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Abstract
In this paper, two new classes of entanglement-assisted quantum MDS codes
(EAQMDS codes for short) with length n being a factor of q2 ± 1 are presented via
cyclic codes over finite fields of odd characteristic. Among our constructions, there
are several EAQMDS codes with new parameters which have never been reported.
Moreover, some of them have much larger minimum distance than known results.

Keywords MDS code · EAQEC code · EAQMDS code · Cyclic code

1 Introduction

Quantum information can protect messages between sender and receiver avoiding
decoherence by encoding it into quantum error-correcting codes. Entanglement-
assisted quantum error-correcting codes (EAQEC codes for short) are crucial to
quantum information theory (see [1–4,12]). Recently, construction of good quantum
codes via classical codes is a hot topic for quantum information and quantum com-
puting (see [16,17,20,22,24]). EAQEC codes use preexisting entanglement between
the sender and the receiver to improve information rate. Many researchers have been
devoted to obtaining EAQEC codes via classical liner codes, such as negacyclic codes
and generalized Reed–Solomon codes. It has been shown that EAQEC codes have
some advantages over standard stabilizer codes. For example, only a dual-containing
classical linear quaternary code can be transformed into a standard stabilizer code, but
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any classical linear quaternary code can be transformed into an EAQEC code. Some
of them can be summarized as follows.

In [13,23], some new EAQEC codes with good parameters via cyclic and con-
stacyclic codes are constructed. In [5], new decomposition of negacyclic codes are
proposed, by which four new classes of EAQEC codes have been constructed. In [7],
Fan et al. constructed some classes of EAQMDS codes based on classical maximum
distance separable (MDS for short) codes by exploiting one or more pre-shared maxi-
mally entangled states. In [22], Qian and Zhang constructed some new classes ofMDS
linear complementary dual (LCD) codes with respect to Hermitian inner product. As
applications, they have constructed new families of EAQMDS codes. In [9], Guenda
et al. showed that the number of shared pairs required to construct an EAQEC code
is related to the hull of classical codes. Using this fact, they put forward new meth-
ods to construct EAQEC codes requiring desirable amounts of entanglements. The
E A-Singleton bound for an [[n, k, d; c]]q EAQEC code is

2(d − 1) ≤ n − k + c.

A q-ary EAQEC code attaining this bound is said to be an EAQMDS code. In this
paper, we will construct EAQMDS codes via cyclic codes by improving the method
introduced in [23].

Our main contribution is the construction of EAQMDS codes with parameters

(1)
[[
n, n − 4qm + 4m2 + 3, 2m(q − 1); (2m − 1)2

]]
q
where1 ≤ m ≤ � q+1

4t �, n =
q2−1
t and t | q2 − 1. (Theorem 3.1)

(2)
[[
n, n − 4mq + 4q + 4m2 − 8m + 3, 2(m − 1)q + 2; 4(m − 1)2 + 1

]
Big]q where

2 ≤ m ≤ � q+1
4t �, n = q2+1

t and t | q2 + 1. (Theorem 3.2)

We will present some known results of EAQMDS codes, which are depicted in
Table 1.

This paper is organized as follows: In Sect. 2,wewill introduce somebasic acknowl-
edge and useful results on cyclic codes and EAQEC codes. In Sect. 3, we will present
our main results on the constructions of new EAQMDS codes. In Sect. 4, we will make
a conclusion.

2 Preliminaries

2.1 Cyclic code

In this section, we introduce some basic notations and useful results on linear codes
and cyclic codes. Let Fq be the f ini te f ield of cardinality q, where q is an odd
prime power. An [n, k, d]q code is an Fq -linear subspace of Fn

q with dimension k and
minimum distance d. The Singleton bound states that

d ≤ n − k + 1.
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The code attaining the Singleton bound is called MDS code. When d = n − k, the
code is called almost MDS. Let u = (u0, . . . , un−1) and v = (v0, . . . , vn−1) be two
vectors in Fn

q2
. The Hermitian inner product is defined by

〈u, v〉H = u0v
q
0 + u1v

q
1 + · · · + un−1v

q
n−1.

The Hermitian dual of an Fq2 -linear code C of length n is defined as

C⊥H = {u ∈ Fn
q2 | 〈u, v〉H = 0 for all v ∈ C}.

The code C is Hermitian sel f -orthogonal if C ⊆ C⊥H , and is Hermitian sel f -
dual if C = C⊥H .

For gcd(n, q) = 1, the q2-cyclotomic coset of i modulo n is defined by

Ci = {iq2 j (mod n) | j ∈ Z}.

A linear code C over Fq2 is a cyclic code if for every codeword (c1, c2, . . . , cn) ∈ C,
its cyclic shift (cn, c1, . . . , cn−1) is also a codeword in C. The cyclic code C can be
generated by a polynomial g(x), where g(x) | xn − 1. The de f ining set of C is
given by T = {0 ≤ i ≤ n − 1 | g(αi ) = 0}, where α is an n-th root of unity in
some extension field of Fq2 . It is easy to see that the defining set T is a union of some
q2-cyclotomic cosets. Then, the following property is given in [10,19].

Proposition 2.1 (BCH bound) Let δ be a positive integer with 2 ≤ δ ≤ n. Assume
that C is a cyclic code of length n with defining set T . If T contains δ − 1 consecutive
elements αb, αb+1, . . . , αb+δ−2, then minimum distance of C is at least δ.

2.2 EAQEC code

In this section, we introduce some notations and useful results on EAQEC codes. For
more details, see [7,8,11,14,21].

A q-ary [[n, k, d; c]]q E AQEC code C has length n and can encode k logical
qubits with minimum distance d. Here, c is the copies of maximally entangled Bell
states. The code C can correct up to at least [ d−1

2 ] quantum errors.
Recently, researchers proved that EAQEC code can be constructed from any clas-

sical linear code over Fq . The remaining problem is to calculate c. In [15], a new
approach to determine c is proposed by Li et al.

Proposition 2.2 ([15]) Let C be an [n, k, d]q2 cyclic code with defining set T . Assume
the decomposition of T is T = Tss

⋃
Tas , where Tss = −qT

⋂
T and Tas = T \Tss .

(1) Let C1 and C2 be cyclic codes with defining set Tss and Tas , respectively. Then,
C⊥H
1

⋂ C1 = {0} and C⊥H
2 ⊆ C2.

(2) There exists an [[n, n − 2|T | + |Tss |, d; |Tss |]]q EAQEC code.
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3 New EAQMDS codes

3.1 Length n | q2 − 1

In this subsection, we apply cyclic codes of length n | q2 − 1 to construct a new
family of EAQMDS codes with length n | q2−1, where q ≥ 3 is an odd prime power.
Firstly, the q2-ary cyclotomic coset modulo n are singletons: Ci = {i (mod n)}. The
following two lemmas will be used in our constructions.

Lemma 3.1 Let q be an odd prime power, t | q2 − 1 and n = q2−1
t . Then,

−qCaq+b = C−bq−a

where −� q−1
2t � ≤ a, b ≤ � q−1

2t �, with (a, b) �= (−� q−1
2t �,−� q−1

2t �).

Proof Note that |aq + b| ≤ � q2−1
2t � and aq + b �= −� q2−1

2t �. Hence, all of aq + b are
distinct. A straightforward calculation shows

−q(aq + b) = −aq2 − bq

= −a(q2 − 1) − a − bq

≡ −bq − a (mod n),

which implies −qCaq+b = C−bq−a . �

Lemma 3.2 Let m be a positive integer with 1 ≤ m ≤ � q+1
4t � and n | q2 − 1 where q

is an odd prime power. Decompose

T0 =
⋃

−m≤i≤m−1,i �=0

Ai

where

Ai =

⎧⎪⎨
⎪⎩

{−mq + j | m + 1 ≤ j ≤ q − m}, i = −m;
{iq + j | m ≤ j ≤ q − m}, −m + 1 ≤ i ≤ m − 2, i �= 0;
{mq + j | −q + m ≤ j ≤ −m − 1}, i = m − 1.

.

Then, −qT0
⋂

T0 = ∅.

Proof To show −qT0
⋂

T0 = ∅, it suffices to prove the following cases.

• Case 1: −q Ai
⋂

Ai ′ = ∅. On the contrary, suppose there exist j, j ′
such that

−q(iq + j) = −iq2 − jq (mod n)

= − jq − i (mod n).
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It is easy to verify that

i
′ = − j and j

′ = −i .

It follows that −(q − m) ≤ i
′ ≤ −m and − (m − 2) ≤ j

′ ≤ m − 1. Since
−m + 1 ≤ i ≤ m − 2 and m ≤ j ≤ q − m, which leads to a contradiction.
Hence, −q Ai

⋂
Ai ′ = ∅.

• Case 2: −q Ai
⋂

A−m = ∅ and −q Ai
⋂

Am = ∅. On the contrary, suppose
−q Ai

⋂
A−m �= ∅, then there exist j, j

′
such that

−q(iq + j) = − jq − i (mod n)

= −mq + j
′
(mod n).

where m ≤ j ≤ q − m and − q + m ≤ j
′ ≤ −m − 1. As a consequence,

−(m − 2) ≤ −i ≤ m − 1 which is a contradiction.
Assume −q Ai

⋂
Am �= ∅, then there exist j, j ′′

such that

−q(iq + j) = − jq − i (mod n)

= mq + j
′′

(mod n)

wherem ≤ j ≤ q −m and m+1 ≤ j
′′ ≤ q −m. As a consequence, −(q −m) ≤

− j ≤ −m. It is easy to verify −q Ai
⋂

Am = ∅.
• Case 3: −q A−m

⋂
Am = ∅ and −q Am

⋂
A−m = ∅.

On the contrary, suppose −q A−m
⋂

Am �= ∅, then there exist j, l
′
such that

−q(−mq + j) = m(q2 − 1) − jq + m (mod n)

= − jq + m (mod n)

= mq + l
′
(mod n)

wherem+1 ≤ j ≤ q−m and−(q−m) ≤ l
′ ≤ −(m+1), which is a contradiction.

Hence, −q A−m
⋂

Am = ∅. Assume −q Am
⋂

A−m ≤ ∅, then there exist j, l
′′

such that

−q(mq + j) = −m(q2 − 1) − jq − m (mod n)

= − jq − m (mod n)

= −mq + l
′′

(mod n)
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where−(q−m) ≤ j ≤ −(m+1) andm+1 ≤ l
′′ ≤ q−m which is a contradiction.

Hence, −q A−m
⋂

Am = ∅.
• The remaining cases −q A−m

⋂
A−m = ∅ and −q Am

⋂
Am = ∅ can be proved

in a similar way, and we omit the details.

Hence, we have −qT0
⋂

T0 = ∅, which completes the proof. �
Now we will construct new EAQMDS codes with length n | q2 − 1.

Theorem 3.1 Let q be an odd prime power, t | q2 − 1 and n = q2−1
t . For any

1 ≤ m ≤ � q+1
4t �, there exists EAQMDS code with parameters

[[n, n − 4qm + 4m2 + 3, 2m(q − 1); (2m − 1)2]]q .

Proof For 1 ≤ m ≤ � q+1
4t �, assume that C is a cyclic code of length n | q2 − 1 with

defining set

T =
mq−m−1⋃

i=−mq+m+1

Ci

It is easy to check that C has 2qm−2m−1 consecutive roots. Then, by Proposition
2.1, the minimum distance of C is at least 2qm − 2m. It follows that C is a cyclic code
with parameters [n, n − 2qm + 2m + 1, 2qm − 2m]q2 . In the following, we show
that c = |Tss | = (2m − 1)2. Denote by

T0 =
m−1⋃

i=−m,i �=0

Ai .

According to Lemma 3.2, −qT0
⋂

T0 = ∅. By Lemma 3.1,

−qC1 = C−q , −qCq+1 = C−q−1, . . . ,−qC(m−1)q−1 = Cq−(m−1),

−qC2 = C−2q , −qCq+2 = C−2q−1, . . . ,−qC(m−1)q−2 = C2q−(m−1),
...

−qCm−1 = C−(m−1)q , −qCq+(m−1)
= C−(m−1)q−1, . . . ,−qC(m−1)q−(m−1) = C(m−1)q−(m−1).

Obviously, −qC0 = C0 and it suffices to prove

Tss = −qT
⋂

T =
⋃

−(m−1)≤a,b≤m−1

Caq+b.

For Caq+b ⊆ Tss , there exist a
′
, b

′
such that −qCaq+b = Ca′q+b′ . The equality

−q(aq + b) ≡ a
′
q + b

′
(mod n)
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Table 2 Some new parameters
of EAQMDS codes

Parameters t m

[[280, 171, 56; 1]]29 3 1

[[280, 67, 112; 9]]29 3 2

[[560, 403, 80; 1]]41 3 1

[[560, 251, 160; 9]]41 3 2

[[368, 187, 92; 1]]47 6 1

[[368, 9, 184; 9]]47 6 2

implies

a
′ = −b, b

′ = −a.

Then, by Lemma 3.1, −qTss = Tss and by Lemma 3.2 −qT0
⋂

T0 = ∅. By the
standard counting arguments, |Tss | = (2m − 1)2.

By Proposition 2.2, the EAQEC code with defining set T has parameters

[[n, n − 4qm + 4m2 + 3, 2m(q − 1); (2m − 1)2]]q .

Also this code reaches the E A-Singleton bound,

n − k + c + 2 = 4qm − 4m = 2d.

Hence, the EAQMDS code with desired parameters is constructed. �
Example 3.1 We list some new parameters of EAQMDS codes of Theorems 3.1 in
Table 2.

3.2 Length n|q2 + 1

In this subsection,we try to construct somenewEAQMDScodeswith lengthn | q2+1.

Here we assume n is even. Denote by t = q2+1
n (it is an integer). The q2-ary cyclotomic

coset modulo n are

C0 = {0}, C1 = {1, n − 1}, C2 = {2, n − 2}, . . . ,C n
2

=
{n
2

}
.

The following two lemmas are similar to Lemmas 3.1 and 3.2.

Lemma 3.3 Let n = q2+1
t . Then,

−qCcq+d = Cdq−c,

where 1 ≤ c ≤ � q−1
2t � and 0 ≤ d ≤ � q−1

2t �.
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Proof Note that Ccq+d = {cq + d, −(cq + d)} with cq + d ≤ � q2−1
2t � for 1 ≤ c ≤

� q−1
2t � and 0 ≤ d ≤ � q−1

2t �. A straightforward calculation shows

−q · (−(cq + d)) = cq2 + dq

= c(q2 + 1) − c + dq

≡ dq − c (mod n)

which implies −qCcq+d = Cdq−c. �

Lemma 3.4 Let n = q2+1
t , notations as in Lemma 3.3. For 2 ≤ m ≤ � q+1

4t �, let

T1 =
⋃

0≤c≤m−2, m≤d≤� q−1
2t �

Ccq+d

⋃

1≤e≤m−1≤ f ≤� q−1
2t �

Ceq− f .

Then, −qT1
⋂

T1 = ∅.
Proof By Lemma 3.3,

−qT1 =
⋃

0≤c≤m−2, m≤d≤� q−1
2t �

Cdq−c

⋃

1≤e≤m−1≤ f ≤� q−1
2t �

C f q+e.

When m ≤ d ≤ � q−1
2t � and 0 ≤ c ≤ m − 2,

cq + d ≤ (m − 2)q + �q − 1

2t
� and mq − m + 2 ≤ dq − c.

Similarly,

eq − f ≤ (m − 1)q + 1 − m and (m − 1)q + 1 ≤ f q + e.

It is easy to verify

cq + d ≤ dq − c, cq + d ≤ f q + e, eq − f ≤ dq − c, eq − f ≤ f q + e.

Therefore, −qT1
⋂

T1 = ∅. �

Theorem 3.2 Let n = q2+1
t . For any 2 ≤ m ≤ � q+1

4t �, there exists an EAQMDS code
with parameters

[[
n, n − 4mq + 4q + 4m2 − 8m + 3, 2(m − 1)q + 2; 4(m − 1)2 + 1

]]
q
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Table 3 Some new parameters
of EAQMDS codes

Parameters t m

[[370, 201, 88; 5]]43 5 2

[[466, 113, 180; 9]]89 17 2

[[898, 633, 136; 5]]67 5 2

[[898, 377, 270; 17]]67 5 3

Proof For 2 ≤ m ≤ � q+1
4t �, suppose C is a cyclic code with length n = q2+1

t and
defining set T = C0

⋃
C1

⋃
C2

⋃ · · · ⋃C(m−1)q . It is easy to see that C has 2(m −
1)q + 1 consecutive roots. Then, by Proposition 2.1, the minimum distance of C is at
least 2(m − 1)q + 2. It follows that C is a cyclic code with parameters [n, n − 2(m −
1)q − 1, 2(m − 1)q + 1]q2 . In the following, we show that |Tss | = 4(m − 1)2 + 1.
Let

T1 =
⋃

0≤c≤m−2, m≤d≤� q−1
2t �

Ccq+d

⋃

1≤e≤m−1≤ f ≤� q−1
2t �

Ceq− f .

According to Lemma 3.3,

−qC1 = Cq , −qCq+1 = Cq−1, . . . ,−qC(m−2)q+1 = Cq−(m−2),

−qC2 = C2q , −qCq+2 = C2q−1, . . . ,−qC(m−2)q+2 = C2q−(m−2),
...

−qCm−1 = C(m−1)q , −qCq+(m−1) = C(m−1)q−1 . . . , −qC(m−2)q+(m−1) = C(m−1)q−(m−2).

Obviously, −qC0 = C0. It is easy to verify that Tss = T \T1. Then, −qTss = Tss
and −qT1

⋂
T1 = ∅. It is easy to see |Tss | = 4(m − 1)2 + 1. By Proposition 2.2, the

EAQEC code with defining set T has parameters

[[
n, n − 4mq + 4q + 4m2 − 8m + 3, 2(m − 1)q + 2; 4(m − 1)2 + 1

]]
q

Also this code reaches the E A-Singleton bound,

n − k + c + 2 = 4(m − 1)q + 4 = 2d.

Hence, the code C is an EAQMDS code. �
Example 3.2 We list some new parameters of EAQMDS codes of Theorems 3.2 in
Table 3.

Remark 3.1 From Examples 3.1 and 3.2, we can conclude that the required parameters
of the EAQMDS codes constructed in Theorems 3.1 and 3.2 are more flexible than all
codes listed in Table 1, since our results covers almost all possible factors of q2 ± 1.
What’s more, the parameter c in our codes is unfixed. Compared to [23], we introduced
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a more general method (see Lemma 3.2) to find Tas and Tss ; then, we solved the case
length n | q2 − 1. Since the four parameters in our codes are flexible, it is easier to
obtain a large number of EAQMDS codes from our constructions than those listed in
Table 1. In [25], the authors constructed EAQMDS codes with length n = q−1

a (q+1).
Since the length of their codes satisfies n | q − 1, our length can be a factor of q + 1.
Then, we can construct some EAQMDS codes with new parameters that have never
been reported. Besides, employing the EAQMDS codes obtained by Theorems 3.1
and 3.2, we can obtain EAQMDS codes with length different from q + 1 and the
required parameters can take all or almost all possible values. Some of them are listed
in Table 2.

4 Conclusion

In this paper, we construct two new classes of EAQMDS codes with length n|q2 − 1
and n|q2 + 1 via classical cyclic codes. Our codes have more flexible parameters
than known EAQEC codes. It may be possible to apply our methods to construct new
EAQMDS codes via classical linear codes, such as generalized Reed–Solomon codes
or constacyclic codes.

Funding Funding was provided by National Science Fundation of China (Grant No. 11471008) and Self-
determined research funds of CCNU from the colleges’ basic research and operation of MOE (Grant No.
CCNU18TS028).
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