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Abstract
Let p be a prime and q = pr , for an integer r ≥ 1. This article studies λ = (λ1 +
uλ2+vλ3)-constacyclic codes of length n over a class of finite commutative non-chain
rings R = Fq [u, v]/〈u2 − γ u, v2 − δv, uv = vu = 0〉, where γ, δ ∈ F

∗
q . First, we

decompose (λ1+uλ2+vλ3)-constacyclic code into the direct sum of λ1-constacyclic,
(λ1+γ λ2)-constacyclic and (λ1+δλ3)-constacyclic codes overFq , respectively. Then,
we determine the necessary and sufficient condition for these codes to contain their
Euclidean duals. Further, we extend the study to Fq R-additive λ-constacyclic codes of
length (n, m)which are R[x]-submodules of Sn,m = Fq [x]/〈xn −1〉× R[x]/〈xm −λ〉.
Apart from other results, we also discuss the dual-containing separable Fq R-additive
λ-constacyclic codes. Finally, by using the CSS construction on the Gray images of
these codes, we obtain many new and better quantum codes that improve on the known
existing quantum codes available in recent articles.

Keywords Non-chain ring · Constacyclic code · Gray map · Additive code ·
Quantum code

Mathematics Subject Classification 94B05 · 94B15 · 94B35 · 94B60

1 Introduction

Like classical linear codes, quantum codes help to protect quantum information during
transmission through a quantum channel. These codes have been extensively used in
quantum computation which solves challenging problems faster than the classical
computation. For instance, the running time of the Shor’s Algorithm [36] to find the
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prime factors of a large integer is polynomial time in quantum computation, whereas
sub-exponential in classical computation. Quantum code was introduced by Shor [35].
Later, Calderbank et al. [9] constructed the quantum codes from classical codes in a
formal way. Recall that a q-ary quantum code denoted by [[n, k, d]]q satisfies the
quantum singleton bound 2d + k ≤ n + 2 and called maximum distance separable
(MDS) if the bound is attained. Clearly,MDS codes have the best error control (highest
distance) and best code rate (larger non-redundant bits) compared to the other codes
with the same parameters. But, these codes are rare to find. Hence, people have been
constructing quantum codes close to MDS and store them to some online platform,
like [16]. Usually, to validate the novelty of the approach, researchers are comparing
their obtained codes to the codes which are known by most recent articles.

Kai and Zhu [26] determined the quantum codes over F4 from the cyclic codes
over F4 + uF4. Qian [31] obtained binary quantum codes by using cyclic codes over
F2 + vF2. Later, the study of cyclic codes over finite commutative non-chain rings
has been contributed significantly in quantum codes, refer [2,3,12,18,22,24,31,33].
Further, the constacyclic codes, being a generalized class of cyclic codes, also play an
important role in quantum codes construction [10,23]. In 2018, the u-constacyclic
codes over Fp + uFp, u2 = 1 by Gao and Wang [17] and constacyclic codes
over Fq + vFp + v2Fp, v

3 = v by Ma et al. [28] were studied to obtain non-
binary quantum codes. Recently, Ma et al. [29] studied the constacyclic codes over
Fq [u, v]/〈u2 − 1, v2 − v, uv − vu〉 and produced many new quantum codes. Also,
Dinh et al. [15] explored some quantum codes from the constacyclic codes over the
non-chain ring Fp[u]/〈uk+1 − u〉. In continuation, Islam et al. [20] considered the
structure of constacyclic codes over a class of finite commutative non-chain rings
Rk,m = Fpm [u1, u2, . . . , uk]/〈u2

i − 1, ui u j − u j ui 〉i �= j=1,2,...,k , where m ≥ 1, k ≥ 2
are integers and constructed many MDS and good quantum codes compared to the
best-known codes. In addition, Alkenani et al. [1] studied the constacyclic codes over
the finite non-chain ringFq [u1, u2]/〈u2

1−u1, u2
2−u2, u1u2−u2u1〉 to obtain quantum

codes. Therefore, it is clear that the constacyclic code over finite non-chain rings is
one of the rich resources to produce new quantum codes. Hence, it is logical to study
these codes over different and new non-chain rings which are capable to explore more
new codes. This motivates us to study the constacyclic codes over a class of finite
commutative non-chain rings R = Fq [u, v]/〈u2 −γ u, v2 −δv, uv = vu = 0〉, where
γ, δ ∈ F

∗
q .

On the other side, the additive codes were introduced by Delsarte and Leven-
shtein [11] in 1998. One of the most common tasks in the study of additive codes
is to find their generator polynomials, dual codes and bounds on minimum dis-
tances [6,7,21,34]. Despite the application in steganography [32], these codes are
also useful to construct good quantum codes [4]. In 2019, Aydogdu and Abualrub [5]
studied the quantum codes from Z2 × (Z2 + uZ2) and Diao et al. [14] considered
ZpZp[v]-additive cyclic codes to obtain good quantum codes. To the best of our
knowledge, very few articles [4,5,13,14,27] have engaged to construct new quantum
codes using additive codes. So, still there is a huge scope to explore quantum codes
using cyclic and constacyclic codes over the mixed alphabets. Toward this, we extend
our study to the constacyclic codes over the mixed alphabets Fq R with two main
motives as follows:
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(i) The article obtains many new and better quantum codes compared to the existing
codes (available in recent articles) from the constacyclic codes over the class of
non-chain rings R.

(ii) The article determines the structure of Fq R-additive constacyclic codes of length
(n, m) and constructs better quantum codes compared to the known codes.

2 Preliminary

For a prime p and q = pr , let R = Fq [u, v]/〈u2−γ u, v2−δv, uv = vu = 0〉, where
γ, δ ∈ F

∗
q . Thus, R is a finite commutative Frobenius, non-chain and semi-local ring

(with unity) of characteristic p. Also, R has q3 elements and three maximal ideals
〈u + v〉, 〈γ − u〉 and 〈δ − v〉. The explicit representation of R is

R = Fq + uFq + vFq , where u2 = γ u, v2 = δv, uv = vu = 0,

and each member of R is of the form z = z1 + uz2 + vz3, where zi ∈ Fq , for
i = 1, 2, 3. Let ξ1 = γ δ−γ v−δu

γ δ
, ξ2 = u

γ
and ξ3 = v

δ
. Then, ξ2i = ξi , ξiξ j = 0 if i �= j ,

and
∑3

i=1 ξi = 1. Therefore, R = ⊕3
i=1 ξi R ∼= ⊕3

i=1 ξiFq . Hence, an element λ =
λ1+uλ2+vλ3 ∈ R has a unique representationλ = λ1ξ1+(λ1+γ λ2)ξ2+(λ1+δλ3)ξ3.
Further, the units of R are classified by the below lemma.

Lemma 1 Let λ = λ1 + uλ2 + vλ3 ∈ R be a nonzero element. Then, λ is a unit in R
if and only if λ1, λ1 + γ λ2, λ1 + δλ3 are units in Fq .

Proof Let λ ∈ R be a unit such that λ = λ1ξ1 + (λ1 + γ λ2)ξ2 + (λ1 + δλ3)ξ3. There
exists λ′ = ∑3

i=1 ξiλ
′
i ∈ R where λ′

i ∈ F
∗
q such that λλ′ = 1. Then, λ1λ′

1ξ1 + (λ1 +
γ λ2)λ

′
2ξ2+(λ1+δλ3)λ

′
3ξ3 = 1.Now,multiplying by ξ1 in both sides,we getλ1λ′

1ξ1 =
ξ1, and this implies λ1λ

′
1 = 1. Hence, λ1 is a unit. Similarly, λ1 + γ λ2, λ1 + δλ3 are

units in Fq .
Conversely, let λ1, λ1 + γ λ2, λ1 + δλ3 be units in Fq . Let λ′ = λ−1

1 ξ1 + (λ1 +
γ λ2)

−1ξ2 + (λ1 + δλ3)
−1ξ3. Then, λλ′ = 1. Hence, λ is a unit in R. ��

Now, we recall that a non-empty subset C of Rn is said to be a linear code of length
n if it is an R-submodule of Rn and each element of C is known as codeword. Let
λ ∈ R be a unit in R. Then, a linear codeC is said to be a λ-constacyclic code if for any
codeword (c0, c1, . . . , cn−1) ∈ C implies (λcn−1, c0, . . . , cn−2) ∈ C . It is a cyclic
code for λ = 1 and negacyclic code for λ = −1. Algebraically, a λ-constacyclic code
of length n is identified as an ideal of R[x]/〈xn −λ〉 and each codeword is represented
by a polynomial of degree n − 1. Throughout the article, we fix λ = λ1 + uλ2 + vλ3,
whereλi ∈ Fq , for i = 1, 2, 3. For a linear codeC of length n, its dual codeC⊥ = {a ∈
Rn| a · b = 0 for all b ∈ C} is also a linear code where the Euclidean inner product
between two vectors a = (a0, a1, . . . , an−1), b = (b0, b1, . . . , bn−1) is defined by
a · b = ∑n−1

i=0 ai bi . Here, we see that for a λ-constacyclic code C , dual C⊥ is a λ−1-
constacyclic code of length n over R (Theorem3). The linear code C is said to be
self-dual if C = C⊥ and self-orthogonal if C ⊆ C⊥. Next, we define a Gray map
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ϕ which preserves the orthogonality and it is useful to obtain Fq -parameters of the
constacyclic codes over R.

Definition 1 A map ϕ : R −→ F
3
q is defined by

ϕ(z) = (z1, z2, z3)M, (1)

where z = ∑3
i=1 ξi zi ∈ R and M ∈ GL3(Fq) is a 3 × 3 invertible matrix such that

M MT = τ I3. Here, MT represents the transpose matrix of M, I3 is the identity matrix
of order 3 and τ ∈ F

∗
q .

The map ϕ is a bijection and can be extended over Rn componentwise. We define
the Gray weight for z ∈ R by wG(z) = wH (ϕ(z)) and for z = (z1, z2, . . . , zn) ∈ Rn

by wG(z) = ∑n
i=1 wG(zi ), where wH is the Hamming weight in Fq . The Gray

distance between z, z′ ∈ Rn is dG(z, z′) = wG(z − z′) and for a linear code C is
dG(C) = min{wG(z)| 0 �= z ∈ C}. By the above discussion, the following result is
easy to verify.

Lemma 2 The map ϕ defined in Eq. (1) is linear and distance preserving from (Rn, dG)

to (F3n
q , dH ), where dH is the Hamming distance.

Lemma 3 Let C be a linear code of length n over R. Then,

1. ϕ(C⊥) = ϕ(C)⊥.
2. C is a self-dual code of length n if and only if ϕ(C) is a self-dual linear code of

length 3n over Fq .
3. ϕ(C) is a self-orthogonal linear code of length 3n if C is a self-orthogonal linear

code of length n over R.

Proof 1. Let z = (z0, z1, . . . , zn−1) ∈ C⊥, where zi = ξ1z′
i + ξ2z′′

i + ξ3z′′′
i , for

0 ≤ i ≤ n − 1. Then, ϕ(z) ∈ ϕ(C⊥). In order to prove ϕ(z) ∈ ϕ(C)⊥, let
y = (y0, y1, . . . , yn−1) ∈ C, where yi = ξ1y′

i + ξ2y′′
i + ξ3y′′′

i for 0 ≤ i ≤ n − 1.

Now, y ·z = 0 implies
∑n−1

i=0 yi zi = 0, i.e.,
∑n−1

i=0 (ξ1y′
i z

′
i +ξ2y′′

i z′′
i +ξ3y′′′

i z′′′
i ) = 0.

Hence,
∑n−1

i=0 y′
i z

′
i = ∑n−1

i=0 y′′
i z′′

i = ∑n−1
i=0 y′′′

i z′′′
i = 0. Again,

ϕ(y) = [
(y′

0, y′′
0 , y′′′

0 )M, . . . , (y′
n−1, y′′

n−1, y′′′
n−1)M

] = (s0M, . . . , sn−1M),

ϕ(z) = [
(z′

0, z′′
0, z′′′

0 )M, . . . , (z′
n−1, z′′

n−1, z′′′
n−1)M

] = (t0M, . . . , tn−1M),

where si = (y′
i , y′′

i , y′′′
i ), ti = (z′

i , z′′
i , z′′′

i ) for 0 ≤ i ≤ n − 1.

Then,

ϕ(y) · ϕ(z) = ϕ(y)ϕ(z)T =
n−1∑

i=0

si M MTtTi = τ

n−1∑

i=0

si t
T
i

= τ

n−1∑

i=0

(y′
i z

′
i + y′′

i z′′
i + y′′′

i z′′′
i ) = 0.
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Therefore, ϕ(z) ∈ ϕ(C)⊥ and hence ϕ(C⊥) ⊆ ϕ(C)⊥. Since ϕ is a bijection,
| ϕ(C⊥) |=| ϕ(C)⊥ |. Thus, ϕ(C⊥) = ϕ(C)⊥.

2. LetC be a self-dual linear code of length n, i.e.,C = C⊥. Then, ϕ(C) = ϕ(C⊥) =
ϕ(C)⊥. Hence, ϕ(C) is a self-dual linear code of length 3n over Fq . On the other
side, let ϕ(C) be a self-dual linear code, i.e., ϕ(C) = ϕ(C)⊥ = ϕ(C⊥). Since ϕ

is a bijection, C = C⊥. Hence, C is a self-dual linear code.
3. Let C be a self-orthogonal linear code of length n over R. Then, C ⊆ C⊥, i.e.,

ϕ(C) ⊆ ϕ(C⊥) = ϕ(C)⊥. Thus, ϕ(C) is a self-orthogonal linear code of length
3n over Fq . ��
LetC be a linear code of lengthn over R. LetC1 = {z1 ∈ F

n
q |, there exist z2, z3 ∈ F

n
q

such that ξ1z1 + ξ2z2 + ξ3z3 ∈ C}, C2 = {z2 ∈ F
n
q | there exist z1, z3 ∈ F

n
q such that

ξ1z1 + ξ2z2 + ξ3z3 ∈ C}, and C3 = {z3 ∈ F
n
q | there exist z1, z2 ∈ F

n
q such that

ξ1z1 + ξ2z2 + ξ3z3 ∈ C}. Then, C1, C2, C3 are linear codes of length n over Fq and C
can be uniquely expressed as C = ξ1C1 ⊕ ξ2C2 ⊕ ξ3C3. Also, the dual code of C is
C⊥ = ξ1C⊥

1 ⊕ ξ2C⊥
2 ⊕ ξ3C⊥

3 (see [25,28] for proof of similar results) and generator
matrix of C is

M =
⎡

⎣
ξ1M1
ξ2M2
ξ3M3

⎤

⎦

where M1, M2, M3 are generator matrices of C1, C2, C3, respectively.
Now,we look for the structure ofλ-constacyclic codes fromTheorems1 to 3without

proofs. These results are helpful to obtain quantum codes in the subsequent section.
For similar type of results, interested readers can find in [25,28].

Theorem 1 Let C = ξ1C1⊕ξ2C2⊕ξ3C3 be a linear code of length n over R. Then, C
is a λ-constacyclic code if and only if C1, C2 and C3 are λ1-constacyclic, (λ1 +γ λ2)-
constacyclic and (λ1 + δλ3)-constacyclic codes of length n over Fq , respectively.

Theorem 2 Let C = ξ1C1 ⊕ ξ2C2 ⊕ ξ3C3 be a λ-constacyclic code of length n over
R. Then, there exists a polynomial g(x) ∈ R[x] such that C = 〈g(x)〉 and g(x) |
xn − (λ1 +uλ2 +vλ3), where g(x) = ∑3

i=1 ξi gi (x) and Ci = 〈gi (x)〉 for i = 1, 2, 3.

Theorem 3 Let C = ξ1C1 ⊕ ξ2C2 ⊕ ξ3C3 be a λ-constacyclic code of length n over
R. Let C = 〈∑3

i=1 ξi gi (x)〉, where xn − λ1 = g1(x)h1(x), xn − (λ1 + γ λ2) =
g2(x)h2(x), xn − (λ1 + δλ3) = g3(x)h3(x). Then, C⊥ = ξ1C⊥

1 ⊕ ξ2C⊥
2 ⊕ ξ3C⊥

3
is a λ−1-constacyclic code and C⊥ = 〈∑3

i=1 ξi h∗
i (x)〉, where h∗

i (x) is reciprocal
polynomial of hi (x), for i = 1, 2, 3.

3 Quantum codes from constacyclic codes over R

In the present section, we construct quantum codes from the dual-containing λ-
constacyclic codes by using the CSS construction. First, we determine the necessary
and sufficient conditions (Theorem4) of these codes to contain their duals. Then, we
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apply CSS construction (Lemma5) on their Gray images to construct quantum codes.
In this connection, first we recall some basic definitions and facts as follows.

Definition 2 Let Cq be the Hilbert space of dimension q. Then, (Cq)⊗n = C
q ⊗

C
q ⊗ · · ·⊗C

q (n times) is also a Hilbert space of dimension qn . Any qk-dimensional
subspace of (Cq)⊗n is called a quantum code and denoted by [[n, k, d]]q where d is the
minimum distance. Note that the minimum distance d is defined by using the metric of
(Cq)⊗n . Every quantum code satisfies the quantum singleton bound 2d+k ≤ n+2 and
known asmaximum distance separable (or shortly,MDS) code if the bound is attained.
A quantum code [[n, k, d]]q is said to be better than the quantum code [[n′, k′, d ′]]q

if any of the following or both hold:

1. d > d ′ when k
n = k′

n′ (larger distance with same code rate).

2. k
n > k′

n′ when d = d ′ (larger code rate with same distance).

Now, we recall two important results: Lemma4 (condition for dual-containing
codes over Fq ) and Lemma5 (CSS construction), which will help to determine dual-
containing λ-constacyclic codes and quantum codes from these codes, respectively.

Lemma 4 [9] Let C = 〈g(x)〉 be an α-constacyclic code of length n over Fq , where
α = ±1. Then, C⊥ ⊆ C if and only if xn − α ≡ 0 (mod g(x)g∗(x)).

Lemma 5 [19] Let C be an [n, k, d] linear code over Fq such that C⊥ ⊆ C. Then,
there exists a quantum code [[n, 2k − n, d]]q over Fq .

With the help of Lemma4, we determine the necessary and sufficient conditions of
λ-constacyclic codes to contain their duals in the next theorem.

Theorem 4 Let C = ξ1C1 ⊕ ξ2C2 ⊕ ξ3C3 be a λ-constacyclic code of length n over
R where λ1 = ±1, λ1 + γ λ2 = ±1, λ1 + δλ3 = ±1. Also, let Ci = 〈gi (x)〉 where
xn −λ1 = g1(x)h1(x), xn −(λ1+γ λ2) = g2(x)h2(x), xn −(λ1+δλ3) = g3(x)h3(x).
Then, C⊥ ⊆ C if and only if

xn − λ1 ≡ 0 (mod g1(x)g∗
1(x))

xn − (λ1 + γ λ2) ≡ 0 (mod g2(x)g∗
2(x))

xn − (λ1 + δλ3) ≡ 0 (mod g3(x)g∗
3(x)).

Proof Let Ci = 〈gi (x)〉 for i = 1, 2, 3 where

xn − λ1 ≡ 0 (mod g1(x)g∗
1(x))

xn − (λ1 + γ λ2) ≡ 0 (mod g2(x)g∗
2(x))

xn − (λ1 + δλ3) ≡ 0 (mod g3(x)g∗
3(x)).

By Lemma4, we have C⊥
i ⊆ Ci for i = 1, 2, 3. Now, C⊥ = ξ1C⊥

1 ⊕ξ2C⊥
2 ⊕ξ3C⊥

3 ⊆
ξ1C1 ⊕ ξ2C2 ⊕ ξ3C3 = C .
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On the other hand, let C⊥ ⊆ C . Since Ci is a q-ary linear code such that C ≡
ξi Ci (mod ξi ), C⊥

i ⊆ Ci for i = 1, 2, 3. Hence, by Lemma4, we have

xn − λ1 ≡ 0 (mod g1(x)g∗
1(x))

xn − (λ1 + γ λ2) ≡ 0 (mod g2(x)g∗
2(x))

xn − (λ1 + δλ3) ≡ 0 (mod g3(x)g∗
3(x)).

��
Now, we are in a position to construct quantum codes by using Lemma5 and

Theorem4 in the next result.

Theorem 5 Let C = ξ1C1 ⊕ ξ2C2 ⊕ ξ3C3 be a λ-constacyclic code of length n over
R such that C⊥ ⊆ C. Then, there exists a quantum code with parameters [[3n, 2k −
3n, dH ]]q over Fq , where dH is the minimum Hamming distance.

Proof Since C⊥ ⊆ C , we have ϕ(C⊥) ⊆ ϕ(C). Now, by Lemma3, ϕ(C⊥) = ϕ(C)⊥,
and this implies that ϕ(C)⊥ ⊆ ϕ(C). Therefore, ϕ(C) is a dual-containing [3n, k, dH ]
linear code over Fq . Hence, by Lemma5, there exists a quantum code [[3n, 2k −
3n, dH ]]q over Fq . ��
Remark 1 The dimension 2k−3n of the quantumcode obtained in Theorem5 is always
nonnegative due to the fact that C⊥ ⊆ C .

4 Quantum codes fromFFFqR-additive constacyclic codes

The set Fq R = {(a, b)| a ∈ Fq , b ∈ R} is a group under componentwise addition.
Now, we define a projection map π : R −→ Fq by π(z1 + uz2 + vz3) = z1,
where zi ∈ Fq for i = 1, 2, 3. With the help of π , we define a multiplica-
tion ∗ : R × F

n
q Rn −→ F

n
q Rn by z ∗ (a0, a1, . . . , an−1, b0, b1 . . . , bm−1) =

(π(z)a0, π(z)a1, . . . , π(z)an−1, zb0, zb1 . . . , zbm−1) where z, bi ∈ R, ai ∈ Fq for
all i . Then, it is easy to show that under the multiplication ∗, the set Fn

q Rm =
{(a, b)| a ∈ F

n
q , b ∈ Rm} is an R-module. Recall that a non-empty C ⊆ F

n
q Rm

is called an Fq R-additive linear code of length (n, m) if C is an R-submodule
of Fn

q Rm . For Fq R-additive linear code C of length (n, m), its dual is defined as
C⊥ = {c ∈ F

n
q Rm | c ·c′ = 0 for all c′ ∈ C}, where the inner product of any two vectors

c = (a0, a1, . . . , an−1, b0, b1, . . . , bm−1), c′ = (a′
0, a′

1, . . . , a′
n−1, b′

0, b′
1, . . . , b′

m−1)

is defined by c · c′ = (u + v)
∑n−1

i=0 ai a′ + ∑n−1
i=0 bi b′

i . It is a routine work to check
that C⊥ is also an Fq R-additive linear code of length (n, m).

Let λ be a unit in R and denote Sn,m = Fq [x]/〈xn − 1〉 × R[x]/〈xm − λ〉. Now,
we identify each vector (a, b) ∈ F

n
q Rm to the polynomial (a(x), b(x)) ∈ Sn,m ,

where a = (a0, a1, . . . , an−1) ∈ F
n
q , b = (b0, b1, . . . , bm−1) ∈ Rm and a(x) =

a0 + a1x +· · ·+ an−1xn−1 ∈ Fq [x]/〈xn − 1〉, b(x) = b0 + b1x +· · ·+ bm−1xm−1 ∈
R[x]/〈xm −λ〉. The projection map π acts on the polynomial ring R[x] −→ Fq [x] as
π(

∑
i ri xi ) = ∑

i π(ri )xi , where ri ∈ R for all i . Hence, the extended correspond-
ing multiplication ∗ : R[x] × Sn,m −→ Sn,m is defined as g(x) ∗ (a(x), b(x)) =
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(π(g(x))a(x), g(x)b(x)), where b(x), g(x) ∈ R[x], a(x) ∈ Fq [x]. Thus, Sn,m is an
R[x]-module under the multiplication ∗.
Definition 3 Let λ be a unit in R. Then, an Fq R-additive linear code C of length
(n, m) is said to be Fq R-additive λ-constacyclic if for any (a, b) ∈ C , we have
(σ (a), σλ(b)) ∈ C , where σλ is the λ-constacyclic shift and σ is the cyclic shift
operator.

It is worth mentioning that an Fq R-additive linear code generalizes both the linear
code over Fq and over R. In fact, if n = 0, then an Fq R-additive λ-constacyclic code
of length (n, m) is indeed a λ-constacyclic code over R. On the other side, for m = 0,
an Fq R-additive λ-constacyclic code of length (n, m) is a cyclic code of length n
over Fq . In this way, we can conclude that the construction (Fq R-additive codes) in
the present section is a more general version of earlier construction of λ-constacyclic
codes. The next result characterizes the Fq R-additive λ-constacyclic codes of length
(n, m) as submodules of Sn,m .

Proposition 1 Let C be an Fq R-additive linear code of length (n, m). Then, C is
an Fq R-additive λ-constacyclic code of length (n, m) if and only if C is an R[x]-
submodule of Sn,m.

Proof LetC be anFq R-additive λ-constacyclic code of length (n, m). Let z(x) ∈ R[x]
and (a, b) ∈ C whose polynomial representation is (a(x), b(x)) where a(x) = a0 +
a1x + · · ·+ an−1xn−1, b(x) = b0 + b1x + · · ·+ bm−1xm−1. Now, x ∗ (a(x), b(x)) =
(an−1+xa0+· · ·+an−2xn−1, λbm−1+xb0+· · ·+bm−2xm−1) = (σ (a), σλ(b)) ∈ C .
Similarly, for any i ≥ 2, we have xi ∗ (a(x), b(x)) ∈ C . Since C is an R-submodule
of Fn

q Rm , z(x) ∗ (a(x), b(x)) ∈ C . Hence, C is an R[x]-submodule of Sn,m .
Conversely, let C be an R[x]-submodule of Sn,m . Suppose (a, b) ∈ C whose

polynomial representation is (a(x), b(x)). Now, x ∗ (a(x), b(x)) ∈ C where x ∗
(a(x), b(x)) = (σ (a), σλ(b)). Therefore, C is an Fq R-additive λ-constacyclic code
of length (n, m). ��

Now, with the help of map ϕ defined in Eq. (1), we define another Gray map Φ :
Fq R −→ F

4
q by

Φ(a, z) = (a, ϕ(z)) = (a, (z1, z2, z3)M), where z =
3∑

i=1

ξi zi ∈ R, a, zi ∈ Fq for i = 1, 2, 3.

(2)

Since ϕ is a linear and bijective map, so is Φ. Then, the map Φ can be extended over
F

n
q Rm −→ F

(n+3m)
q componentwise and preserves the orthogonality as shown in the

next result.

Lemma 6 Let C be an Fq R-additive linear code of length (n, m). Then, Φ(C⊥) =
Φ(C)⊥. Further, C is self-dual if and only if Φ(C) is self-dual.
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Proof Let C be an Fq R-additive linear code of length (n, m). Let w =
(a0, a1, . . . , an−1, z0, z1, . . . , zm−1) ∈ C⊥ where zi = ξ1z′

i +ξ2z′′
i +ξ3z′′′

i for 0 ≤ i ≤
m−1. In order to showΦ(w) ∈ Φ(C)⊥, let s = (b0, b1, . . . , bn−1, y0, y1, . . . , ym−1) ∈
C , where yi = ξ1y′

i + ξ2y′′
2 + ξ3y′′′

i for 0 ≤ i ≤ m − 1. Now, w · s = 0 implies that

(u+v)
∑n−1

i=0 ai bi+∑m−1
i=0 yi zi = 0, i.e., (u+v)

∑n−1
i=0 ai bi+∑m−1

i=0 (ξ1y′
i z

′
i+ξ2y′′

i z′′
i +

ξ3y′′′
i z′′′

i ) = 0, which implies
∑n−1

i=0 ai bi = 0 and
∑m−1

i=0 (y′
i z

′
i + y′′

i z′′
i + y′′′

i z′′′
i ) = 0.

Again,

Φ(w) = [
a0, a1, . . . , an−1, (z

′
0, z′′

0, z′′′
0 )M, . . . , (z′

m−1, z′′
m−1, z′′′

m−1)M
]

= [a0, a1, . . . , an−1, α0M, . . . , αm−1M]
Φ(s) = [

b0, b1, . . . , bn−1, (y′
0, y′′

0 , y′′′
0 )M, . . . , (y′

m−1, y′′
m−1, y′′′

m−1)M
]

= [b0, b1, . . . , bn−1, β0M, . . . , βm−1M],

where αi = (z′
i , z′′

i , z′′′
i ), βi = (y′

i , y′′
i , y′′′

i ) for 0 ≤ i ≤ m − 1. Also,

Φ(w) · Φ(s) = Φ(w)Φ(s)T = (u + v)

n−1∑

i=0

ai bi +
m−1∑

i=0

αi M MTβT
i

= (u + v)

n−1∑

i=0

ai bi + τ

m−1∑

i=0

αiβ
T
i

= (u + v)

n−1∑

i=0

ai bi + τ

m−1∑

i=0

(y′
i z

′
i + y′′

i z′′
i + y′′′

i z′′′
i ) = 0.

Then, Φ(w) ∈ Φ(C)⊥, and hence, Φ(C⊥) ⊆ Φ(C)⊥. Now, Φ being bijection,
| Φ(C⊥) |=| Φ(C)⊥ |. Therefore, Φ(C⊥) = Φ(C)⊥.

Further, letC be self-dual, i.e.,C = C⊥. Then,Φ(C) = Φ(C⊥) = Φ(C)⊥. Hence,
Φ(C) is self-dual. On the other hand, let Φ(C) be self-dual, i.e., Φ(C) = Φ(C)⊥ =
Φ(C⊥). Since Φ is a bijection, C = C⊥. Thus, C is self-dual. ��

Now, πn : F
n
q Rm −→ F

n
q defined by πn(a, b) = a and πm : F

n
q Rm −→ Rm

defined by πn(a, b) = b, where a ∈ F
n
q , b ∈ Rm are two projective R-module

homomorphisms. Let C be an Fq R-additive linear code of length (n, m). Then, Cn =
πn(C) is a linear code of length n over Fq and Cm = πm(C) is a linear code of length
m over R. If C = Cn × Cm , then C is said to be separable. Also, for a separable code
C , its dual is C⊥ = C⊥

n × C⊥
m . We classify the separable Fq R-additive λ-constacyclic

code of length (n, m) in the next result.

Theorem 6 Let C = Cn × Cm be a separable Fq R-additive linear code of length
(n, m). Then, C is an Fq R-additive λ-constacyclic code if and only if Cn is a cyclic
code and Cm is a λ-constacyclic code, respectively.

Proof Let C = Cn × Cm be a separable Fq R-additive λ-constacyclic code of length
(n, m). Now, let a = (a0, a1, . . . , an−1) ∈ Cn and z = (z0, z1, . . . , zm−1) ∈ Cm .
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Then, (a, z) ∈ C and (σ (a), σλ(z)) ∈ C . Therefore, σ(a) ∈ Cn, σλ(z) ∈ Cm . Hence,
Cn is a cyclic code and Cm is a λ-constacyclic code, respectively.

Conversely, let Cn be a cyclic code and Cm be a λ-constacyclic code. Let (a, z) ∈
C . Then, a ∈ Cn and z ∈ Cm , and this implies σ(a) ∈ Cn, σλ(z) ∈ Cm . Hence,
(σ (a), σλ(z)) ∈ C . Thus, C is an Fq R-additive λ-constacyclic code of length (n, m).

��
Corollary 1 Let C = Cn × Cm be a separable Fq R-additive linear code of length
(n, m), where Cn is a linear code of length n over Fq and Cm = ⊕3

i=1 ξi Ci is a
linear code of length m over R. Then, C is an Fq R-additive λ-constacyclic code if
and only if Cn is cyclic, C1 is λ1-constacyclic, C2 is (λ1 + γ λ2)-constacyclic and C3
is (λ1 + δλ3)-constacyclic codes over Fq , respectively.

Here, we use the separable Fq R-additive linear codes to obtain quantum codes.
Before that, we discuss the necessary and sufficient conditions of these codes to contain
their duals.

Lemma 7 Let C = Cn ×Cm be a separableFq R-additive linear code of length (n, m).
Then, C⊥ ⊆ C if and only if C⊥

n ⊆ Cn and C⊥
m ⊆ Cm.

Proof Let C⊥ = C⊥
n × C⊥

m ⊆ C = Cn × Cm . Then, C⊥
n ⊆ Cn and C⊥

m ⊆ Cm . On the
other hand, if C⊥

n ⊆ Cn and C⊥
m ⊆ Cm , then C⊥ = C⊥

n × C⊥
m ⊆ Cn × Cm = C . ��

Theorem 7 Let C = Cn × Cm be a separable Fq R-additive λ-constacyclic code of
length (n, m), where Cn = 〈 f (x)〉 and Cm = 〈∑3

i=1 ξi gi (x)〉. Then, C⊥ ⊆ C if and
only if

xn − 1 ≡ 0 (mod f (x) f ∗(x))

xm − λ1 ≡ 0 (mod g1(x)g∗
1(x))

xm − (λ1 + γ λ2) ≡ 0 (mod g2(x)g∗
2(x))

xm − (λ1 + δλ3) ≡ 0 (mod g3(x)g∗
3(x)),

where λ1 = ±1, λ1 + γ λ2 = ±1, λ1 + δλ3 = ±1.

Proof Combining Lemmas4 and 7, it is verified. ��
Theorem7 gives the necessary and sufficient condition for separable Fq R-additive

λ-constacyclic codes to contain their duals. Now, in light of Lemma5 and fact
Φ(C⊥) = Φ(C)⊥, we present the construction of quantum codes from separable
Fq R-additive λ-constacyclic code in the next theorem.

Theorem 8 Let C = Cn × Cm be a separable Fq R-additive λ-constacyclic code of
length (n, m) such that C⊥ ⊆ C. Then, there exists a quantum code [[n + 3m, 2k −
(n + 3m), dH ]]q over Fq .

Proof Let C = Cn × Cm be a separable Fq R-additive λ-constacyclic code of length
(n, m) such that C⊥ ⊆ C . Then, Φ(C⊥) ⊆ Φ(C). By Lemma6, we have Φ(C⊥) =
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Φ(C)⊥, and hence, Φ(C)⊥ ⊆ Φ(C). In this way, Φ(C) is a dual-containing [n +
3m, k, dH ] linear code over Fq where dH is the minimum Hamming distance. Now,
applying Lemma 5 on Φ(C), we have a quantum code over Fq with parameters [[n +
3m, 2k − (n + 3m), dH ]]q . ��
Remark 2 Note that the length of the quantum code obtained by using Theorem5
must be an integral multiple of 3, whereas the code length in Theorem8 has no such
limitation, i.e., we can find code of any length (n +3m) with some suitable choices of
n and m. For example, in order to obtain a code of length 40, there are finitely many
options for n and m such that n + 3m = 40, and n = m = 10 is one of them. This
is one of the advantages to study the Fq R-additive λ-constacyclic codes in quantum
codes construction.

5 New codes and comparison

It iswell known that somegoodquantumcodes are available in the online database [16].
Alongwith the database,we also use few recent articles [1,3,14,15,18,20,22,24,28–30]
(published within last two year) to compare our obtained quantum codes. It is worth
mentioning that with the help of Theorems5 and 8, we determine several new and
better quantum codes than existing codes which are appeared in the above-mentioned
articles. All computations involved in the examples are carried out by the Magma
computation system [8].

Example 1 Let q = 17, n = 8 and R = F17[u, v]/〈u2 − γ u, v2 − δv, uv = vu = 0〉
where γ, δ ∈ F

∗
17. Ifλ = 1−2uγ −1−2vδ−1, thenλ1 = 1, λ1+γ λ2 = λ1+δλ3 = −1.

Now,

x8 − 1 = (x + 1)(x + 2)(x + 4)(x + 8)(x + 9)(x + 13)(x + 15)(x + 16) ∈ F17[x]
x8 + 1 = (x + 3)(x + 5)(x + 6)(x + 7)(x + 10)(x + 11)(x + 12)(x + 14) ∈ F17[x].

LetC = 〈∑3
i=1 ξi gi (x)〉 be an (1−2uγ −1−2vδ−1)-constacyclic code of length 8 over

R, where g1(x) = (x+2)(x+4) = x2+6x+8, g2(x) = (x+5)(x+6) = x2+11x+13
and g3(x) = (x + 3)(x + 5)(x + 10) = x3 + x2 + 10x + 14. Let

M =
⎡

⎣
2 1 2
15 2 1
1 2 15

⎤

⎦

be a 3×3 invertiblematrix such that M MT = 9I3. Since x8−1 ≡ 0 (mod g1(x)g∗
1(x))

and x8+1 ≡ 0 (mod gi (x)g∗
i (x)) for i = 2, 3, byTheorem4,we haveC⊥ ⊆ C . There-

fore, ϕ(C) is a dual-containing [24, 17, 5] linear code over F17. Hence, by Theorem5,
we have a quantum code [[24, 10, 5]]17, which has same length andminimum distance
but larger code rate than the known code [[24, 8, 5]]17 given by [28].
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Example 2 Let q = 9, n = 6, R = F9[u, v]/〈u2 − γ u, v2 − δv, uv = vu = 0〉 where
γ, δ ∈ F

∗
9. If λ = 1 − 2uγ −1 − 2vδ−1, then λ1 = 1, λ1 + γ λ2 = λ1 + δλ3 = −1.

Now,

x6 − 1 = (x + 1)3(x + 2)3 ∈ F9[x]
x6 + 1 = (x + w2)3(x + w6)3 ∈ F9[x].

Let C = 〈∑3
i=1 ξi gi (x)〉 be an (1 − 2uγ −1 − 2vδ−1)-constacyclic code of length

6 over R, where g1(x) = x + 2, g2(x) = x + w2, g3(x) = (x + w2)(x + w6)2 =
x3 + w6x2 + x + w6 and w2 + 2w + 2 = 0. Also, let

M =
⎡

⎣
w −w7 1

−w7 1 w

1 w −w7

⎤

⎦

be a 3 × 3 invertible matrix over F9 such that M MT = I3. Since x6 − 1 ≡
0 (mod g1(x)g∗

1(x)) and x6 +1 ≡ 0 (mod gi (x)g∗
i (x)), for i = 2, 3, by Theorem4 we

have C⊥ ⊆ C . Therefore, ϕ(C) is a dual-containing [18, 13, 4] linear code over F9.
Thus, by Theorem5, there exists a quantum code [[18, 8, 4]]9 which has same min-
imum distance but larger code rate compared to the known code [[24, 8, 4]]9 given
by [29].

Example 3 Let λ = λ1+uλ2+vλ3 be a unit in R = Fq [u, v]/〈u2−γ u, v2−δv, uv =
vu = 0〉 such that λ1 = ±1, λ1 + γ λ2 = ±1, λ1 + δλ3 = ±1, where λi ∈ Fq , γ, δ ∈
F

∗
q , for i = 1, 2, 3. Let C = 〈∑3

i=1 ξi gi (x)〉 be a λ-constacyclic code over R such that
xn − λ1 ≡ 0 (g1(x)g∗

1(x)), xn − (λ1 + γ λ2) ≡ 0 (g2(x)g∗
2(x)), xn − (λ1 + δλ3) ≡

0 (g3(x)g∗
3(x)). Also, let

M =
⎡

⎣
2 1 2

−2 2 1
1 2 −2

⎤

⎦ , satisfying M MT = 9I3 for q �= 9,

M =
⎡

⎣
w −w7 1

−w7 1 w

1 w −w7

⎤

⎦ , satisfying M MT = I3 for q = 9.

Then, ϕ(C) is a dual-containing [n, k, d] linear code enlisted in the seventh column
of Table1. In the eighth column, we construct [[n, k, d]]q quantum codes which are
better (by means of distance or code rate) compared to the existing codes [[n′, k′, d ′]]q

given in the ninth column. In Table1, the first column represents the length n, the
second column represents the value of q, the third column represents the value of
λ and the fourth to sixth columns represent the generator polynomials gi (x), for
i = 1, 2, 3, respectively. In order to precise Table1, we write the string containing the
coefficients of the polynomials gi (x) in descending order. For instance, we write the
string 1w3w5w6 to represent the polynomial x3 + w3x2 + w5x + w6.
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20
)

1
13

43
1

13
10

34
12

[90
,
81

,
3]

[[9
0,

72
,
3]]

5
[[9

0,
72

,
2]]

5
[3
]

5
(2
4,
40

)
1

13
44

12
14

11
12

3
[14

4,
13

5,
3]

[[1
44

,
12

6,
3]]

5
[[1

44
,
12

0,
3]]

5
[3
]

5
(1
5,
65

)
1

14
04

1
14

14
34

34
1

14
[21

0,
19

8,
3]

[[2
10

,
18

6,
3]]

5
[[2

10
,
15

0,
2]]

5
[3
]

5
(2
0,

40
)

1
14

02
14

12
34

2
13

[14
0,

13
1,
3]

[[1
40

,
12

2,
3]]

5
[[1

40
,
11

6,
3]]

5
[2
9]

5
(4
0,

40
)

1
12

34
2

12
14

13
[16

0,
15

3,
3]

[[1
60

,
14

6,
3]]

5
[[1

60
,
14

6,
2]]

5
[1
]

7
(4
2,

14
)

1
11

04
11

66
16

16
[84

,
76

,
3]

[[8
4,
68

,
3]]

7
[[8

4,
60

,
3]]

7
[2
4]

7
(1
4,
7)

1
−

2u
γ

−1
−

2v
δ
−1

11
66

15
1

11
11

[35
,
28

,
3]

[[3
5,
21

,
3]]

7
[[3

5,
19

,
3]]

7
[1
4]

7
(2
1,
7)

1
−

2u
γ

−1
−

2v
δ
−1

16
26

15
14

36
11

11
[42

,
32

,
4]

[[4
2,

22
,
4]]

7
[[4

2,
12

,
4]]

7
[1
4]

7
(2
4,
24

)
1

−
2u

γ
−1

−
2v

δ
−1

12
12

15
11

3
11

6
[96

,
88

,
3]

[[9
6,
80

,
3]]

7
[[9

6,
72

,
3]]

7
[2
4]

7
(2
4,
30

)
1

16
15

3
16

35
61

12
13

[11
4,
10

3,
3]

[[1
14

,
92

,
3]]

7
[[1

14
,
90

,
3]]

7
[1
5]

23
(2
3,
23

)
1

−
2u

γ
−1

−
2v

δ
−1

1(
21

)1
1(
22

)
12

1
11

[92
,
86

,
3]

[[9
2,

80
,
3]]

23
[[9

2,
78

,
3]]

23
[1
4]
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Example 4 Let q = 5, (n, m) = (30, 20), R = F5[u, v]/〈u2 − γ u, v2 − δv, uv =
vu = 0〉 and λ = 1, where γ, δ ∈ F

∗
5. Then, λ1 = λ1 + γ λ2 = λ1 + δλ3 = 1. Now,

in F5[x] we have

x30 − 1 = (x + 1)5(x + 4)5(x2 + x + 1)5(x2 + 4x + 1)5

x20 − 1 = (x + 1)5(x + 2)5(x + 3)5(x + 4)5.

Let C = C30 × C20 be a separable F5R-additive cyclic code of length (30, 20) where
C30 = 〈 f (x)〉 and C20 = 〈∑3

i=1 ξi gi (x)〉. Let f1(x) = (x + 1)2(x2 + x + 1) =
x4 + 3x3 + 4x2 + 3x + 1, g1(x) = x + 3, g2(x) = (x + 1)(x + 2)2 = x3 + 3x + 4
and g3(x) = x + 2. Let

M =
⎡

⎣
2 1 2
3 2 1
1 2 3

⎤

⎦

be a 3 × 3 invertible matrix over F5 such that M MT = 9I3. Since x30 − 1 ≡
0 (mod f (x) f ∗(x)) and x20 − 1 ≡ 0 (mod gi (x)g∗

i (x)) for i = 1, 2, 3, by Theorem7,
we have C⊥ ⊆ C . Moreover, Φ(C) is a dual-containing [90, 81, 3] linear code over
F5. Hence, by Theorem8, there exists a quantum code [[90, 72, 3]]5, which has same
length and code rate but larger minimum distance than existing code [[90, 72, 2]]5
given by [3].

Example 5 Let λ = λ1 + uλ2 + vλ3 be a unit in R = Fq [u, v]/〈u2 − γ u, v2 −
δv, uv = vu = 0〉 such that λ1 = ±1, λ1 + γ λ2 = ±1, λ1 + δλ3 = ±1, where
λi ∈ Fq , γ, δ ∈ F

∗
q , for i = 1, 2, 3. Let C = Cn × Cm be a separable Fq R-additive

λ-constacyclic code of length (n, m), where Cn = 〈 f (x)〉 and Cm = 〈∑3
i=1 ξi gi (x)〉

be such that xn −1 ≡ 0 ( f (x) f ∗(x)), xm −λ1 ≡ 0 (g1(x)g∗
1(x)), xm − (λ1+γ λ2) ≡

0 (g2(x)g∗
2(x)), xm − (λ1 + δλ3) ≡ 0 (g3(x)g∗

3(x)). Let

M =
⎡

⎣
2 1 2

−2 2 1
1 2 −2

⎤

⎦ , satisfying M MT = 9I3.

Then, Φ(C) is a dual-containing [n, k, d] linear code over Fq given in the eighth
column of Table2. By Theorem8, we construct quantum codes [[n, k, d]]q (in the
ninth column) better (by means of larger code rate or larger distance) than the existing
codes [[n′, k′, d ′]]q (in the tenth column).

6 Conclusion

For the last few years, constacyclic codes over finite non-chain rings have become a
great resource to produce good quantum codes. Here, we explore many new quantum
codes from these codes over a class of finite commutative non-chain rings R. Further,
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we extend our study to additive constacyclic codes and construct many quantum codes
from them.Tovalidate the novelty of the approach,we also compare our obtained codes
to the existing codes that appeared in some recent articles.
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