unitary transfor-
mations.

3 XYZ chain withDz and 0z couplings

Webegin the analysiswith quantum states having theX form. In accordwith definition,
X matrix can have nonzero entries only on the main diagonal and anti-diagonal. The
portrait of such a sparse matrix resembles the letter “X,” which allowed to give it such
a name [30]. Algebraic characterization of X states in quantum information has been
done by Rau [31]. It is important to note that both the sums and the products of X
matrices are again the X matrices; that is, the set of X matrices is algebraically closed.
In particular, a function (decomposable in a Taylor series) of X matrix is the X matrix.

In the most general form, the Hermitian X matrix corresponding to the Hamilto-
nian (6) can be written as

Hzz =

⎛
⎜⎜⎝

Jz + Bz
1 + Bz

2 · · Jx − Jy − 2i�z

· −Jz + Bz
1 − Bz

2 Jx + Jy + 2i Dz ·
· Jx + Jy − 2i Dz −Jz − Bz

1 + Bz
2 ·

Jx − Jy + 2i�z · · Jz − Bz
1 − Bz

2

⎞
⎟⎟⎠ ,

(8)
where the points are put instead of zero entries. In Eq. (8), Bz

1 and Bz
2 are the

z-components of external fields applied at the 1st and 2nd qubits, respectively,
(Jx , Jy, Jz) the vector of interaction constants of the Heisenberg part of interaction,
Dz the z-component of Dzyaloshinsky vector, and �z the z-component in the KSEA
interaction. Thus, this model contains seven real independent parameters: Bz

1, B
z
2, Jx ,

Jy , Jz , Dz , and �z .
On the other hand, “any four-by-four matrix—and, therefore, the Hamiltonian

matrix in particular—can be written as a linear combination of the sixteen double-
spin matrices” [32, Sect. 12-2]. For the traceless X matrix (8), the linear combination
of “double-spin matrices” is given as

Hzz = Bz
1σ

z
1 + Bz

2σ
z
2 + Jxσ

x
1 σ x

2 + Jyσ
y
1 σ

y
2 + Jzσ

z
1σ z

2 + Jxyσ
x
1 σ

y
2 + Jyxσ

y
1 σ x

2 , (9)
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where
Jxy = Dz + �z, Jyx = −Dz + �z . (10)

Due to the functional relation (7), the Gibbs density matrix also has the X form
with seven real parameters:

ρzz =

⎛
⎜⎜⎝

a · · u
· b v ·
· v∗· c ·
u∗ · · d

⎞
⎟⎟⎠ = 1

4
(σ0 ⊗ σ0 + sz1σz ⊗ σ0 + sz2σ0 ⊗ σz

+ c1σx ⊗ σx + c2σy ⊗ σy + c3σz ⊗ σz + c12σx ⊗ σy + c21σy ⊗ σx ), (11)

where the asterisk denotes complex conjugation, sz1, s
z
2, c1, c2, c3, c12, and c21 are the

unary and binary correlation functions, and

σ0 =
(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(12)

are the unit and Pauli spin operators in the standard representation. Due to the nonneg-
ativity definition and normalization condition of any density operator, a, b, c, d ≥ 0,
a + b + c + d = 1, ad ≥ |u|2, and bc ≥ |v|2.

One can now calculate different quantum correlations in the X quantum states.
The methods of calculating quantum correlations for the two-qubit X quantum states
have been developed in a number works. The concurrence, a measure of quantum
entanglement, is given by [30]

C = 2max
{
0, |u| − √

bc, |v| − √
ad

}
. (13)

There are considerable studies on the quantum discord and one-way quantum work
deficit. For instance, the quantum discord of two-qubit X quantum states was consid-
ered in Refs. [33–35] (and references therein). One may present the quantum discord
as a formula

Q = min{Q0, Q θ̃ , Qπ/2}, (14)

where the subfunctions (branches) Q0 and Qπ/2 are the analytical expressions (cor-
responding to the discord with optimal measurement angles 0 and π/2, respectively)
and only the third branch Q θ̃ requires one-dimensional searching of the optimal state-
dependent measurement angle θ̃ ∈ (0, π/2) (for details see in Refs. [36–39]).

Very similar situation takes place for the one-way quantum work deficit [40–42].
We may again write the one-way quantum work deficit of two-qubit X state in a
semi-analytical form:

� = min{�0,�ϑ,�π/2}, (15)

where the branches �0 and �π/2 are known in the analytical form, while the third
branch�ϑ also requires to perform numerical minimization to obtain state-dependent
minimizing polar angle ϑ ∈ (0, π/2) (see [42–45]).
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So, the theory to calculate quantum correlations of X quantum states is well
developed. This gives a possibility to calculate and investigate different quantum
correlations for the two-qubit systems in a nonuniform field in z-direction, with com-
pletely anisotropic Heisenberg interactions, and with arbitrary z-components of DM
and KSEA interactions.

4 XYZ chain withDx and 0x couplings

Let us take the centrosymmetric (CS) quantum state now. The CS matrix n × n is
defined by the relations for its matrix elements as follows: ai j = an+1−i,n+1− j [46].
It is easy to check that the sum and product of CS matrices are the CS matrix, i.e., this
family of matrices as well as X matrices is algebraically closed.

Most general Hermitian CS matrix of fourth order looks as

ρxx =

⎛
⎜⎜⎝
a μ ν c
μ∗ b d ν∗
ν∗ d b μ∗
c ν μ a

⎞
⎟⎟⎠ , (16)

where a, b, c, and d are real quantities, while μ and ν are complex.
The Hamiltonian with CS symmetry reads

Hxx =

⎛
⎜⎜⎝

Jz Bx
2 − i Jzy Bx

1 − i J yz Jx − Jy
Bx
2 + i Jzy −Jz Jx + Jy Bx

1 + i Jyz
Bx
1 + i Jyz Jx + Jy −Jz Bx

2 + i Jzy
Jx − Jy Bx

1 − i Jyz Bx
2 − i Jzy Jz

⎞
⎟⎟⎠ . (17)

This Hamiltonian in the Bloch form is written as

Hxx = Bx
1 σ x

1 + Bx
2 σ x

2 + Jxσ
x
1 σ x

2 + Jyσ
y
1 σ

y
2 + Jzσ

z
1σ z

2 + Jyzσ
y
1 σ z

2 + Jzyσ
z
1σ

y
2 . (18)

The latter can be rewritten in the form

Hxx = Bx
1 σ x

1 + Bx
2 σ x

2 + Jxσ
x
1 σ x

2 + Jyσ
y
1 σ

y
2 + Jzσ

z
1σ z

2

+ Dx (σ
y
1 σ z

2 − σ z
1σ

y
2 ) + �x (σ

y
1 σ z

2 + σ z
1σ

y
2 ), (19)

where

Dx = 1

2
(Jyz − Jzy), �x = 1

2
(Jyz + Jzy) (20)

are the x-components of Dzyaloshinsky vector and �̃ tensor, respectively.
So here we have the two-qubit anisotropic Heisenberg spin cluster with Dx and

�x terms of DM and KSEA interactions and additionally in the nonuniform external
fields applied in the transverse x-direction.
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In Ref. [47] and then in Refs. [36,37], it has been shown that by means of double
Hadamard transformation H ⊗ H , where

H = 1√
2

(
1 1
1 −1

)
= Ht (21)

is the Hadamard transform, any CS matrix 4 × 4 is reduced to the X form (and vice
versa). Indeed, taking into account relations

Hσx H = σz, Hσy H = −σy, Hσz H = σx (22)

simple calculations yield

(H ⊗ H)Hxx (H ⊗ H) = Bx
1 σ z

1 + Bx
2 σ z

2 + Jzσ
x
1 σ x

2 + Jyσ
y
1 σ

y
2 + Jxσ

z
1σ z

2

+ Dx (σ
x
1 σ

y
2 − σ

y
1 σ x

2 ) − �x (σ
x
1 σ

y
2 + σ

y
1 σ x

2 ). (23)

Thus, the CS Hamiltonian is returned to the X case up to a reassignment of seven
parameters.

As a result, the discovered remarkable transformation H ⊗ H allows to find cor-
relation functions using the corresponding solutions for the X states. Knowing the
solution for X state, we now able to calculate such quantum correlations as quantum
entanglement, discord, and one-way work deficit for the CS case of XYZmodel in the
transverse external fields and not only with DM but also with KSEA interaction.

5 Group-theoretical view on the quantum states

To find the key to solve the XYZmodel with the components Dy and�y of the DM and
KSEA interactions, we analyze the symmetry of the CSmatrix using group-theoretical
methods. In addition, in the future this case will serve us as a heuristic example.

In the most general case, the four-by-four CS matrix is written as

ACS =

⎛
⎜⎜⎝

A1 A2 A3 A4
A5 A6 A7 A8
A8 A7 A6 A5
A4 A3 A2 A1

⎞
⎟⎟⎠ , (24)

where the entries are arbitrary real or complex values. The CS matrix is symmetric
about its center. On the other hand, we may say that CS matrix is such a matrix that
commutes with the operator [48]

Uxx =

⎛
⎜⎜⎝

· · · 1
· · 1 ·
· 1 · ·
1 · · ·

⎞
⎟⎟⎠ . (25)
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Table 1 Character table of the
group {E,Uxx } {E,Uxx } E Uxx

�(1) 1 1

�(2) 1 −1

� 4 0

It is clear thatU 2
xx equals the unity matrix. One may also claim that the commutativity

condition with this operator generates the CS matrix, i.e., the most general matrix that
commutes with Uxx is the CS matrix.

Let us find out what consequences the symmetry of matrix (24) lead to. For this
purpose, we perform a group-theoretical analysis. The transformation Uxx together
with the identity transformation E makes up the group {E,Uxx }. This group is of
second order and has two irreducible representations �(1) and �(2). The 4 × 4 unit
matrix and the matrix (25) together give the original representation � of this group in
the space of the matrix (24). The characters of � (traces of representation matrices)
equal χ(E) = 4 and χ(Uxx ) = 0. Knowing them, we can find the multiplicities
a1 and a2 with which the irreducible representations �(1) and �(2), respectively, are
contained in �.

For this purpose, it is sufficient to make use of the character table for the group
(Table 1) and the formula [49]

aμ = 1

g

∑
G

χ(μ)(G)∗χ(G), (26)

where g is the order of the group, χ(μ)(G) the character of the element G in the μ-th
irreducible representation, and χ(G) the character of the same element in the original
representation. Simple calculations yield

a1 = 2, a2 = 2. (27)

This imply that in the basis where the representation � of the Abelian group {E,Uxx }
is completely reducible, the matrix (24) will take a block-diagonal form with two
subblocks 2 × 2.

Quasidiagonalizing transformation is constructed from the eigenvectors of the oper-
ator Uxx and can be written as

R = 1√
2

⎛
⎜⎜⎝
1 · · 1
· 1 1 ·
· 1 −1 ·
1 · · −1

⎞
⎟⎟⎠ = Rt . (28)
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This transformation is orthogonal and symmetric (coincides with its transposition).
After this transformation, the CS matrix (24) takes the quasidiagonal form

RACS R =

⎛
⎜⎜⎝

A1 + A4 A2 + A3 · ·
A5 + A8 A6 + A7 · ·

· · A6 − A7 A5 − A8
· · A2 − A3 A1 − A4

⎞
⎟⎟⎠ . (29)

Note that another useful way to practically quasidiagonalize different matrices is to
use for them so-called motion integrals [50].

The resulting quasidiagonal form allows it easy to extract all eigenvalues of any CS
matrix and, in particular, of the Hamiltonian and density matrix. In turn, in some cases,
this opens a possibility to direct calculation of quantum correlations, for example the
quantum entanglement of two-qubit quantum CS states [51].

Importantly, the matrix Uxx can be written as a direct product of Pauli matrices,

Uxx = σx ⊗ σx . (30)

It is this property that allowed to reduce the problem to the known case by applying
the local unitary transformation (double Hadamard transformation) and calculate any
quantum correlations of CS states using the results for the X quantum states.

It is arisen a question either to consider another combinations Uαβ = σα ⊗ σβ

(α, β = 0, x, y, z) with all possible Pauli matrices including the unit matrix σ0. Take,
for instance,

Uzz = σz ⊗ σz =

⎛
⎜⎜⎝
1 · · ·
· −1 · ·
· · −1 ·
· · · 1

⎞
⎟⎟⎠ . (31)

Simple calculations show that the most general matrix that commutes with Uzz has
the X form:

AX =

⎛
⎜⎜⎝

A1 · · A2
· A3 A4 ·
· A5 A6 ·
A7 · · A8

⎞
⎟⎟⎠ . (32)

So we can now give a new definition for the X matrix; namely, it is such a matrix that
commutes with the matrix Uzz = σz ⊗ σz or, in other words, is invariant under the
transformations of the group {E,Uzz}.

In the following sections, we will continue to develop such a group-theoretical
approach.
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6 XYZ chain withDy and 0y couplings

We return to the consideration of spin systems. Let us now take the direct product of
two σy matrices,

Uyy = σy ⊗ σy =

⎛
⎜⎜⎝

· · · −1
· · 1 ·
· 1 · ·

−1 · · ·

⎞
⎟⎟⎠ , (33)

and find the most general matrix that commutes with it. Carrying out the necessary
calculations, we get the matrix

Ayy =

⎛
⎜⎜⎝

A1 A2 A3 A4
A5 A6 A7 A8
−A8 A7 A6 −A5
A4 −A3 −A2 A1

⎞
⎟⎟⎠ . (34)

Note that a family of matrices with such a structure is algebraically closed.
Again performing a group-theoretical analysis, as in previous section, we find that

the matrix (34) can be reduced to a block-diagonal form also with two subblocks of
second orders. The quasidiagonalizing transformation is built from eigenvectors of
Uyy , Eq. (33), and can be written as

S = 1√
2

⎛
⎜⎜⎝

−1 · · 1
· 1 1 ·
· 1 −1 ·
1 · · 1

⎞
⎟⎟⎠ = St . (35)

Calculations yield

SAyy S =

⎛
⎜⎜⎝

A1 − A4 −A2 − A3 · ·
−A5 + A8 A6 + A7 · ·

· · A6 − A7 A5 + A8
· · A2 − A3 A1 + A4

⎞
⎟⎟⎠ . (36)

This results opens a way to extract all eigenvalues of any Ayy matrix.
Taking into account hermiticity condition, one can write the density matrix with

the discussed symmetry:

ρyy =

⎛
⎜⎜⎝
a μ ν c
μ∗ b d −ν∗
ν∗ d b −μ∗
c −ν −μ a

⎞
⎟⎟⎠ . (37)
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Similar structure has the Hamiltonian

Hyy =

⎛
⎜⎜⎝

Jz −i By
2 + Jzx −i By

1 + J xz Jx − Jy
i By

2 + Jzx −Jz Jx + Jy −i By
1 − Jxz

i By
1 + Jxz Jx + Jy −Jz −i By

2 − Jzx
Jx − Jy i By

1 − Jxz i By
2 − Jzx Jz

⎞
⎟⎟⎠ . (38)

In the Bloch form, this Hamiltonian is given by

Hyy = By
1 σ

y
1 + By

2 σ
y
2 + Jxσ

x
1 σ x

2 + Jyσ
y
1 σ

y
2 + Jzσ

z
1σ z

2 + Jzxσ
z
1σ x

2 + Jxzσ
x
1 σ z

2 . (39)

In terms of the DM and KSEA couplings, this equation is rewritten as

Hyy = By
1 σ

y
1 + By

2 σ
y
2 + Jxσ

x
1 σ x

2 + Jyσ
y
1 σ

y
2 + Jzσ

z
1σ z

2

+ Dy(σ
z
1σ x

2 − σ x
1 σ z

2 ) + �y(σ
z
1σ x

2 + σ x
1 σ z

2 ), (40)

where

Dy = 1

2
(Jzx − Jxz), �y = 1

2
(Jzx + Jxz) (41)

are the y-components of Dzyaloshinsky vector and �̃ tensor, respectively. So, we come
to the completely anisotropic Heisenberg modes in the “transverse” external field and
with independent Dy and �y terms of DM and KSEA interactions.

As already noted above, it is important to find local unitary transformations. The
Hadamard transform diagonalizes the spin matrix σx . It easy to check that the Pauli
matrix σy is diagonalized by the unitary transformation

Y = 1√
2

(
1 1
i −i

)
. (42)

(This operator can be called a Y -transform because it diagonalizes the matrix σy .) In
the proper representation of the matrix σy ,1

Y †σxY = σy, Y †σyY = σz, Y †σzY = σx . (43)

Double transformation of Y reduces the Hamiltonian Hyy to the X form. Indeed,

(Y ⊗ Y )†Hyy(Y ⊗ Y ) = By
1 σ z

1 + By
2 σ z

2 + Jzσ
x
1 σ x

2 + Jxσ
y
1 σ

y
2 + Jyσ

z
1σ z

2

+ Dy(σ
x
1 σ

y
2 − σ

y
1 σ x

2 ) + �y(σ
x
1 σ

y
2 + σ

y
1 σ x

2 ). (44)

The same is valid for the density matrix ρyy : It is also reduced to the X form by the
local unitary transformation consisting of direct product of two Y transforms.

1 One may also choose Ỹ = 1√
2

(
1 i
i 1

)
that leads to the relations Ỹ †σx Ỹ = σx , Ỹ †σy Ỹ = σz , and

Ỹ †σz Ỹ = −σy .
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So, we have found a way which allows to calculate the quantum correlations in
the XYZ system with arbitrary components Dy and �y using the known formulas
for the X states. At the same time, the way found shows the equivalence of quantum
correlation properties in the system under discussion and in the X (and CS) system.

7 Classification of quantum states

The examples considered in the previous sections provide us with a starting point to
explore the invariance under local operations to extend the known results and get new
quantum states. Consider now the mixed products of spin matrices2

Uαβ = σα ⊗ σβ (α, β = 0, x, y, z), (45)

whereσ0,σx ,σy , andσz are given byEq. (12). Thematrices commutingwith each given
operator Uαβ form algebraically closed families. One should be noted that such U -
operators, up to commoncoefficients, coincidewith the generators of SU(4) group [52–
55].

Repeating calculations similar to Sect. 5, we find, as above, that the characters
of the initial representation of any group {E,Uαβ} are still equal to four and zero,
and therefore, the multiplicities are again a1 = a2 = 2. As a result, any matrix that
commutes with the matrix Uαβ can be reduced to the block-diagonal form with two
subblocks of second order. Quasidiagonalizing transformations are constructed from
the eigenvectors of the given matrix Uαβ .

Finding for each operatorUαβ the matrix originated from the condition of commu-
tativity and then taking its Hermitian form, we arrive at a collection of quantum states
(and Hamiltonians) which is shown in Table 2.

Each quantum state (and hence Hamiltonian) is supplied by a set of Pauli matrices
over which the quantum state or Hamiltonian is decomposed in the form of a linear
combination.

We can look at Table 2 as a four-by-four matrix. Using this table, it is easy to find
the Hamiltonians and density matrices of different spin models. Let us consider the
first row. The corresponding Hamiltonians are written as

H0x = B1σ 1 + Bx
2 σ x

2 + Jxσ
x
1 σ x

2 + Jzxσ
z
1σ x

2 + Jyxσ
y
1 σ x

2 , (46)

H0y = B1σ 1 + By
2 σ

y
2 + Jyσ

y
1 σ

y
2 + Jzyσ

z
1σ

y
2 + Jxyσ

x
1 σ

y
2 , (47)

H0z = B1σ 1 + Bz
2σ

z
2 + Jzσ

z
1σ z

2 + Jyzσ
y
1 σ z

2 + Jxzσ
x
1 σ z

2 . (48)

System (46) by means of local unitary transform σ0 ⊗ H and system (47) by the local
unitary transformation σ0 ⊗ Y are reduced to a structure of the model (48):

(σ0 ⊗ H)H0x (σ0 ⊗ H) → H0z, (σ0 ⊗ Y ) †H0y(σ0 ⊗ Y ) → H0z . (49)

Thus, all quantum correlations in these three spin systems are the same.

2 We omit the case U00(= E) because {E} is the trivial group.
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The mixed members can be rewritten through the DM and KSEA interactions. For
example,

H0z = B1σ 1 + Bz
2σ

z
2 + Jzσ

z
1σ z

2 + Dx (σ
y
1 σ z

2 − σ z
1σ

y
2 ) + �x (σ

y
1 σ z

2 + σ z
1σ

y
2 )

+ Dy(σ
z
1σ x

2 − σ x
1 σ z

2 ) + �y(σ
z
1σ x

2 + σ x
1 σ z

2 ) (50)

with additional conditions �x = Dx and �y = −Dy in accord with Eqs. (20) and
(41). The corresponding density matrix has a characteristic, “checkerboard” structure

ρ0z =

⎛
⎜⎜⎝
a · ν ·
· b · δ

ν∗ · c ·
· δ∗ · d

⎞
⎟⎟⎠ . (51)

A partial transposition of ρ0z , namely ρ
t2
0z , does not change the density matrix: ρt2

0z =
ρ0z . Consequently, all eigenvalues stay nonnegative, and therefore, in accordance with
the positive partial transpose (PPT) criterion [56,57], the state (51) is separable, i.e., its
quantum entanglement (andwith it the entanglement of systemswith theHamiltonians
H0x and H0y) is identically equal to zero.

Consider now the systems from the first column of Table 2. They are

Hx0 = Bx
1 σ x

1 + B2σ 2 + Jxσ
x
1 σ x

2 + Jxyσ
x
1 σ

y
2 + Jxzσ

x
1 σ z

2 , (52)

Hy0 = By
1 σ

y
1 + B2σ 2 + Jyσ

y
1 σ

y
2 + Jyzσ

y
1 σ z

2 + Jyxσ
y
1 σ x

2 , (53)

Hz0 = Bz
1σ

z
1 + B2σ 2 + Jzσ

z
1σ z

2 + Jzxσ
z
1σ x

2 + Jzyσ
z
1σ

y
2 . (54)

The cross (helical) interactions in these Hamiltonians can also be given in the form of
DM–KSEA interactions. Thesemodels again pass one into another by the local unitary
transformations consisting of the corresponding direct products of operators H , Y , and
σ0. The density matrix corresponding to the Hamiltonian Hz0 has a block-diagonal
(and therefore direct sum) form (see Table 2)

ρz0 =

⎛
⎜⎜⎝
a μ · ·
μ∗ b · ·
· · c ν

· · ν∗ d

⎞
⎟⎟⎠ =

(
a μ

μ∗ b

)
⊕

(
c ν

ν∗ d

)
. (55)

The quantum entanglement of this state as well as the states corresponding to the
Hamiltonians Hx0 and Hy0 equals zero, again in accordance with the PPT criterion.

The Hamiltonians (46)–(48) are pairwise connected with the Hamiltonians (52)–
(54) using the spin exchange operator P introduced by Dirac (see [32, Sect. 12-2]),

P = 1

2
(1 + σ 1σ 2) =

⎛
⎜⎜⎝
1 · · ·
· · 1 ·
· 1 · ·
· · · 1

⎞
⎟⎟⎠ = Pt . (56)
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This operator exchanges the first and second qubits (1 � 2) and swaps them (similar
to the mirror reflection in the plane that separates the qubits):

Pσα ⊗ σβ P = σβ ⊗ σα, Pσα
1 σ

β
2 P = σ

β
1 σα

2 . (57)

The matrix (56) is an orthogonal transformation that permutes the second and third
rows and columns of any matrix of the fourth order. One should emphasize that this
transformation is not local, and therefore, generally speaking, it changes the value of
quantum correlation because the quantum discord and one-way work deficit depend
on which qubit the measurement was performed. As noted in [24,58], the discord is
not a symmetric quantity, and there are “left” and “right” discords of the same system.
However, if simultaneously with the permutation P , the measured qubit is changed in
the discussed systems, then the value of discord (and deficit) will remain unchanged.
As an example, Pρ0z P → ρz0 and the “right” discord passes to the “left” one and
vice versa.

Now we turn to the consideration of the “inner” part of Table 2, i.e., the systems
and their quantum states with the Cartesian indexes α, β = x, y, z only. “Diagonal”
stares (ρxx , ρyy , and ρzz) have already been discussed in detail in previous sections.
All of them are related by local unitary transformations, and therefore, the quantum
correlations are the same and can be calculated using formulas available for the X
state.

The “off-diagonal”Hamiltonians from the upper triangle part of the table arewritten
as follows

Hxy = Bx
1 σ x

1 + By
2 σ

y
2 + Jzσ

z
1σ z

2 + Jxyσ
x
1 σ

y
2 + Jyxσ

y
1 σ x

2 + Jyzσ
y
1 σ z

2 + Jzxσ
z
1σ x

2 ,

(58)

Hxz = Bx
1 σ x

1 + Bz
2σ

z
2 + Jyσ

y
1 σ

y
2 + Jzxσ

z
1σ x

2 + Jxzσ
x
1 σ z

2 + Jzyσ
z
1σ

y
2 + Jyxσ

y
1 σ x

2 ,

(59)

Hyz = By
1 σ

y
1 + Bz

2σ
z
2 + Jxσ

x
1 σ x

2 + Jzyσ
z
1σ

y
2 + Jyzσ

y
1 σ z

2 + Jzxσ
z
1σ x

2 + Jxyσ
x
1 σ

y
2 .

(60)

These Hamiltonians can be expressed via DM–KSEA interactions. For instance,

Hxy = Bx
1 σ x

1 + By
2 σ

y
2 + Jzσ

z
1σ z

2 + D · (σ 1 × σ 2) + σ 1 · �̃ · σ 2 (61)

with conditions �x = Dx and �y = Dy , whereas �z and Dz are arbitrary independent
quantities. The Hamiltonians of a lower part of the “off-diagonal” systems are

Hyx = By
1 σ

y
1 + Bx

2 σ x
2 + Jzσ

z
1σ z

2 + Jxyσ
x
1 σ

y
2 + Jyxσ

y
1 σ x

2 + Jzyσ
z
1σ

y
2 + Jxzσ

x
1 σ z

2 ,

(62)

Hzx = Bz
1σ

z
1 + Bx

2 σ x
2 + Jyσ

y
1 σ

y
2 + Jzxσ

z
1σ x

2 + Jxzσ
x
1 σ z

2 + Jyzσ
y
1 σ z

2 + Jxyσ
x
1 σ

y
2 ,

(63)

Hzy = Bz
1σ

z
1 + By

2 σ
y
2 + Jxσ

x
1 σ x

2 + Jzyσ
z
1σ

y
2 + Jyzσ

y
1 σ z

2 + Jyxσ
y
1 σ x

2 + Jxzσ
x
1 σ z

2 .

(64)

123



On the quantum correlations in two-qubit XYZ spin chains… Page 17 of 20 336

Remarkably, all these six “off-diagonal” Hamiltonians (58)–(60) and (62)–(64) are
reduced to the Hamiltonian of the Xmodel by local unitary transformations composed
of the operators H , Y , and σ0. Indeed,

(H ⊗ Y )†Hxy(H ⊗ Y ) → Hzz, (H ⊗ σ0)Hxz(H ⊗ σ0) → Hzz, (65)

similarly for other cases.
So, out of fifteen quantum states, nine (ραβ with α, β = x, y, z) are transformed

among themselves by local unitary transformations. Their quantum correlations are
complete identical to each other and are calculated by the formulas for the X state.

The quantum states of the six remainingmodels are separable and therefore without
quantum entanglement. These models consist of two equal subclasses ρ0α and ρα0
(α = x, y, z) in each of which the quantum discord and other quantum correlations are
equivalent to each other since the states are connected via local unitary transformations.
Moreover, the states from different subclasses are paired trough the spin exchange
transformation P thanks to which the “right” quantum discord of one member of a
pair equals the “left” discord of other member of the same pair. Unfortunately, among
both subclasses there is no one quantum state for which the quantum discord is known.
However, most recently Zhou et al. [59] have evaluated the “right” and “left” quantum
discords for the quantum sate

ρ = 1

4
(1 + s1σ 1 + c3σ

z
1σ z

2 )

(see Theorem 2.3 in their paper [59]). It would be interesting to extend this result to
the general “checkerboard” (ρ0z) or two-block-(2×2)-diagonal (ρz0) quantum states.

8 Results and perspectives

We have analyzed fifteen types of two-spin systems in an external field, with the
exchange bounds, andwith indirect interactions occurring through the orbitalmagnetic
moments. The structures of Hamiltonians and density matrices are presented in an
obvious form (Table 2).

The originality and new feature of our results in comparison with other works [12–
20] is that we take into account not only the DM interactions, but also the KSEA ones.
The latter interactionsmake their own changes in the behavior of quantum correlations.
For example, in recent work [19] a local minimum was found due to DM couplings
(black line in Fig. 6c of Ref. [19]). This behavior is reproduced by the dotted line in
Fig. 1. We also performed calculations for nonzero values of the constant �z shown
by curves 1 and 2 in Fig. 1. It is seen that the KSEA interactions suppress the local
minimum of the quantum discord.

We have classified fifteen types of quantum states, each of which contains seven
parameters. A detailed study of the behavior of quantum correlations in them will
require a separate extensive work in the future.
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Fig. 1 Quantum discord Q vs temperature T for the model (8) by Bz
1 = Bz

2 = 0, Jx = −1, Jy = −1.5,
Jz = −2, Dz = 1.8, and �z = 0 (dotted line), 0.3 (solid line 1), 0.5 (solid line 2)

We have also shown that, from viewpoint of quantum correlation properties, all
systems are divided into two groups: the systemswith theX quantum states (up to local
unitary transformations) for which the developed theory for the calculation of quantum
correlations is available and systems with checkerboard-like or block-diagonal non-X
quantum states in which the quantum entanglement is absent, whereas the question
about the quantum discord and other quantum correlations remains open.

Acknowledgements This work was performed as a part of the state task of the RF, CITIS # AAAA-A19-
119071190017-7.
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