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Abstract
The Heisenberg–Robertson uncertainty relation bounds the product of the variances in
the two possible measurement outcomes in terms of the expectation of the commutator
of the observables.Notably, it does not capture the concept of incompatible observables
because it can be trivial, i.e., the lower bound can be null even for two noncompatible
observables. Here, we give two stronger uncertainty relations, relating to the sum of
variances with respect to density matrix, whose lower bounds are guaranteed to be
nontrivial whenever the two observables are incompatible on the state of the system;
moreover, two stronger uncertainty relations in terms of the product of the variances of
two observables are established. Also, several stronger uncertainty relations for three
observables are established, relating to the sum and product of variances with respect
to density matrix, respectively.

Keywords Uncertainty relation · Variance · Observable

1 Introduction

Uncertainty relations are fundamental in quantum mechanics, underlying many
conceptual differences between classical and quantum theories. The Heisenberg–
Robertson uncertainty relations [1] are expressed in terms of the product Vρ(A)Vρ(B)

of the variances of themeasurement results of the observables A and B, and the product
can be null evenwhen one of the two variances is different from zero. Here, we provide
a different uncertainty relation, based on the sum Vρ(A)+Vρ(B), that is guaranteed to
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be nontrivial whenever the observables are incompatible on the state. Previous uncer-
tainty relations that provide a bound to the sum of the variances comprise a lower
bound in terms of the variance of the sum of observables [2], a lower bound based on
the entropic uncertainty relations [3], a sum uncertainty relation for angular momen-
tum observables [4], sum uncertainty relations for arbitrary N observables [5], a series
of uncertainty inequalities in the qubit system and a state-independent bound for the
sum of variances [6], a unified and exact framework for the variance-based uncer-
tainty relations [7], a lower bound based on the Wigner–Yanase skew information or
Wigner–Yanase–Dyson skew information uncertainty relations [8–12]. Uncertainty
relations are useful in many areas related or even unrelated to quantum mechanics:
entanglement detection [13,14], quantum cryptography [15], signal processing [16],
etc. Owing back to entanglement measure, Zidan’s model for quantum computing
[17–20] was discovered. This model was used to solve an extended version of the
Deutsch–Jozsa algorithm. This extension was intractable for more than 27 years using
the quantum circuit model [18]. So, developing uncertainty relations could be helpful
to produce new quantum technologies.

The quantum mechanical uncertainties associated with observables A and B in the
state |ψ〉 are defined via ΔA2 = 〈ψ |A2|ψ〉 − 〈ψ |A|ψ〉2 and ΔB2 = 〈ψ |B2|ψ〉 −
〈ψ |B|ψ〉2. Similarly, we can define the uncertainty in the sum of two observables
as Δ(A + B)2 = 〈ψ |(A + B)2|ψ〉 − 〈ψ |(A + B)|ψ〉2. The expectation value of
A is defined as 〈A〉 = 〈ψ |A|ψ〉. The Heisenberg–Robertson uncertainty relation [1]
bounds the product of the variances through the expectation value of the commutator

ΔA2ΔB2 ≥
∣
∣
∣
∣

1

2
〈[A, B]〉

∣
∣
∣
∣

2

. (1)

It was strengthened by Schrödinger [21], obtaining

ΔA2ΔB2 ≥
∣
∣
∣
∣

1

2
〈[A, B]〉

∣
∣
∣
∣

2

+
∣
∣
∣
∣

1

2
〈{A, B}〉 − 〈A〉〈B〉

∣
∣
∣
∣

2

. (2)

In [22], Maccone and Pati gave two stronger uncertainty relations, relating to the
sum of variances with respect to pure state, whose lower bound is guaranteed to be
nontrivial whenever the two observables are incompatible on the state of the system.
The following two inequalities have lower bounds which are nontrivial. The first
inequality is

ΔA2 + ΔB2 ≥ ±i〈[A, B]〉 +
∣
∣
∣〈ψ |A ± iB|ψ⊥〉

∣
∣
∣

2
, (3)

which is valid for arbitrary states |ψ⊥〉 orthogonal to the state of the system |ψ〉.
A second inequality with nontrivial bound even if |ψ〉 is an eigenstate either of A

or of B is

ΔA2 + ΔB2 ≥ 1

2

∣
∣
∣〈ψ⊥

A+B |A + B|ψ〉
∣
∣
∣

2
, (4)
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where |ψ⊥
A+B〉 = (A + B − 〈A + B〉)|ψ〉/N is a state orthogonal to the state of the

system |ψ〉. One can also obtain an amended Heisenberg–Robertson inequality

ΔAΔB ≥ ±i〈[A, B]〉
/(

1 − 1

2

∣
∣
∣
∣

〈

ψ

∣
∣
∣
∣

A

ΔA
± i

B

ΔB

∣
∣
∣
∣
ψ⊥
〉∣
∣
∣
∣

2
)

, (5)

which reduces to (1) when minimizing the lower bound over |ψ⊥〉 and becomes an
equality when maximizing it.

In [25], the authors prove that the following stronger inequality exists:

ΔA2 + ΔB2 + ΔC2 ≥ 1

3
Δ(A + B + C)2 ± i

√
3

3
〈[A, B, C]〉

+2

3

∣
∣
∣

〈

ψ

∣
∣
∣

(

A + e±i 2π3 B + e±i 4π3 C
)∣
∣
∣ψ

⊥〉
∣
∣
∣

2
, (6)

which is valid for arbitrary states
∣
∣ψ⊥〉 orthogonal to the state of the system |ψ〉,where

〈[A, B, C]〉 = 〈[A, B]〉 + 〈[B, C]〉 + 〈[C, A]〉 and the sign should be chosen so that

±i
√
3
3 〈[A, B, C]〉 (a real quantity) is positive.
For a quantum state ρ and observables A and B, the Heisenberg uncertainty relation

was expressed as follows:

Vρ(A)Vρ(B) ≥ 1

4
| Tr(ρ[A, B]) |2 . (7)

The further stronger result was given by Schrödinger:

Vρ(A)Vρ(B) − |Re{Covρ(A, B)}|2 ≥ 1

4
| Tr(ρ[A, B]) |2, (8)

where the covariance is defined by Covρ(A, B) = Tr
[

ρ(A − (Trρ A)I )(B −
(TrρB)I )

]

, and Vρ(A) = Covρ(A, A).

In this paper, we will give two stronger uncertainty relations, relating to the sum
of variances with respect to density matrix, whose lower bound is guaranteed to be
nontrivial whenever the two observables are incompatible on the state of the system;
moreover, two stronger uncertainty relations in terms of the product of the variances
of two observables will be established in Sect. 2. Also, several stronger uncertainty
relations for three observables will be established in Sect. 3.

2 Stronger uncertainty relations for two observables

Let H be a separable complex Hilbert space with the inner product (·, ·), and B(H) the
algebra of all bounded linear operators on H . The set of all trace-class operators on H
is denoted by L1(H). Recall that an operator A ∈ B(H) is said to be aHilbert–Schmidt
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operator if

‖A‖2 :=
(
∑

n∈I

〈en|A∗ A|en〉
)1/2

< ∞

for some orthonormal basis {|en〉}n∈I for H . The set of all Hilbert–Schmidt operators
on H is denoted by L2(H). It is well known that both L1(H) and L2(H) are self-ideals
of the C∗-algebra B(H), and the product of two Hilbert–Schmidt operators on H is a
trace class on H . The Hilbert–Schmidt inner product 〈A, B〉 := TrA∗ B.

In what follows, for an operator A ∈ B(H), the adjoint of A is denoted by A∗. An
operator A ∈ B(H) is said to be self-adjoint if A = A∗. The set of all self-adjoint
operators on H is denoted by S(H). A state is given by a positive operator ρ of trace
1, called a density operator. The set of all states is denoted by D(H).

For a mixed state ρ with the spectral decomposition ρ = ∑

i λi |ψi 〉〈ψi |, denote
ΔA2

i = 〈ψi |A2|ψi 〉 − 〈ψi |A|ψi 〉2, ΔB2
i = 〈ψi |B2|ψi 〉 − 〈ψi |B|ψi 〉2. As is well

known, the variance Vρ(A) is a concave function with respect to ρ, which is the
following lemma.

Lemma 1 [23] Let ρi ∈ D(H),∀i, A ∈ S(H). Then,

V∑
i pi ρi (A) ≥

∑

i

pi Vρi (A),

where
∑

i pi = 1, pi ≥ 0,∀i .

Theorem 1 Let ρ ∈ D(H), and ρ = ∑

i λi |ψi 〉〈ψi |. If there exists |ψ⊥〉 such that
〈ψ⊥|ψi 〉 = 0,∀i , then

Vρ(A) + Vρ(B) ≥ ±iTr(ρ[A, B]) +
∥
∥
∥ρ

1
2 (A ± iB)|ψ⊥〉

∥
∥
∥

2

2
.

Proof We see from (3) that

ΔA2
i + ΔB2

i ≥ ±i〈[A, B]〉 +
∣
∣
∣〈ψi |A ± iB|ψ⊥〉

∣
∣
∣

2

= ±iTr([A, B]|ψi 〉〈ψi |) + Tr
(

(A ± iB)|ψ⊥〉〈ψ⊥|(A ∓ iB)|ψi 〉〈ψi |
)

.

By multiplying both members by λi and summing over i , we obtain the mixed-state
extension of (3):

∑

i

λiΔA2
i +

∑

i

λiΔB2
i ≥ ±iTr([A, B]ρ) + Tr

(

(A ± iB)|ψ⊥〉〈ψ⊥|(A ∓ iB)ρ
)

.

By the concavity of the variance, we get Vρ(A) ≥ ∑

i λiΔA2
i , Vρ(B) ≥ ∑

i λiΔB2
i .

Hence, we obtain the conclusion. 
�
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Write O(H) = {ρ ∈ D(H)|∃ρ⊥ ∈ D(H), s.t. ρρ⊥ = 0}.
Theorem 2 Let ρ ∈ O(H), A, B ∈ S(H), and ∃ ρ⊥ ∈ D(H), s.t. ρρ⊥ = 0. Then,

Vρ(A) + Vρ(B) ≥ ±iTr(ρ[A, B]) +
∥
∥
∥
∥
ρ

1
2 (A ± iB)ρ

1
2⊥

∥
∥
∥
∥

2

2
.

Proof DenoteC = A−Tr(ρ A), D = B−Tr(ρB). So ‖Cρ
1
2 ‖22 = Tr(ρC2) = Vρ(A),

and ‖iDρ
1
2 ‖22 = Vρ(B). Thus,

∥
∥
∥(C ∓ iD)ρ

1
2

∥
∥
∥

2

2
=
〈

Cρ
1
2 ∓ iDρ

1
2 , Cρ

1
2 ∓ iDρ

1
2

〉

=
∥
∥
∥Cρ

1
2

∥
∥
∥

2

2
+
∥
∥
∥iDρ

1
2

∥
∥
∥

2

2
∓ i
〈

Cρ
1
2 , Dρ

1
2

〉

± i
〈

Dρ
1
2 , Cρ

1
2

〉

=
∥
∥
∥Cρ

1
2

∥
∥
∥

2

2
+
∥
∥
∥iDρ

1
2

∥
∥
∥

2

2
∓ iTr(ρ[C, D])

= Vρ(A) + Vρ(B) ∓ iTr(ρ[A, B]).

On the other hand, since ρρ⊥ = 0,

∥
∥
∥
∥
ρ

1
2 (A ± iB)ρ

1
2⊥

∥
∥
∥
∥

2

2
=
∥
∥
∥
∥
ρ

1
2 (C ± iD)ρ

1
2⊥

∥
∥
∥
∥

2

2

≤
∥
∥
∥ρ

1
2 (C ± iD)

∥
∥
∥

2

2
·
∥
∥
∥
∥
ρ

1
2⊥

∥
∥
∥
∥

2

≤
∥
∥
∥ρ

1
2 (C ± iD)

∥
∥
∥

2

2
=
∥
∥
∥(C ∓ iD)ρ

1
2

∥
∥
∥

2

2
.

Therefore, we obtain the conclusion. 
�
It is easy to compute that Vρ(A)+Vρ(B)∓ iTr(ρ[A, B]) = Covρ(A± iB, A∓ iB).

Thus, by the use of Theorem 2, we can get the following corollary.

Corollary 1 Let ρ ∈ O(H), A, B ∈ S(H), and ∃ ρ⊥ ∈ D(H), s.t. ρρ⊥ = 0. Then,

Covρ(A ± iB, A ∓ iB) ≥
∥
∥
∥
∥
ρ

1
2 (A ± iB)ρ

1
2⊥

∥
∥
∥
∥

2

2
.

Remark 1 If we take ρ = |ψ〉〈ψ |, ρ⊥ = ∣
∣ψ⊥〉 〈ψ⊥∣∣ , then the inequality in Theorem

2 can degenerate to (3).

Theorem 3 Let ρ ∈ O(H), A, B ∈ S(H), and ∃ ρ⊥ ∈ D(H), s.t. ρρ⊥ = 0. Then,

Vρ(A) + Vρ(B) ≥ 1

2

∥
∥
∥
∥
ρ

1
2 (A + B)ρ

1
2⊥

∥
∥
∥
∥

2

2
.
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Proof Denote C = A − Tr(ρ A), D = B − Tr(ρB). So
∥
∥
∥Cρ

1
2

∥
∥
∥

2

2
= Vρ(A), and

∥
∥
∥Dρ

1
2

∥
∥
∥

2

2
= Vρ(B). Using the parallelogram law in Hilbert space, we have

∥
∥
∥Cρ

1
2

∥
∥
∥

2

2
+
∥
∥
∥Dρ

1
2

∥
∥
∥

2

2
= 1

2

[∥
∥
∥(C + D)ρ

1
2

∥
∥
∥

2

2
+
∥
∥
∥(C − D)ρ

1
2

∥
∥
∥

2

2

]

≥ 1

2

∥
∥
∥(C + D)ρ

1
2

∥
∥
∥

2

2
.

On the other hand, since ρρ⊥ = 0,

1

2

∥
∥
∥
∥
ρ

1
2 (A + B)ρ

1
2⊥

∥
∥
∥
∥

2

2
= 1

2

∥
∥
∥
∥
ρ

1
2 (C + D)ρ

1
2⊥

∥
∥
∥
∥

2

2

≤ 1

2

∥
∥
∥ρ

1
2 (C + D)

∥
∥
∥

2

2
·
∥
∥
∥
∥
ρ

1
2⊥

∥
∥
∥
∥

2

≤ 1

2

∥
∥
∥ρ

1
2 (C + D)

∥
∥
∥

2

2
.

Therefore, we obtain the conclusion. 
�
Corollary 2 Let |ψ〉, ∣∣ψ⊥〉 be orthogonal unit vectors on H, A, B ∈ S(H). Then,

ΔA2 + ΔB2 ≥ 1

2

∣
∣
∣〈ψ⊥|(A + B)|ψ〉

∣
∣
∣

2
. (9)

Proof Take ρ = |ψ〉〈ψ |, ρ⊥ = |ψ⊥〉〈ψ⊥| in Theorem 3, then Vρ(A) = ΔA2,

Vρ(B) = ΔB2, and

1

2

∥
∥
∥
∥
ρ

1
2 (A + B)ρ

1
2⊥

∥
∥
∥
∥

2

2
= 1

2

∣
∣
∣〈ψ⊥|(A + B)|ψ〉

∣
∣
∣

2
.

Therefore, using Theorem 3, we get the conclusion. 
�
In Corollary 2, if we choose |ψ⊥〉 = ∣

∣ψ⊥
A+B

〉

, then the inequality (9) degenerates
to (4).

Corollary 3 Let ρ ∈ D(H), and ρ = ∑

i λi |ψi 〉〈ψi |. If there exists |ψ⊥〉 such that
〈ψ⊥|ψi 〉 = 0,∀i , then

Vρ(A) + Vρ(B) ≥ 1

2

∥
∥
∥ρ

1
2 (A + B)|ψ⊥〉

∥
∥
∥

2

2
.

Proof Put ρ⊥ = |ψ⊥〉〈ψ⊥|, then ρρ⊥ = 0. By the use of Theorem 3, we have

Vρ(A) + Vρ(B) ≥ 1

2

∥
∥
∥
∥
ρ

1
2 (A + B)ρ

1
2⊥

∥
∥
∥
∥

2

2
= 1

2

∥
∥
∥ρ

1
2 (A + B)|ψ⊥〉

∥
∥
∥

2

2
.

This completes the proof. 
�
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Proposition 1 Let ρ ∈ D(H), A, B ∈ S(H). Then,

√

Vρ(A + B) ≤ √

Vρ(A) +√

Vρ(B).

Proof Denote C = A − Tr(ρ A), D = B − Tr(ρB). So
∥
∥
∥Cρ

1
2

∥
∥
∥

2

2
= Vρ(A), and

∥
∥
∥Dρ

1
2

∥
∥
∥

2

2
= Vρ(B). Thus,

Vρ(A + B) =
∥
∥
∥(C + D)ρ

1
2

∥
∥
∥

2

2
=
∥
∥
∥Cρ

1
2

∥
∥
∥

2

2
+
∥
∥
∥Dρ

1
2

∥
∥
∥

2

2
+ 2Re

〈

Cρ
1
2 , Dρ

1
2

〉

≤
∥
∥
∥Cρ

1
2

∥
∥
∥

2

2
+
∥
∥
∥Dρ

1
2

∥
∥
∥

2

2
+ 2

∣
∣
∣

〈

Cρ
1
2 , Dρ

1
2

〉∣
∣
∣ .

Further using Schwarz inequality, we have

Vρ(A + B) ≤ Vρ(A) + Vρ(B) + 2
∥
∥
∥Cρ

1
2

∥
∥
∥

1
2

2
·
∥
∥
∥Dρ

1
2

∥
∥
∥

1
2

2

= Vρ(A) + Vρ(B) + 2
√

Vρ(A)
√

Vρ(B)

=
(√

Vρ(A) +√

Vρ(B)
)2

,

which yields the conclusion. 
�
In general, for N observables A1, A2, · · · , AN and mixed state ρ, we have

√
√
√
√Vρ

(
N
∑

i=1

Ai

)

≤
N
∑

i=1

√

Vρ(Ai ).

Holevo derived the following useful relation [24]:

√

Vρ(A) +
√

Vρ′(A) ≥
∣
∣
∣

(

Eρ(A) − Eρ′(A)
)

Tr
(

ρ
1
2 ρ′ 12

)∣
∣
∣

/
√

2
(

1 − Tr
(

ρ
1
2 ρ′ 12

))

,

(10)
where Eρ(A) = Tr(ρ A), Eρ′(A) = Tr(ρ′ A) are the expectation values of A on the
states ρ and ρ′, respectively. By using the square-modulus inequality and following a
procedure analogous to the one employed by Holevo to derive the inequality (10), we
can get the following relation.

Lemma 2 Let ρ ∈ D(H), ϕ ∈ (−π
2 , π

2 ), and λ be any real number. If σ ∈ L2(H)

satisfies Tr
(

ρ
1
2 σ
)

= 0, ‖σ‖2 = 1, and put

Aϕ = cosϕ · ρ
1
2 + eiλ sin ϕ · σ, ρ′ = Aϕ A∗

ϕ, (11)

then

123
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(i) ρ′ is a state.
(ii) Tr

(

A∗
ϕ Aϕ

) = 1.

(iii) Tr
(

ρ
1
2 Aϕ

)

= cosϕ.

(iv) In the sense of ‖ · ‖2, we have lim
ϕ→0

Aϕ = ρ
1
2 , lim

ϕ→0
A∗

ϕ = ρ
1
2 , and lim

ϕ→0
ρ′ = ρ.

Theorem 4 Let ρ ∈ D(H), A, B ∈ S(H). If σ ∈ L2(H) satisfies Tr
(

ρ
1
2 σ
)

= 0 and

‖σ‖2 = 1, then

√

Vρ(A)Vρ(B) ≥ ± i

2
Tr(ρ[A, B])

/
⎡

⎣1 − 1

2

∣
∣
∣
∣
∣
Tr

(

ρ
1
2

(

A
√

Vρ(A)
± i

B
√

Vρ(B)

)

σ

)∣
∣
∣
∣
∣

2
⎤

⎦ . (12)

Proof Let Eq. (11) be valid. Start from the following inequality

∥
∥
∥cA(A − a)ρ

1
2 ± icB(B − b′)Aϕ + c

(

ρ
1
2 − Aϕ

)∥
∥
∥

2

2
≥ 0, (13)

where b′ = Tr(ρ′ B), a = Tr(ρ A), cA, cB , c real constants. Calculating the square
modulus, we find

c2AVρ(A) + c2B Vρ′(B) ≥ −c2r − cAcBcδ ± icAcBk, (14)

with Vρ(A) and Vρ′(B) the variance of A and B on ρ and ρ′, respectively, and where

r = 2 (1 − cosϕ) , k = 2iIm
{

Tr
(

A∗
ϕ(B − b′)(A − a)ρ

1
2

)}

,

δ = 2Re

{

Tr

(

ρ
1
2

(
a − A

cB
± i

B − b′

cA

)

Aϕ

)}

.

Now choose the value of c that maximizes the right-hand side of (14), namely c =
− cAcBδ

2r , then (14) becomes

c2AVρ(A) + c2B Vρ′(B) ≥ (cAcBδ)2

4r
± icAcBk. (15)

Put cA = √

Vρ′(B), cB = −√Vρ(A), then

√

Vρ(A)Vρ′(B) ≥
√

Vρ(A)Vρ′(B)δ2

8r
∓ i

2
k. (16)

Denote b = Tr(ρB), and by the use of Lemma 2, we have

lim
ϕ→0

k = lim
ϕ→0

2iIm
{

Tr
(

A∗
ϕ(B − b′)(A − a)ρ

1
2

)}

= 2iIm
{

Tr
(

ρ
1
2 (B − b)(A − a)ρ

1
2

)}

123
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= 2iIm {Tr (ρ(B − b)(A − a))}
= 2iIm{Covρ(B, A)}
= Covρ(B, A) − Covρ(A, B)

= −Tr(ρ[A, B]),

and lim
ϕ→0

Vρ′(B) = Vρ(B). In the following, we compute the limit of δ2

8r .

lim
ϕ→0

δ2

8r
= lim

ϕ→0

(

Re

{

Tr

(

ρ
1
2

(

A−a√
Vρ(A)

± i B−b′√
Vρ′ (B)

)

Aϕ

)})2

4 (1 − cosϕ)

= lim
ϕ→0

(

Re

{

Tr

(

ρ
1
2

(

A−a√
Vρ(A)

± i B−b√
Vρ(B)

)

Aϕ

)})2

4 (1 − cosϕ)
.

Denote D = A−a√
Vρ(A)

± i B−b√
Vρ(B)

, then

(

Re

{

Tr

(

ρ
1
2

(

A−a√
Vρ(A)

± i B−b√
Vρ(B)

)

Aϕ

)})2

4 (1 − cosϕ)
=
(

Re
{

Tr
(

ρ
1
2 D Aϕ

)})2

4 (1 − cosϕ)
.

Note that

Tr
(

ρ
1
2 D Aϕ

)

= Tr
(

ρ
1
2 D(cosϕ · ρ

1
2 + eiλ sin ϕ · σ)

)

= eiλ sin ϕTr
(

ρ
1
2 Dσ

)

.

We can choose appropriate λ so that the term Tr
(

ρ
1
2 D Aϕ

)

is real. Therefore,
(

Re
{

Tr
(

ρ
1
2 D Aϕ

)})2 = sin2 ϕ

∣
∣
∣Tr
(

ρ
1
2 Dσ

)∣
∣
∣

2
, which yields

(

Re
{

Tr
(

ρ
1
2 D Aϕ

)})2

4 (1 − cosϕ)
=

sin2 ϕ ·
∣
∣
∣Tr
(

ρ
1
2 Dσ

)∣
∣
∣

2

4(1 − cosϕ)
,

and so

lim
ϕ→0

δ2

8r
=
∣
∣
∣Tr
(

ρ
1
2 Dσ

)∣
∣
∣

2

2
=

∣
∣
∣
∣
Tr

(

ρ
1
2

(

A−a√
Vρ(A)

± i B−b√
Vρ(B)

)

σ

)∣
∣
∣
∣

2

2

=

∣
∣
∣
∣
Tr

(

ρ
1
2

(

A√
Vρ(A)

± i B√
Vρ(B)

)

σ

)∣
∣
∣
∣

2

2
.
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The last equality holds because of Tr
(

ρ
1
2 σ
)

= 0.Hence, the inequality (16) becomes

√

Vρ(A)Vρ(B) ≥
√

Vρ(A)Vρ(B) ·

∣
∣
∣
∣
Tr

(

ρ
1
2

(

A√
Vρ(A)

± i B√
Vρ(B)

)

σ

)∣
∣
∣
∣

2

2
± i

2
Tr(ρ[A, B]),

which is equivalent to the conclusion. 
�
Remark 2 If we take ρ = |ψ〉〈ψ |, σ = |ψ⊥〉〈ψ |, where 〈ψ |ψ⊥〉 = 0, then

Tr
(

ρ
1
2 σ
)

= 0. It is easy to compute Vρ(A) = ΔA2, Vρ(B) = ΔB2, and

Tr

(

ρ
1
2

(

A√
Vρ(A)

± i B√
Vρ(B)

)

σ

)

= 〈

ψ | ( A
ΔA ± i B

ΔB

) |ψ⊥〉 , which recover to the

inequality (5).

Remark 3 Let

ρ =
( 1

4 0
0 3

4

)

, A =
(

0 i
−i 0

)

, B =
(

0 1
1 0

)

, σ =
( √

3
2 0
0 − 1

2

)

.

Then, Tr
(

ρ
1
2 σ
)

= 0 and ‖σ‖2 = 1. It is easy to compute that
√

Vρ(A)Vρ(B) = 1,

and the right of (12)

± i

2
Tr(ρ[A, B])

/
⎡

⎣1 − 1

2

∣
∣
∣
∣
∣
Tr

(

ρ
1
2

(

A
√

Vρ(A)
± i

B
√

Vρ(B)

)

σ

)∣
∣
∣
∣
∣

2
⎤

⎦ = ±16

29
.

Thus, the inequality (12) holds.

In the following, we will give the other improved Schrödinger uncertainty relation,
by choosing an arbitrary phase factor eiτ in place of the imaginary constant i in (13).

Theorem 5 Let ρ ∈ D(H), A, B ∈ S(H). If σ ∈ L2(H) satisfies Tr
(

ρ
1
2 σ
)

= 0 and

‖σ‖2 = 1, then

Vρ(A)Vρ(B) ≥ ∣
∣Covρ(A, B)

∣
∣2
/
⎡

⎣1 − 1

2

∣
∣
∣
∣
∣
Tr

(

ρ
1
2

(

A
√

Vρ(A)
+ eiα

B
√

Vρ(B)

)

σ

)∣
∣
∣
∣
∣

2
⎤

⎦

2

,

(17)
where α satisfies eiαCovρ(A, B) = |Covρ(A, B)|.
Proof Let Eq. (11) be valid. Start from the following inequality

∥
∥
∥cA(A − a)ρ

1
2 − cBeiτ (B − b′)Aϕ + c

(

ρ
1
2 − Aϕ

)∥
∥
∥

2

2
≥ 0, (18)

where b′ = Tr(ρ′ B), a = Tr(ρ A) and cA, cB , c real constants. Calculating the square
modulus, we find

c2AVρ(A) + c2B Vρ′(B) ≥ −c2r + ccAcBδ + cAcBk, (19)
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with Vρ(A) and Vρ′(B) the variance of A and B on ρ and ρ′, respectively, and where

r = 2 (1 − cosϕ) ,

k = 2Re
{

eiτTr
(

ρ
1
2 (A − a)(B − b′)Aϕ

)}

,

δ = 2Re

{

Tr

(

ρ
1
2

(
A − a

cB
+ eiτ

B − b′

cA

)

Aϕ

)}

.

Now choose the value of c that maximizes the right-hand side of (19), namely c =
cAcBδ
2r , then (19) becomes

c2AVρ(A) + c2B Vρ′(B) ≥ (cAcBδ)2

4r
+ cAcBk. (20)

Put cA = √

Vρ′(B), cB = √

Vρ(A), then

√

Vρ(A)Vρ′(B) ≥
√

Vρ(A)Vρ′(B)δ2

8r
+ k

2
. (21)

Denote b = Tr(ρB), and by the use of Lemma 2, we get

lim
ϕ→0

k

2
= lim

ϕ→0
Re
{

eiτTr
(

ρ
1
2 (A − a)(B − b′)Aϕ

)}

= Re
{

eiτCovρ(A, B)
}

,

and lim
ϕ→0

Vρ′(B) = Vρ(B). In a similar way to the proof of Theorem 4, it is easy to

obtain that

lim
ϕ→0

δ2

8r
=

∣
∣
∣
∣
Tr

(

ρ
1
2

(

A√
Vρ(A)

+ eiτ B√
Vρ(B)

)

σ

)∣
∣
∣
∣

2

2
.

We can choose appropriate τ = α, so that eiτCovρ(A, B) is real and can be written
as |Covρ(A, B)|. Thus, (21) can be rewritten as

√

Vρ(A)Vρ(B) ≥ |Covρ(A, B)|
1 − 1

2

∣
∣
∣
∣
Tr

(

ρ
1
2

(

A√
Vρ(A)

+ eiα B√
Vρ(B)

)

σ

)∣
∣
∣
∣

2 .

This completes the proof. 
�
Note that

Covρ(A, B) = Tr(ρ AB) − Tr(ρ A)Tr(ρB)
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= 1

2
Tr(ρ[A, B]) + 1

2
Tr(ρ{A, B}) − Tr(ρ A)Tr(ρB).

Therefore, the inequality (17) can be represented as

√

Vρ(A)Vρ(B) ≥
∣
∣ 1
2Tr(ρ[A, B]) + 1

2Tr(ρ{A, B}) − Tr(ρ A)Tr(ρB)
∣
∣

1 − 1
2

∣
∣
∣
∣
Tr

(

ρ
1
2

(

A√
Vρ(A)

+ eiα B√
Vρ(B)

)

σ

)∣
∣
∣
∣

2 .

Take cA = cB = 1 in (20); using the same procedure described above, we can obtain

Vρ(A) + Vρ(B) ≥ 2
∣
∣Covρ(A, B)

∣
∣+

∣
∣
∣Tr
(

ρ
1
2

(

A + eiα B
)

σ
)∣
∣
∣

2

= |Tr (ρ[A, B]) + Tr (ρ{A, B}) − 2Tr(ρ A)Tr(ρB)|
+
∣
∣
∣Tr
(

ρ
1
2 (A + eiα B)σ

)∣
∣
∣

2
.

Removing the last term in the above inequality, we find the inequality

Vρ(A) + Vρ(B) ≥ |Tr (ρ[A, B]) + Tr (ρ{A, B}) − 2Tr(ρ A)Tr(ρB)| . (22)

3 Uncertainty relations for three observables

Onemay generalize the Schrödinger uncertainty relation to three observables trivially,
since

Vρ(A) + Vρ(B) ≥ 2 |Covæ(A,B)| ,
Vρ(B) + Vρ(C) ≥ 2 |Covæ(B,C)| ,
Vρ(A) + Vρ(C) ≥ 2 |Covæ(A,C)| ,

we have

Vρ(A) + Vρ(B) + Vρ(C) ≥ |Covæ(A,B)| + |Covæ(B,C)| + |Covæ(A,C)| . (23)

The lower bound of (23) can be null. So we will prove the following more stringent
inequality exists.

Theorem 6 Let ρ ∈ D(H), A, B ∈ S(H) and α, β be any real numbers. If σ ∈ L2(H)

satisfies Tr
(

ρ
1
2 σ
)

= 0 and ‖σ‖2 = 1, then

Vρ(A) + Vρ(B) + Vρ(C) ≥
∣
∣
∣Tr
(

ρ
1
2

(

A + e−iα B + e−iβC
)

σ
)∣
∣
∣

2

−2Re
{

eiαCovρ(A, B) + eiβCovρ(A, C) + ei(β−α)Covρ(B, C)
}

. (24)
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Proof Let Eq. (11) be valid. To the inequality (24), we introduce a general inequality

∥
∥
∥c1(A − a)ρ

1
2 + c2eiα(B − b)ρ

1
2 + c3eiβ(C − c)ρ

1
2 + t

(

ρ
1
2 − Aϕ

)∥
∥
∥

2

2
≥ 0,

where a = Tr(ρ A), b = Tr(ρB), c = Tr(ρC) and c1, c2, c3, t real constants. Calcu-
lating the square modulus, we find

c21Vρ(A) + c22Vρ(B) + c23Vρ(C) ≥ −t2r + c1c2c3δt + c1c2c3k, (25)

where

r = 2 (1 − cosϕ) ,

k = −2Re

{
1

c3
eiαCovρ(A, B) + 1

c2
eiβCovρ(A, C) + 1

c1
ei(β−α)Covρ(B, C)

}

,

δ = 2Re

{

Tr

(

ρ
1
2

(
A − a

c2c3
+ e−iα B − b

c1c3
+ e−iβ C − c

c1c2

)

Aϕ

)}

.

Now choose the value of t that maximizes the right-hand side of (25), namely t =
c1c2c3δ

2r , then (25) becomes

c21Vρ(A) + c22Vρ(B) + c23Vρ(C) ≥ (c1c2c3δ)2

4r
+ c1c2c3k. (26)

Put c1 = c2 = c3 = 1, then (26) can be represented as

Vρ(A) + Vρ(B) + Vρ(C) ≥ δ2

4r
+ k,

with

r = 2 (1 − cosϕ) ,

k = −2Re
{

eiαCovρ(A, B) + eiβCovρ(A, C) + ei(β−α)Covρ(B, C)
}

,

δ = 2Re
{

Tr
(

ρ
1
2

(

A − a + e−iα(B − b) + e−iβ(C − c)
)

Aϕ

)}

.

Similar to the proof of Theorem 4, if we take D0 = A−a+e−iα(B−b)+e−iβ(C −c),
and then

lim
ϕ→0

δ2

4r
= lim

ϕ→0

(

Re
{

Tr
(

ρ
1
2 D0Aϕ

)})2

2 (1 − cosϕ)

=
∣
∣
∣Tr
(

ρ
1
2 D0σ

)∣
∣
∣

2

=
∣
∣
∣Tr
(

ρ
1
2

(

A − a + e−iα(B − b) + e−iβ(C − c)
)

σ
)∣
∣
∣

2
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=
∣
∣
∣Tr
(

ρ
1
2

(

A + e−iα B + e−iβC
)

σ
)∣
∣
∣

2
.

Therefore, we can obtain the inequality (24). 
�
Remark 4 The inequality (24) can reduce to the inequality (6) when we choose an
appropriate state ρ, a bound operator σ , and real constants α, β.

Indeed, if we put ρ = |ψ〉〈ψ |, σ = |ψ⊥〉〈ψ |, α = ± 2π
3 , β = ± 4π

3 , then

Tr
(

ρ
1
2 σ
)

= 0 and ‖σ‖2 = 1, so the inequality (24) holds. Clearly,

Vρ(A) = ΔA2, Vρ(B) = ΔB2, Vρ(C) = ΔC2, Covρ(A, B) = 〈AB〉 − 〈A〉〈B〉,
Covρ(A, C) = 〈AC〉 − 〈A〉〈C〉, Covρ(B, C) = 〈BC〉 − 〈B〉〈C〉.

It is easy to see that

∣
∣
∣Tr
(

ρ
1
2

(

A + e−iα B + e−iβC
)

σ
)∣
∣
∣

2 =
∣
∣
∣

〈

ψ

∣
∣
∣

(

A + e∓i 2π3 B + e∓i 4π3 C
)∣
∣
∣ψ

⊥〉
∣
∣
∣

2
.

Moreover,

k = −2Re
{

eiαCovρ(A, B) + eiβCovρ(A, C) + ei(β−α)Covρ(B, C)
}

= −2Re
{

e±i 2π3 (〈AB〉 − 〈A〉〈B〉) + e±i 4π3 (〈AC〉 − 〈A〉〈C〉) + e±i 2π3 (〈BC〉 − 〈B〉〈C〉)
}

= 1

2
〈{A, B, C}〉 ∓ i

√
3

2
〈[A, B, C]〉 − 〈A〉〈B〉 − 〈A〉〈C〉 − 〈B〉〈C〉,

where 〈{A, B, C}〉 = 〈{A, B}〉 + 〈{A, C}〉 + 〈{B, C}〉. Note that

Δ(A + B + C)2 = ΔA2 + ΔB2 + ΔC2 + 〈{A, B, C}〉 − 2(〈A〉〈B〉 + 〈A〉〈C〉 + 〈B〉〈C〉).

Thus, k = 1
2

(

Δ(A + B + C)2 − (

ΔA2 + ΔB2 + ΔC2
)) ∓ i

√
3
2 〈[A, B, C]〉. There-

fore, we can obtain the following inequality:

ΔA2 + ΔB2 + ΔC2 ≥ 1

3
Δ(A + B + C)2 ∓ i

√
3

3
〈[A, B, C]〉 + 2

3
∣
∣
∣

〈

ψ

∣
∣
∣

(

A + e∓i 2π3 B + e∓i 4π3 C
)∣
∣
∣ψ

⊥〉
∣
∣
∣

2
,

which is accordant to (6).

Remark 5 If we put c1 = √

Vρ(B)Vρ(C), c2 = √

Vρ(A)Vρ(C), c3 = √

Vρ(A)Vρ(B)

in the inequality (25), then

Vρ(A)Vρ(B)Vρ(C) ≤ 4r(3 − k)

δ2
;
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using the same procedure described above, we can obtain the following uncertainty
relation:

Vρ(A)Vρ(B)Vρ(C)

≤ 3
√

Vρ(A)Vρ(B)Vρ(C) + 2Re{√Vρ(C)eiαCovρ(A, B) +√

Vρ(B)eiβCovρ(A, C) +√

Vρ(A)ei(β−α)Covρ(B, C)}
∣
∣
∣
∣
Tr

(

ρ
1
2

(

A√
Vρ (A)

+ e−iα B√
Vρ (B)

+ e−iβ C√
Vρ (C)

)

σ

)∣
∣
∣
∣

2
.

Remark 6 If we put c1 = √

Vρ(A), c2 = √

Vρ(B), c3 = √

Vρ(C) in the inequality
(25), then using the same procedure described above, the following uncertainty relation

V 2
ρ (A) + V 2

ρ (B) + V 2
ρ (C)

≥
∣
∣
∣Tr
(

ρ
1
2

(√

Vρ(A)A + e−iα
√

Vρ(B)B + e−iβ
√

Vρ(C)C
)

σ
)∣
∣
∣

2

−2Re
{√

Vρ(A)Vρ(B)eiαCovρ(A, B) +√

Vρ(A)Vρ(C)eiβCovρ(A, C) +√

Vρ(B)Vρ(C)ei(β−α)Covρ(B, C)
}

is valid.

4 Conclusions

In this paper, we gave two stronger uncertainty relations, relating to the sum of vari-
ances with respect to density matrix:

Vρ(A) + Vρ(B) ≥ ±iTr(ρ[A, B]) +
∥
∥
∥
∥
ρ

1
2 (A ± iB)ρ

1
2⊥

∥
∥
∥
∥

2

2
,

and

Vρ(A) + Vρ(B) ≥ 1

2

∥
∥
∥
∥
ρ

1
2 (A + B)ρ

1
2⊥

∥
∥
∥
∥

2

2
,

where ρ⊥ ∈ D(H), s.t. ρρ⊥ = 0. These lower bounds are guaranteed to be nontrivial
whenever the two observables are incompatible on the state of the system. If we choose
appropriate ρ and ρ⊥, the above results can reduce to (3) and (4), respectively, which
were given by Maccone and Pati in [22]. In addition, a new bound for the sum of
two variances of pure states is derived by theorem 3, that is corollary 3 including
Maccone–Pati’s inequality (4) as a special case if we choose |ψ⊥〉 = ∣

∣ψ⊥
A+B

〉

.
Moreover, two stronger uncertainty relations in terms of the product of the variances

of two observables were established:

√

Vρ(A)Vρ(B) ≥ ± i
2Tr(ρ[A, B])

1 − 1
2

∣
∣
∣
∣
Tr

(

ρ
1
2

(

A√
Vρ(A)

± i B√
Vρ(B)

)

σ

)∣
∣
∣
∣

2 ,
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which can recover to the inequality (5) when we choose appropriate ρ and σ , and

Vρ(A)Vρ(B) ≥
∣
∣Covρ(A, B)

∣
∣2

[

1 − 1
2

∣
∣
∣
∣
Tr

(

ρ
1
2

(

A√
Vρ(A)

+ eiα B√
Vρ(B)

)

σ

)∣
∣
∣
∣

2
]2 ,

where σ satisfies Tr
(

ρ
1
2 σ
)

= 0 and ‖σ‖2 = 1, α satisfies eiαCovρ(A, B) =
|Covρ(A, B)|. We use the square-modulus inequality and follow a procedure anal-
ogous to the one employed by [22]. However, the proof of theorem 4 is more complex,
and lemma 2 is the key point to the proof. The limit given here is taken in the sense of
‖ · ‖2.

Several stronger uncertainty relations for three observables were established, relat-
ing to the sum and product of variances with respect to density matrix, respectively.
If we choose an appropriate state ρ, a bound operator σ , and real constants α, β, the
inequality (24) can reduce to the inequality (6) which was given by Song and Qiao in
[25].
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