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Abstract
Quantum information processing protocols have great advantages over their classical
counterparts, especially on cryptography. Homomorphic encryption (HE) schemes
enable processing encrypted data without decrypting them. In this paper, we study
a quantum version of the HE scheme (iacr-ePrint/2019/1023) and improve it with
flexible parties. Furthermore, we propose a threshold quantum secret scheme since
multiparty cryptosystem is more practical due to its flexibility. These two schemes
only require sequential decryption of quantum states. As a result, both schemes are
information theoretically secure, perfectly correct and support homomorphism in a
fully compact and non-interactive way. Finally, they are tested and verified on the
IBM Q Experience platform.
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1 Introduction

It is well known that a fully quantum theory of information and information pro-
cessing offers, among other benefits, a brand of cryptography with security based on
fundamental physics, and a reasonable hope of implementing quantum computers that
could speed up the solution of certain mathematical problems [1]. These benefits come
from distinctive quantum properties such as superposition, entanglement, and nonlo-
cality [2,3] which do not exist in classical mechanics. In the last four decades, many
important quantum information processing protocols have been proposed, including
quantum key distribution (QKD) [4], quantum teleportation [5], quantum factoring
algorithm [6] and Grover search algorithm [7].

Quantum cryptography is one of the most successful applications in quantum infor-
mation processing since physical laws ensure its inherent security. Contrarily, classical
cryptography usually relies on the assumptions of computational complexity. The first
quantum cryptosystem is quantum key distribution which is used to generate random
secret keys that are only shared by two parties [4]. Later, quantum cryptography has
been extensively studied and many protocols are proposed [8–15].

The homomorphic encryption (HE) scheme enables processing of encrypted data
without decrypting them in advance. This useful feature was known for over 30 years.
In 2009, Craig Gentry [16] introduced the first plausible and achievable fully homo-
morphic encryption (FHE) scheme , which supports processing of any function over
the encrypted data (see the surveys [17,18]). But the scheme can only achieve computa-
tional security. It is natural to askwhether the physical principle of quantummechanics
can be applied to construct HE schemes so that better security/performance can be
achieved. The answer is certain, and various quantumhomomorphic encryption (QHE)
schemes have been proposed. In summary, these schemes can be classified into two
categories. One is efficient with information-theoretical security (ITS) that can only
evaluate a subset of all possible functions [19–24]; the other can only achieve computa-
tional security [25–29]. Besides, it has been shown that it is impossible to construct an
efficient quantum FHE with ITS [30,31]. Recently, Dor Bitan et al. proposed a quan-
tum homomorphic encryption scheme [32] using a specific family of random bases. It
can encrypt and outsource the storage of classical data while enabling quantum gate
computations over the encrypted data with ITS.

In this work, we improve Dor Bitan’s scheme with multiparty structure to achieve
flexibility.After that, the schemewill bemore practical inmultiparty situation.Because
after the dealer encrypts the data, more than one participant can cooperate to decrypt
it sequentially with an appointed key. Furthermore, a (t, n) threshold quantum secret
sharing scheme (QSS) (see basic definitions in [33]) is proposed so that no less than t
participants can cooperate to recover the secret. In fact, the QSS scheme can be seen
as a derivative of the QHE scheme [32]. Also, there is a QSS scheme [34] derived from
the QHE scheme [22]. These two QSS schemes can evaluate the encoded quantum
states without the need to decode the secret while having some differences, such as
threshold ((t, n) or (n, n)), shared secrets (classical bits or quantum states), particle
transmission mode (straight line type or tree type). As a result, both proposed schemes
in this paper keep the same properties as the basic one [32] after analysis. Specifically,
both schemes are information theoretically secure, perfectly correct and also support
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homomorphic operations in a fully compact and non-interactive way. Finally, we carry
out experiments on the IBM Q Experience platform and the statistical results confirm
the feasibility of our schemes.

2 Preliminaries

2.1 The homomorphic random basis encryption scheme

Homomorphic encryption (HE) schemes can be described in a collection of four
algorithms, which are key generation (Gen), encryption (Enc), evaluation (Eval),
decryption (Dec).We give a brief review of the homomorphic random basis encryption
scheme in the following.

– Gen Output a key that is a uniformly random pair (θ, φ) from [0,2π ]×{π
2 ,−π

2 }.
– Enc Output a qubit |q〉 which is achieved from |q〉 = K |b〉 with input message
b ∈ {0, 1} and a key k = (θ, φ). Here the K is the encrypting operator in the form

K =
[

cos(θ/2) sin(θ/2)
eiφ sin(θ/2) −eiφ cos(θ/2)

]
.

– Dec Output the plaintext of the input |q〉 with the key k = (θ, φ). It can be
achieved by applying K † to |q〉 and outputting the measurement of K †|q〉 in the
computational basis.

It supports homomorphic evaluation of the X gate, CNOT gate and D gate (used to
create Bell state), where the control qubit is in the computational basis. Here, we focus
on the X gate and CNOT gate, which appear in our paper. For the X gate, we can set
|ψ0〉=K |0〉 , |ψ1〉 =K |1〉 and get

X |ψ0〉 = ±i |ψ1〉 , X |ψ1〉 = ∓i |ψ0〉 . (1)

For the CNOT gate with control qubit in the computational basis, we can verify that

CNOT|1〉 ⊗ |ψ0〉 = ±i |1〉 ⊗ |ψ1〉 ,CNOT |1〉 ⊗ |ψ1〉 = ∓i |1〉 ⊗ |ψ0〉 . (2)

Since ±i (∓i) is an overall phase, we can drop it when measuring the quantum states.

2.2 The secret sharing scheme of Shamir

Here, we introduce the secret sharing scheme proposed by Shamir with (t, n) thresh-
old [35]. In the scheme, it shows how to divide the secret s into n pieces in such a way
that any t pieces can recover s easily, but never reveals any information about s even
with complete knowledge of t − 1 pieces. The scheme consists of two algorithms:

1. Share generation the dealer D picks a random polynomial f (x) of degree t − 1:
f (x) = a0 + a1x + · · · + at−1xt−1modp with secret s = a0 and all coefficients
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a0, a1, . . . , at−1 are in a finite field Fp, p is a prime. Then D computes: s j =
f (x j ), j = 1, 2, . . . , n with that x j is the public information of party Pj . At last,
the algorithm outputs a list of n shares (s1, s2, . . . , sn) and allocates each share s j
to party Pj securely.

2. Secret reconstruction it takes any m (m ≥ t) shares s j , j ∈ U = {i1, i2, . . . , im},
U ⊆ {1, 2, . . . , n} as inputs and outputs the secret s, which can be achieved from

s =
∑
j∈U

c j =
∑
j∈U

f (x j )
∏

r∈U ,r �= j

xr
xr − x j

modp. (3)

3 Multiparty decryption over the classical bit

Suppose the dealer Alice uses the random basis encryption scheme (|0〉 , |1〉 rep-
resent classical bit 0,1 respectively) to encrypt her message among n participants
Bob j , j = 1, 2 . . . , n. After receiving the encrypted quantum state, n participants
Bob j can collaborate to decrypt the message of Alice. The multiparty decryption
(MD) scheme can be described as follows with a flowchart in Fig. 1a.

1: Alice generates n decryption keys θ j , j = 1, 2, . . . , n from her key θ0 ∈ [0, 2π ]
and sends each θ j to the participant Bob j using QKD, where the keys satisfy the
condition θ0 = ∑n

j=1 θ j mod 2π.

2: Alice uses the random basis encryption scheme to encrypt her message b yield-
ing the encrypted qubit in the form |q〉 = K0|b〉. Later, it is shared among n
participants, here K0 is the encrypting operator K with a key (θ0, φ = π

2 ).

3: Participants Bob j , j = 1, 2 . . . , n − 1, each performs UK †
j on the received qubit

sequentially and passes it to the next with U =
[
0 1
i 0

]
.

4: Finally, the last participant Bobn receives the resulted qubit and performs VnK
†
n on

it. The operators K †
j , j = 1, 2 . . . , n are the conjugate transpose of the encrypting

operator K with a key (θ j , φ = π
2 ), which are in the form

K †
j =

[
cos(θ j/2) −i sin(θ j/2)
sin(θ j/2) i cos(θ j/2)

]
, and

Vn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[−1 0
0 −1

]
= −I , n = 1 mod 4,

[
0 1

−1 0

]
= −X Z , n = 2 mod 4,

[
1 0
0 1

]
= I , n = 3 mod 4,

[
0 −1
1 0

]
= X Z , n = 0 mod 4.

After that, he measures the qubit in the computational basis and outputs the mea-
surement result b as the message of Alice.
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(a)

(b)

Fig. 1 The flow chart of the MD scheme (a) and QSS scheme (b)

4 Threshold quantum secret sharing scheme

Recently, a verifiable framework for quantum secret sharing was proposed [36]. Here,
we propose a QSS under this framework which includes four algorithms (see the
flowchart in Fig. 1b).

1. Classical private share distribution in this algorithm, the dealer Alice uses
Shamir’s scheme to produce n shares s j , j = 1, 2, . . . , n from the private value s
with threshold t(t ≤ n) and prime p. She sends these shares s j to each participants
Bob j using QKD.

2. Secret encoding assume Alice’s secret is a classical bit b, then she uses the random
basis encryption scheme to encrypt it with a key (θ0 = 2πs

p , φ = π
2 ) and the

resulted qubit is |q〉 = K0|b〉. After that, the qubit is shared among participants.
3. Sequential operation on single quantum system after receiving the qubit, arbitrary

m participants can recover the secret of Alice, here we assume thesem participants
are Bob j , j = 1, 2 . . . ,m. To recover the secret, each except Bobm first prepares
a random bit b j ∈ {0, 1}, j = 1, 2, . . . ,m − 1 as the control qubit, then performs
the CNOT gate with the received qubit as the target qubit. Later, each continues
to perform UK †

j on the received qubit sequentially with θ j = 2πc j
p (c j can be

computed in Eq. 3).
4. Secret reconstruction the last participant Bobm also prepares the randombit bm and

performs the CNOT gate, however, followed with the decryption VmK
†
m . Finally,

he measures the qubit in the computational basis and outputs the measurement
result b + ∑m

j=1 bm mod 2. By exchanging the random numbers b j , each of m
participants can recover the value b as Alice’s secret.
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5 Analysis of the two schemes

5.1 Correctness

We will prove that both schemes generate expected outputs in the following.
In both schemes, if all the operations on the qubit do not transform the state (or

with an overall phase), then the measurement result of the qubit equals to the origi-
nal classical bit. Here, we first prove the following Theorem 1, which can show the
correctness of the MD scheme.

Theorem 1 If V1K
†
1K0 = I and VnK

†
n

[
1∏

j=n−1
(UK †

j )

]
K0 = I , n ≥ 2 hold with the

condition θ0 =
n∑
j=1

θ jmod2π , then theMDscheme can achieve the perfect correctness.

Proof For the first case, it has the form

V1K
†
1K0 =

[−1 0
0 −1

] [
cos θ1

2 −i sin θ1
2

sin θ1
2 i cos θ1

2

][
cos θ0

2 sin θ0
2

i sin θ0
2 −i cos θ0

2

]

=
[
−cos σ1

2 −sin σ1
2

sin σ1
2 −cos σ1

2

]
= I , (σ1 = θ0 − θ1).

(4)

Then, it is the same for n = 2, 3, 4,

V2K
†
2UK †

1K0 = V2K
†
2

[
0 1
i 0

] [
cos σ1

2 sin σ1
2

− sin σ1
2 cos σ1

2

]

=
[
0 1

−1 0

] [
cos θ2

2 −i sin θ2
2

sin θ2
2 i cos θ2

2

][
− sin σ1

2 cos σ1
2

i cos σ1
2 i sin σ1

2

]

=
[
−cos σ2

2 −sin σ2
2

sin σ2
2 −cos σ2

2

]
= I , (σ2 = θ0 − θ1 − θ2).

(5)

V3K
†
3

1∏
j=2

(UK †
j )K0 = V3K

†
3

[
0 1
i 0

] [
− sin σ2

2 cos σ2
2

− cos σ2
2 − sin σ2

2

]

=
[
1 0
0 1

][
cos θ3

2 −i sin θ3
2

sin θ3
2 i cos θ3

2

][
− cos σ2

2 − sin σ2
2

−i sin σ2
2 i cos σ2

2

]

=
[
−cos σ3

2 −sin σ3
2

sin σ3
2 −cos σ3

2

]
= I , (σ3 = θ0 −

∑3

j=1
θ j ).

(6)
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V4K
†
4

1∏
j=3

(UK †
j )K0 = V4K

†
4

[
0 1
i 0

] [
− cos σ2

2 − sin σ2
2

sin σ2
2 − cos σ2

2

]

=
[
0 −1
1 0

] [
cos θ4

2 −i sin θ4
2

sin θ4
2 i cos θ4

2

][
sin σ3

2 − cos σ3
2

−i cos σ3
2 −i sin σ3

2

]

=
[
−cos σ4

2 −sin σ4
2

sin σ4
2 −cos σ4

2

]
= I , (σ4 = θ0 −

∑4

j=1
θ j ).

(7)

Until now, we can summarize it for the general case n = 4m + 1, 4m + 2, 4m +
3, 4m + 4,m ∈ {1, 2, . . .}. For n = 4m + 1, it has the form

VnK
†
n

⎡
⎣ 0∏

j=m−1

(
1∏

l=4

UK †
4 j+l

)⎤
⎦ K0

= VnK
†
n

⎡
⎣ 1∏

j=m−1

(
1∏

l=4

UK †
4 j+l

)⎤
⎦

[
cos σ4

2 sin σ4
2

i sin σ4
2 −i cos σ4

2

]

= VnK
†
n

⎡
⎣ 2∏

j=m−1

(
1∏

l=4

UK †
4 j+l

)⎤
⎦

[
cos σ8

2 sin σ8
2

i sin σ8
2 −i cos σ8

2

]

= VnK
†
n

[
cos σ4m

2 sin σ4m
2

i sin σ4m
2 −i cos σ4m

2

]

= I , (σ4m+1 = θ0 −
∑4m+1

j=1
θ j ).

(8)

Later, it is easy to verify the equation when n = 4m + 2, 4m + 3, 4m + 4 just
like the method to verify n = 2, 3, 4. At last, we can get V1K

†
1K0 = I and

VnK
†
n

[
1∏

j=n−1
(UK †

j )

]
K0 = I , n ≥ 2, and this completes the proof. 
�

Since the QSS scheme is derived from the MD scheme and we use Theorem 1 to
show the correctness of the MD scheme; thus, we can use a new theorem derived from
Theorem 1 to show the correctness of the QSS scheme. In the QSS scheme, we can
easily verify that θ0 = 2πs

p , θ j = 2πc j
p , j = 1, 2, . . . ,m satisfy θ0 = ∑m

j=1 θ jmod2π
using Eq. 3. Therefore proving Theorem 2 is enough to show the correctness.

Theorem 2 If the following equation

VmK
†
m

⎡
⎣ 1∏

j=m−1

(UK †
j X

b j )

⎤
⎦ K0 =

{
I ,⊕m

j=1b j = 0,
Y ,⊕m

j=1b j = 1,
(9)
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m ≥ 2, holds for the condition θ0 =
m∑
j=1

θ jmod2π , it can be concluded that the QSS

scheme is perfectly correct.

Proof Using Theorem 1, we can know that sequential operations can complete the
decryption successfully. So Eq. 9 can be rewritten as

VmK
†
m

⎡
⎣ 1∏

j=m−1

(UK †
j )

⎤
⎦ X⊕m

j=1b j K0 =
{
I ,⊕m

j=1b j = 0,
Y ,⊕m

j=1b j = 1.
(10)

If ⊕m
j=1b j = 0, it is the same as Theorem 1 and if ⊕m

j=1b j = 1, we can simplify it as

K †
0 XK0 = Y .

In conclusion, Eq. 9 holds for θ0 =
m∑
j=1

θ jmod2π yielding the correctness of the

Theorem 2. 
�

5.2 Security

In the paper [37], the authors first sketch a scenario for private quantum channels.
Assume Alice wants to send a pure state |φ〉 to Bob from the set S, she appends
ancilla qubits ρa to |φ〉〈φ| and then applies unitary transformation Ui to |φ〉〈φ| ⊗ ρa ,
where i is the key with probability pi . Bob (shares the key i with Alice) receives
the resulted state and performs U−1

i to get |φ〉〈φ| ⊗ ρa . After that, he removes the
ancilla ρa and achieves Alice’s information |φ〉〈φ|. Then they formalize this scenario
so that Bob can recover the state perfectly with security against an eavesdropper in
their definition. Following this idea, we adapt the definition to continuous setting for
random basis encryption [32] and multiparty decryption.

Definition 1 Let S ⊆ H2 be a set of qubits, Q = {Ui , i ∈ I } be a superoperator where
each Ui is a unitary mapping on H2, and ρ0 be some density matrix. Then [S, E, ρ0]
is called perfect masking of a given element |φ〉 if and only if for all |φ〉 ∈ S we have

∫
I
Ui |φ〉 〈φ|U †

i = ρ0. (11)

In the proposed MD scheme, for the dealer’s encryption, we have S = {|0〉, |1〉},
Q = {K0, θ0 ∈ I } and I = [0, 2π ] is a set of real numbers. According to Definition
1, the dealer’s encryption is perfectly secure if and only if for all |φ〉 ∈ S,

∫
I
K0 |0〉 〈0| K †

0 =
∫
I
K0 |1〉 〈1| K †

0 , (12)

is satisfied. A routine computation in the following can show the left and right sides
of Eq. 12 are equal.
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Proof

∫
I
K0|0〉 〈0| K †

0 =
∫ 2π

θ0=0

[ 1+cos θ0
2 − i sin θ0

2
i sin θ0

2
1−cos θ0

2

]
=

[
π 0
0 π

]
,

∫
I
K0|1〉〈1|)K †

0 =
∫ 2π

θ0=0

[ 1−cos θ0
2

i sin θ0
2

− i sin θ0
2

1+cos θ0
2

]
=

[
π 0
0 π

]
.


�
So for other participants’ local operations Q = {UK †

j , θ j ∈ I }, j = 1, 2, . . . , n − 1,

S =
{∣∣ϕ j−1

〉
b =

[
1∏

r= j−1
(UK †

r )

]
K0 |b〉 , b = 0, 1

}
for j = 2, 3, . . . , n − 1 and

S = {|ϕ0〉b = K0 |b〉 , b = 0, 1
}
for j = 1, we need to show

∫
I
U K †

j

∣∣ϕ j−1
〉
0 0

〈
ϕ j−1

∣∣ K jU
† =

∫
I
U K †

j

∣∣ϕ j−1
〉
1 1

〈
ϕ j−1

∣∣ K jU
†. (13)

Fortunately, after computation, we can achieve that the both sides of Eq. 13 are equal as
well. To conclude, after the dealer’s encryption, the density matrix that an adversary
sees is equal and it is the same for participants’ partial decryption, regardless of
the input. Therefore, the adversary cannot gain any information about the encrypted
message and our MD scheme is secure.

To show the security of the QSS, the method of proof is the same as the MD
scheme. After the dealer’s operation, we have Q = {K0, θ0 ∈ I }, here I = [0, 2π ]
is a set of real numbers, so the condition is Eq. 12. For other participants’s oper-
ations, we have Q = {UK †

j X
b j , θ j ∈ I }, b j ∈ {0, 1}, j = 1, 2, . . . ,m − 1,

S =
{∣∣ϕ j−1

〉
b =

[
1∏

r= j−1
(UK †

r Xbr )

]
K0 |b〉 , b = 0, 1

}
for j = 2, 3, . . . ,m − 1

and S = {|ϕ0〉b = K0 |b〉 , b = 0, 1
}
for j = 1, so the condition is

∫
I
U K †

j X
b j

∣∣ϕ j−1
〉
0 0

〈
ϕ j−1

∣∣ Xbj K jU
† =

∫
I
U K †

j X
b j

∣∣ϕ j−1
〉
1 1

〈
ϕ j−1

∣∣ Xbj K jU
†,

(14)
with X† = X . The correctness of Eq. 14 can also be verified after computation. Finally,
we can conclude the QSS scheme is also secure.

6 Experiments on IBMQ experience

In the paper, the used unitary operations aremost single-qubit operations. Therefore, to
show the feasibility of our schemes, we run them in a superconducting qubit platform,
provided by the IBM Q Experience.
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q[0]

q[1]

q[2]

q[3]

c4

Fig. 2 The designed quantum circuit for testing the MD scheme. Here, “Z”,“X”,“U3” and panel gates
represent the Pauli Z gate, Pauli X gate, U3(θ, φ, λ) gate and measurement in the computational basis,
respectively

In Sect. 5.1, we have shown the correctness of our schemes in theory. Here, we first
design four cases for the MD scheme with

n = 2, θ0 = π

2
, θ1 = π

3
, θ2 = π

6
,

n = 3, θ0 = 3π

5
, θ1 = π

5
, θ2 = π

10
, θ3 = 3π

10
,

n = 4, θ0 = 5π

9
, θ1 = 5π

3
, θ2 = 17π

9
, θ3 = −π

2
, θ4 = 3π

2
,

n = 5, θ0 = π

4
, θ1 = 5π

4
, θ2 = 3π

4
, θ3 = 7π

4
, θ4 = π

4
, θ5 = π

4
.

(15)

In each case, the dealer first uses θ0 to encrypt her bitb (b = nmod2), thenn participants
sequentially decrypt the resulted qubit using θ j . At last, they can get dealer’s bit by
measuring in the computational basis.

To perform the experiments, we can design the corresponding quantum circuit
following Fig. 1a and it is illustrated in Fig. 2. Thanks to the U3 operation offered by
IBM Q Experience, which is in the form

U3(θ, φ, λ) =
[

cos(θ/2) −eiλ sin(θ/2)
eiφ sin(θ/2) eiλ+iφ cos(θ/2)

]
. (16)

Therefore, the operations used in the MD scheme can be represented as

K0 = U3(θ0, π/2, 0)Z ,U = U3(π, π/2, 0)Z ,

K †
j = U3(θ j , 0, π/2), j = 1, 2, . . . , n.

(17)

At last,wefirst run the circuit for three roundswith each round containing8192 shots
for simulation. However, for experiment, we run each line in the circuit independently.
We show the statistical results for both simulation and experiment in Fig. 4.

It is the same for testing the QSS scheme. Assume the following (4,5)-QSS case, the
selected random function is f (x) = 2x3+4x2+9x+12 mod 13 (s = 12, p = 13), the
public information of participants Pj are x j = 1, 2, 3, 4, 5, respectively. Considering
Bob j , j ∈ U = {1, 2, 3, 5} want to cooperate to recover the secret S = b ∈ {0, 1},
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Fig. 3 The designed quantum circuit for QSS scheme with “+” represents the CNOT gate and others are
the same in Fig. 2
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Fig. 4 Measurement results of quantum circuit in Fig. 2. The simulation results (a) and experimental
results (b) are performed on the “ibmq_qasm_simulator” simulator and “ibmqx2” superconducting quantum
systems. The error bar denotes the standard deviation

they each can compute the θ j :

θ0 = 24π

13
, θ1 = 14π

13
, θ2 = 4π

13
, θ3 = 8π

13
, θ5 = 24π

13
. (18)

Besides, the random selected numbers b j are 1, 0, 1, 1.
Following Fig. 1b, a corresponding quantum circuit for this QSS case is designed

as Fig. 3.
We also run the circuit for three rounds with each round containing 8192 shots for

simulation and experiment, and we show the results in Fig. 5.
In Figs. 4a and 5a, we can see the results of simulation are 100% correct, which

confirm the correctness of our schemes. However, when it comes to the experimental
implementations, the MD scheme can achieve the correctness with 98% on average
and the QSS scheme can only get the correct answer with 91% on average (see Figs. 4b
and 5b). We would like to remark the wrong results come from the gate errors, which
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Fig. 5 Measurement results of quantum circuit in Fig. 3 with the same setup in Fig. 4. Here, b is the secret
with the measurement result r satisfying r = b + ∑

j∈U b jmod2

could be complemented by error corrections. Moreover, the error rate of the two qubits
gate CNOT is larger than a single-qubit gate, which results the lower accuracy of the
QSS scheme.

7 Conclusion

The homomorphic encryption scheme enables processing of encrypted data without
decrypting them in advance which will be a useful solution for the delegation of
computation [38]. In this paper, we first study a QHE scheme using a random base. It
can encrypt and outsource the storage of classical data while enabling quantum gate
computations over the encrypted data with ITS. Then, we improve it to achieve the
multiparty structure which is flexible with the number of parties and further propose
a threshold QSS scheme. As a result, we analyze the correctness and security of both
schemes yielding they still keep the same properties as the basic one. Also, we test
and verify them on the IBM Q Experience and the statistical results confirm their
feasibility successfully.
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