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Abstract

The Heisenberg—Robertson uncertainty relation bounds the product of the variances in
the two possible measurement outcomes in terms of the expectation of the commutator
of the observables. Notably, it does not capture the concept of incompatible observables
because it can be trivial, i.e., the lower bound can be null even for two noncompatible
observables. Here, we give two stronger uncertainty relations, relating to the sum of
variances with respect to density matrix, whose lower bounds are guaranteed to be
nontrivial whenever the two observables are incompatible on the state of the system;
moreover, two stronger uncertainty relations in terms of the product of the variances of
two observables are established. Also, several stronger uncertainty relations for three
observables are established, relating to the sum and product of variances with respect
to density matrix, respectively.

Keywords Uncertainty relation - Variance - Observable

1 Introduction

Uncertainty relations are fundamental in quantum mechanics, underlying many
conceptual differences between classical and quantum theories. The Heisenberg—
Robertson uncertainty relations [1] are expressed in terms of the product V,(A)V,(B)
of the variances of the measurement results of the observables A and B, and the product
can be null even when one of the two variances is different from zero. Here, we provide
adifferent uncertainty relation, based on the sum V,,(A) 4+ V,,(B), that is guaranteed to
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be nontrivial whenever the observables are incompatible on the state. Previous uncer-
tainty relations that provide a bound to the sum of the variances comprise a lower
bound in terms of the variance of the sum of observables [2], a lower bound based on
the entropic uncertainty relations [3], a sum uncertainty relation for angular momen-
tum observables [4], sum uncertainty relations for arbitrary N observables [5], a series
of uncertainty inequalities in the qubit system and a state-independent bound for the
sum of variances [6], a unified and exact framework for the variance-based uncer-
tainty relations [7], a lower bound based on the Wigner—Yanase skew information or
Wigner—Yanase—-Dyson skew information uncertainty relations [8—12]. Uncertainty
relations are useful in many areas related or even unrelated to quantum mechanics:
entanglement detection [13,14], quantum cryptography [15], signal processing [16],
etc. Owing back to entanglement measure, Zidan’s model for quantum computing
[17-20] was discovered. This model was used to solve an extended version of the
Deutsch—Jozsa algorithm. This extension was intractable for more than 27 years using
the quantum circuit model [18]. So, developing uncertainty relations could be helpful
to produce new quantum technologies.

The quantum mechanical uncertainties associated with observables A and B in the
state |) are defined via AA%Z = (Y |A%|y) — (W|A|Y)? and AB? = (y|B?|yr) —
(¥ |B|y)?. Similarly, we can define the uncertainty in the sum of two observables
as A(A + B)? = (Y|(A + B)?|y) — (¥|(A + B)|y)%. The expectation value of
A is defined as (A) = (¥|A|Y). The Heisenberg—Robertson uncertainty relation [1]
bounds the product of the variances through the expectation value of the commutator

2 Ap2 1 ?
AATAB” > E([A’BD (1)
It was strengthened by Schrodinger [21], obtaining
1 S 2
AAPAB? > | S(1A, B)) +‘5<{A,B}>—<A><B> 2

In [22], Maccone and Pati gave two stronger uncertainty relations, relating to the
sum of variances with respect to pure state, whose lower bound is guaranteed to be
nontrivial whenever the two observables are incompatible on the state of the system.
The following two inequalities have lower bounds which are nontrivial. The first
inequality is

AA% + AB* > +i([A, B]) + ((WA +iBlyt) g

3

which is valid for arbitrary states |/ ) orthogonal to the state of the system |1/).
A second inequality with nontrivial bound even if |i) is an eigenstate either of A
or of B is
2 21 1 2
AN+ AB% = 2 |(Wipla+ BIY)| )
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where WiJFB) = (A+ B — (A + B))|¥)/N is a state orthogonal to the state of the
system [¢/). One can also obtain an amended Heisenberg—Robertson inequality

2
) e

which reduces to (1) when minimizing the lower bound over |1//J-) and becomes an
equality when maximizing it.
In [25], the authors prove that the following stronger inequality exists:

AAAB > +i([A, B 1 : A:I:'B L
_1([,])/ —§<Wﬂlﬂlﬁ>

AA® + AB? + AC? > %A(A +B+C)*+ i? ((A, B,CY)
(e

which is valid for arbitrary states yl/ll> orthogonal to the state of the system |y/), where
([A, B, C]) = ([A, B]) + ([B, C]) + ([C, A]) and the sign should be chosen so that
:i:i%§ ([A, B, C]) (areal quantity) is positive.

For a quantum state p and observables A and B, the Heisenberg uncertainty relation
was expressed as follows:

1
Vo(AV,(B) = 7| Tr(plA, BI) . @)
The further stronger result was given by Schrodinger:
1
Vo(A)V,(B) — [Re{Cov, (A, B)}|* > 3 | Tr(olA, B 2 ®)

where the covariance is defined by Cov,(A, B) = Tr[p(A — (TrpA))(B —
(Tr,oB)I)], and V,(A) = Cov,(A, A).

In this paper, we will give two stronger uncertainty relations, relating to the sum
of variances with respect to density matrix, whose lower bound is guaranteed to be
nontrivial whenever the two observables are incompatible on the state of the system;
moreover, two stronger uncertainty relations in terms of the product of the variances
of two observables will be established in Sect. 2. Also, several stronger uncertainty
relations for three observables will be established in Sect. 3.

2 Stronger uncertainty relations for two observables
Let H be a separable complex Hilbert space with the inner product (-, -), and B(H ) the

algebra of all bounded linear operators on H . The set of all trace-class operators on H
is denoted by L' (H). Recall that an operator A € B(H) is said to be a Hilbert—Schmidt
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operator if

1/2
1Al = (Z<en|A*A|en>> < o0

nel

for some orthonormal basis {|e;)},c; for H. The set of all Hilbert—Schmidt operators
on H is denoted by L%(H).Ttis well known that both L' (H) and L2(H) are self-ideals
of the C*-algebra B (H ), and the product of two Hilbert—-Schmidt operators on H is a
trace class on H. The Hilbert—-Schmidt inner product (A, B) := TrA*B.

In what follows, for an operator A € B(H), the adjoint of A is denoted by A*. An
operator A € B(H) is said to be self-adjoint if A = A*. The set of all self-adjoint
operators on H is denoted by S(H). A state is given by a positive operator p of trace
1, called a density operator. The set of all states is denoted by D (H ).

For a mixed state p with the spectral decomposition p = ) ; A;|¥;)(¥;|, denote
AAT = (Wil A1) — (Wil Alya)®, ABY = (Ui B2 i) — (Yil Blyi)®. As is well
known, the variance V,(A) is a concave function with respect to p, which is the
following lemma.

Lemma 1 [23] Let p; € D(H),Vi, A € S(H). Then,
Vs i (A) = D piVip (A),
i

where ) ; pi =1, p; > 0,Vi.

Theorem 1 Let p € D(H), and p = Y ; Ai|V;)(Wil. If there exists [WL) such that
(Y1) = 0,Vi, then

2
Vo(A) + Vp(B) = £iTr(olA, B) + | o3 (A £ iB) 1y )|
Proof We see from (3) that
2
AA? + AB? > £i([A, B]) + ’(l/f,‘|A + iBWL)‘

= TR A, BIY) (Vi) +Tr (A £ iB)Y ) @A F B (i)

By multiplying both members by X; and summing over i, we obtain the mixed-state
extension of (3):

3 WAA? + 3" 1 AB} = £iTe([A, Blp) + T <(A +iB) b WA T iB)p) .

By the concavity of the variance, we get V,(A) > ), )»,-AA%, Vo(B) =Y, )»,-AB?.
Hence, we obtain the conclusion. O
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Write O(H) ={p € D(H)|3p,. € D(H), s.t. pp;, = 0}.
Theorem2 Letp € O(H), A,B € S(H), and3 p, € D(H), s.t. pp. = 0. Then,

12
V,(A) + V,(B) > £iTr(p[A, B]) + Hpi(A +iB)p?

2

Proof Denote C = A—Tr(pA), D = B—Tr(pB).So ||Cp? I3 = Tr(pC?) = V,(A),
and [|iDp? I3 = V,(B). Thus,

| FiD)p?

2
5 =(Cp% TiDp?,Cp? :FiD,O%>

112 1
- [eni: ¢ ot

2
. :Fi<cp%, Dp%>ii<Dp%,cp%>

112 112
= |cpt L ipp _FiTr(pIC, DY)
= V,(A) + V,(B) FiTr(p[A, B]).

On the other hand, since pp; = 0,

2 2

1 1
Hpi(A +iB)p}| = |p(C£iD)p]

2 2

1112

2 1
< | xin)| |2

2 2
< lotc iiD>H2 = | Fip)p? i

Therefore, we obtain the conclusion. O

Itis easy to compute that V,(A) +V, (B) FiTr(p[A, B]) = Cov,(AXiB, AFiB).
Thus, by the use of Theorem 2, we can get the following corollary.

Corollary 1 Let p € O(H), A, B € S(H),and3 p, € D(H),s.t. ppy = 0. Then,

2

1
Cov,(A+iB, AFiB) > [p2(A£iB)p?

2

Remark 1 1f we take p = |Y) (Y], pL. = |wl) <1//H , then the inequality in Theorem
2 can degenerate to (3).

Theorem3 Letp € O(H),A,B € S(H),and3 p; € D(H), s.t. ppL = 0. Then,

1 1 1%
Vo(A)+V,(B) = 3 H,OZ(A + B)pi

2
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2
Proof Denote C = A — Tr(pA), D = B — Tr(pB). So Hcp% = Vp(A), and

2
H D p% ,= V,(B). Using the parallelogram law in Hilbert space, we have

! [+ D)o 2+H(C D)p? :
) P P 2’

’ >1)(C+D)%
2] 7 2 p

2 Dlz
2
+rt],

=

On the other hand, since pp; = 0,

2

2
1 1
p2(C+D)p}

1 1 1
3 HpZ(A+B)pj
2

2
2

IA

1 2 1
p2(C +D)H2~ o

= = N =

A

. 2
p2(C + D) H2 .
Therefore, we obtain the conclusion. O

Corollary 2 Let |V),

l/fJ-> be orthogonal unit vectors on H, A, B € S(H). Then,
2 2 1 1 2
AR+ 4B = Z|wHlA+ By . ©)

Proof Take p = |Y)(¥], p1 = |¥>)(¥*| in Theorem 3, then V,(A) = AAZ
V,(B) = AB?, and
2 2

1 1 1 1 n
s+t =3 |whia+ B

2
Therefore, using Theorem 3, we get the conclusion. O

In Corollary 2, if we choose |[1) = |1ﬂf\- fl B), then the inequality (9) degenerates
to (4).

Corollary3 Let p € D(H), and p = Y_; kil i) (il. If there exists |t such that
(Y1) = 0,Vi, then

Vo) +Vo(B) = 5 oA+ B

Proof Put p; = |[1) (], then pps = 0. By the use of Theorem 3, we have

1] 21y 2
Vo(A) +V,(B) = 5 sz<A+B)pj =3 |+ mih| .
2

This completes the proof. O
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Proposition1 Let p € D(H), A, B € S(H). Then,

VVo(A+ B) </V,(A) +/V,(B).

2
Proof Denote C = A — Tr(pA), D = B — Tr(pB). So Hcp% L= Vp(A), and

2
HDp% =V, (B). Thus,

2 2
V(A +B) = H(C+D)p% 2+HDp% 2+2Re(cp%,Dp%>

2 _ e
= 2
= lee

12 2 1 1
< HCpZ i 2+2‘<Cp2,Dp2> :

+ HDp%

Further using Schwarz inequality, we have

1 1
Vo(A+B) < V,o(A) +Vo(B) +2|Cpt | - |Dp? ]
= V,(A) + Vo (B) + 2/ V,(A)/V,(B)
2
= (V@ + V)

which yields the conclusion. O

In general, for N observables Ay, A, --- , Ay and mixed state p, we have

Holevo derived the following useful relation [24]:

Vo) + JVp (A) = | (Ep(4) = E(4) Tr (o2 ]/\/ pin't)),

(10)
where E,(A) = Tr(pA), E,(A) = Tr(p'A) are the expectation values of A on the
states p and p’, respectively. By using the square-modulus inequality and following a
procedure analogous to the one employed by Holevo to derive the inequality (10), we
can get the following relation.

Lemma2 Let p € D(H), ¢ € (=%, %), and ) be any real number. If o € L%(H)
satisfies Tr (p%(r) =0, |loll2 =1, and put

Ay = cosg - p? +etsing - a, P =AyAL, (11)
then
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(1) p’ is a state.
(i) Tr (A’(;A(p) =1.
(iii)) Tr (ﬁAw) = cos .
(iv) In the sense of || - |2, we have lim A, = pZ, lim A:; = ,o%, and lim p’ = p.
¢—0 go—)O o—0

Theorem4 Let p € D(H),A,B € S(H).Ifo € L%(H) satisfies Tr (p%o) = 0and

lloll2 =1, then
2
} - (12)

2
eata =t £ica(B —1)A, +c (o} —A(p)szo, (13)

i 1 A . B
VVp(A)V,(B) > :I:ETr(p[A, B])/ {1 3 Tr (p (\/W ilm) (T)

Proof Let Eq. (11) be valid. Start from the following inequality

where b’ = Tr(p’B),a = Tr(pA), ca, cp, ¢ real constants. Calculating the square
modulus, we find

AVp(A) + c3V,y(B) > —c*r — cacped £icacpk, (14)

with V,,(A) and V,, (B) the variance of A and B on p and p’, respectively, and where
r=2(1—cosg), k="2ilm {Tr (A:;,(B —b)A— a)p%)} ,
—A B -V
5=2Re{Tr(p§ (“ +i )A(p)}.
CB CA

Now choose the value of ¢ that maximizes the right-hand side of (14), namely ¢ =
T 3 then (14) becomes

NN 82
AV (A) + 3V, (B) > (”‘;—B) +icacpk. (15)
r

Putca = /Vy(B),cp = —/V,(A), then
\/ AV, (B)s? i
JVo(AV,y(B) > W F k. (16)

Denote b = Tr(pB), and by the use of Lemma 2, we have

[\

lim k = hm 2ilm {Tr (A*(B b)(A - “)p%>]

¢—0 ¢—0

— 2ilm {Tr (pf(B —b)(A — a)p%)}
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= 2iIm {Tr (o (B — b)(A —a))}
= 2ilm{Cov, (B, A)}

= Cov, (B, A) — Cov,(A, B)
= —Tr(p[A, B]),

and (}i_r)r}) V,(B) = V,(B). In the following, we compute the limit of g—i.

2
1 A—a . _B—b
52 ' <Re {Tr <p2 <\/v,,(A) il\/vp/(B)) A¢>}>

lim — = lim

»—0 8r ¢—0 4 (1 —cos )

2
L A—a . B—b
(ol () )

= lim .

©—0 4 (1 — cos @)

Denote D = —4=¢_ 4+ j-B=b_ ihep

Vo) T Ve (B

(e fr (ot (Gt 2idin) ) (efmoton)))®

4 (1 — cos¢) 4 (1 —cos¢)

Note that

Tr (p%DA(p) =Tr (,O%D(COS(/) . p% + ¢t sin ¢ - 0)) = e sin ¢'Tr (p%Do) .

We can choose appropriate A so that the term Tr (,o%DAw) is real. Therefore,

2 2
(Re {Tr (p%DA(p) }) =sin’ ¢ ‘Tr (p%Do)) , which yields

(rer(ioa)])’ _swofr(oioo)f

41 —cosg) 4(1 — cos ¢)
and so
2
3 z Tr Io% A—a 4 j_B=b o
tim & = T (p200)| _ S@® VB
008 2 = 3
1 2
T 2 A +1 B
_ r(p <va<A> 1¢vﬂ(3)>“)
- 2
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The last equality holds because of Tr (p 2 O’) = 0. Hence, the inequality (16) becomes

L A . B
Tr<,02( VP(A):I:I T(B)>O>

2

JVo AV, (B) = [V, (A, (B) -

+ %TF(D[A, BY),

which is equivalent to the conclusion. O

Remark2 If we take p = |Y)(¥|,0 = |Yy1)(¥|, where (¥|yLt) = 0, then
Tr(pio) = 0. Itis easy to compute V,(4) = A% V,(B) = AB% and

Tr <pé (JVAp(A) + i\/VB;(B)> 0) = (1p| (ﬁ :I:i%) |¢L>, which recover to the
inequality (5).
Remark 3 Let

o=(19) 4= (S0)o= ()= (1 1)

Then, Tr (,o%a) =0and |o|]> = 1. Itis easy to compute that ,/V,(A)V,(B) =1,

and the right of (12)
2
Tr | p A +i B o = :I:E
V(&) JV,(B) 29°

Thus, the inequality (12) holds.
In the following, we will give the other improved Schrédinger uncertainty relation,
by choosing an arbitrary phase factor ' in place of the imaginary constant i in (13).

[ EN
EN[* Ve

D=

i 1
5 Tr(plA. B])/ -5

Theorem 5 Let p € D(H), A, B € S(H). If o € L2(H) satisfies Tr (p%o) — 0 and

lolla =1, then
2 2
Tr (p } ,

Bf—

1
Vp(A)V,(B) > }COV,)(A,B)}Z/ [1 -3

A + eia B o
JVo(4) Vo (B)

7)
where a satisfies e'*Cov, (A, B) = |Cov,(A, B)|.
Proof Let Eq. (11) be valid. Start from the following inequality
1 i / 1 2
eata =yt —cpe™ (B b1, +¢ (02 = A,)[ =0, (18)

where b’ = Tr(p'B), a = Tr(pA) and ca, cp, ¢ real constants. Calculating the square
modulus, we find

cin(A) + c% Vy(B) > —cr + ccacgd + cacpk, (19)
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with V,,(A) and V,, (B) the variance of A and B on p and p’, respectively, and where

r=2(—-cosy),
k = 2Re {eifTr (p%(A —a)(B - b/)A¢>} :

A— . B-b
8=2Re{Tr<p%< a—i—e” >A¢>}.
CB CA
Now choose the value of ¢ that maximizes the right-hand side of (19), namely ¢ =
CACB& , then (19) becomes

(cacpd)?
AVp(A) + c3V,(B) > —, Teacsk. (20)

Putcy = ,/Vy(B),cp =,/V,(A), then
JV,(AV, (B)s>
JVo(AV,(B) > % 5 1)

2
Denote b = Tr(pB), and by the use of Lemma 2, we get

i = e e (- -,

—Re {eichv,,(A, B)} ,

and lim0 Vy(B) = V,(B). In a similar way to the proof of Theorem 4, it is easy to
(Vd
obtain that

2

1 .
T 3 A it B
r(p (\/VP(A) te «/Vﬂ(3)>g>
2

We can choose appropriate T = «, so that €iTC0Vp (A, B) is real and can be written
as |[Cov, (A, B)|. Thus, (21) can be rewritten as

|Cov, (A, B)|
JVp(AV,(B) = .
1 3 B
1—5|Tr (,02 (Jv,,(A) + el \/VP(B)> 0)
This completes the proof. O

Note that

Cov,(A,B) =Tr(pAB) — Tr(pA)Tr(pB)
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1 1
= ETr(p[A, B]) + ETY(/O{A, B}) = Tr(pA)Tr(pB).
Therefore, the inequality (17) can be represented as

|3Tr(plA, B]) + 5Tr(p{A, B)) = Tr(pA)Tr(pB)|

2
1 .
T 1 A i« B
(0! (i e i) )

Take c4 = cp = 1 in (20); using the same procedure described above, we can obtain

VVp(AV,(B) =

1 —

1
2

. 2
V,(A) + V,(B) = 2|Cov,(A. B)| + ‘Tr (p% (A + e“"B) o)‘
= [Tr (p[A, B]) + Tr (p{A, B}) — 2Tr(pA)Tr(pB)|
. 2
¥ ’Tr <p%(A ¥ e“"B)o)’ .
Removing the last term in the above inequality, we find the inequality

Vp(A) +V,(B) = [Tr (p[A, B]) + Tr (p{A, B}) — 2Tr(pA)Tr(pB)|.  (22)

3 Uncertainty relations for three observables

One may generalize the Schrodinger uncertainty relation to three observables trivially,
since

Vo(A) +V,(B) > 2|Cove (A, B)|,
Vy(B) +V,(C) = 2|Cove (B, O,
Vy(A) +V,(C) = 2|Cove(A, C),

we have
Vo(A) +V,(B) + V,(C) = |Cove (A, B)| + [Cove (B, C)| + |Cove (A, C)|. (23)

The lower bound of (23) can be null. So we will prove the following more stringent
inequality exists.

Theorem 6 Letp € D(H), A, B € S(H) and a, B be any real numbers. Ifo € L*>(H)
satisfies Tr (p%o) =0and|lo]|p =1, then

Vo(A) + V,(B) + V,(C) > |Tr (,0% (A e 9B 4 e—if‘c) 0)‘2

—2Re {ei“cOvp(A, B) + € Cov, (A, C) + ¢ #~Cov, (B, C)] G
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Proof Let Eq. (11) be valid. To the inequality (24), we introduce a general inequality
. . 2
HCI(A - a)p% + c2e'*(B — b)p% + e3¢ (C — C)p% +1 (0% - Aw) Hz >0,

where a = Tr(pA), b = Tr(pB), ¢ = Tr(pC) and ¢y, ¢z, ¢3, t real constants. Calcu-
lating the square modulus, we find

IVy(A) + 3V(B) + 3V, (C) > —1%r + crcacs3dt + creacsk, (25)
where

r=2(1—-cose),

1, 1, 1,
k = —2Re {—e‘“Covp(A, B) + —ePCov, (A, C) + —e P~ Cov, (B, C)} ,
3 2 C1

A . B-b _.C—c
5 =2Re {Tr <p; ( a +e + e 1P L) A(p)} .
203 c1c3 c1c2

Now choose the value of ¢ that maximizes the right-hand side of (25), namely ¢ =
%, then (25) becomes

c1c2c38)?
AVy(A) + AV,(B) + 3V, (C) > % + creacsk. (26)

Put ¢; = ¢ = ¢3 = 1, then (26) can be represented as

82
Vo(A) +Vo(B) +V,(C) = - +K.

with

r=2(1—-cosgp),
k = —2Re {ei“Covp(A, B) + ¢PCov, (A, C) + ¢ #~Cov (B, C)} ,

§ =2Re {Tr (,0% (A —a+e B b +eP(C - c)) A(p)} )
Similar to the proof of Theorem 4, if we take Dg = A —a +e (B —b)+e B (C —0),

and then
1 2
52 (Re {Tr (;ﬁDko) })

lim — = lim
e—04r  ¢—0 2 (1 —cos @)

. 2
- oo how)

_ ‘Tr (p% (A —a4 e B b+ e PC - c)) a)‘z
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) . . 2

= ‘Tr (,07 (A—i—e*w‘B—i—e*‘ﬂC)aN .
Therefore, we can obtain the inequality (24). O
Remark 4 The inequality (24) can reduce to the inequality (6) when we choose an

appropriate state p, a bound operator ¢, and real constants «, .
Indeed, if we put p = [Y)(Yl.0 = Y1) (Yla = £Z,p = £Z, then

Tr (p%o) — 0and o[l = 1, so the inequality (24) holds. Clearly,
V,(A) = AA%, V,(B) = AB?, V,(C) = AC?, Cov,(A, B) = (AB) — (A)(B),

Cov,(A,C) = (AC) — (A)(C), Cov,(B,C) = (BC) — (B)(C).

It is easy to see that
i —ia —ip 2 iz P4z 1\f
(Tr(pz <A+e B+e C)a)‘ - ‘<1//’<A+6:F T B+ oFi c)‘xp >’ .
Moreover,

k = —2Re {eiaCOVp(A, B) + ¢ Cov, (A, C) + e B~ Cov, (B, C)}

= —2Re {¢XF ((4B) — (A)(B)) + 5T (AC) — (A)(C) + 5T (BO) - (B)(CD)]

1 3
= ;{4 B.Ch) ?ig([A,B,C]) — (A)(B) — (A)(C) — (B)(C),

where ({A, B, C}) = ({A, B}) + ({A, C}) + ({B, C}). Note that
A(A+ B +C)> = AA? + AB> + AC? + ({A, B, C}) — 2({A)(B) + (A)(C) + (B)(C)).

Thus, k = 1 (A(A+ B +C)? — (AA2 + AB? + AC?)) Ti%2([A, B, C]). There-
fore, we can obtain the following inequality:

;i

1 3 2
AA? + AB? + AC? > JAA+B+ C)? Fig-([A,B.CD) +3

2

’

‘(w ‘(A + 5B+ ejFi“T”c)’ ¢L>

which is accordant to (6).

Remark 5 If we put ¢; = \/V,(B)V,(C), c2 = \/V,(A)V,(C), c3 = \/V,(A)V,(B)
in the inequality (25), then

4r(3 — k)

Vp(A)Vp(B)VP(C) = 52
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using the same procedure described above, we can obtain the following uncertainty
relation:

Vp(A)Vp(B)V(C)

_ WAV BV, (©) +2Re{,/V, (C)eCovp (A, B) + /V,(B)e Covp(A, C) +/V, (A B~ Cov, (B, €))
5 .

1
(o2 A —ia__B —ip_C
'(” (m” T e )?

Remark 6 If we put c; = /V,(A),c2 = /V,(B),c3 = /V,(C) in the inequality

(25), then using the same procedure described above, the following uncertainty relation

VZ(A) + VA(B) + V(O)
= [Te (p? (VYA A + eV, (BIB + ¢ /V,©)C) o)]2

72Re{‘/Vp(A)Vp(B)eiaCOVp(A,B)+ V,(A)V,(C)ePCov, (A, C) + vp(B)vp(C)e“f‘*“)cOvp(B,C)}

is valid.

4 Conclusions

In this paper, we gave two stronger uncertainty relations, relating to the sum of vari-
ances with respect to density matrix:

1 12
V,(A) + V,(B) = £iTr(p[A, B]) + sz(A +iB)p?| .
2
and
1 1 12
V,(A)+V,(B) > 3 ”,02(14 +B)pi|l .
2

where p; € D(H), s.t. pp1 = 0. These lower bounds are guaranteed to be nontrivial
whenever the two observables are incompatible on the state of the system. If we choose
appropriate p and pJ , the above results can reduce to (3) and (4), respectively, which
were given by Maccone and Pati in [22]. In addition, a new bound for the sum of
two variances of pure states is derived by theorem 3, that is corollary 3 including
Maccone—Pati’s inequality (4) as a special case if we choose | 1) = |1ﬂj{ fl B).

Moreover, two stronger uncertainty relations in terms of the product of the variances
of two observables were established:

+3Tr(plA, B])

VVp(A)V,(B) =
1 A . B
Tr <p2 (JV,,(A) il\/vp(3)> a)

2°

1
-3
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which can recover to the inequality (5) when we choose appropriate p and o, and

|Cov, (A, B)|?
i A i B
(0! (e e ) )

where o satisfies Tr (,o%a) = 0 and |lo||2 = 1, « satisfies ei“Covp(A,B) =

V,(A)V,(B) > el

1
=3

|Cov,(A, B)|. We use the square-modulus inequality and follow a procedure anal-
ogous to the one employed by [22]. However, the proof of theorem 4 is more complex,
and lemma 2 is the key point to the proof. The limit given here is taken in the sense of

-l

Several stronger uncertainty relations for three observables were established, relat-
ing to the sum and product of variances with respect to density matrix, respectively.
If we choose an appropriate state p, a bound operator o, and real constants «, 3, the
inequality (24) can reduce to the inequality (6) which was given by Song and Qiao in
[25].
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