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Abstract
Wederive upper bounds for Hilbert–Schmidt’s quantum coherence of general states of
a d-level quantum system, a qudit, in terms of its incoherent uncertainty, with the latter
quantified using the linear and von Neumann’s entropies of the corresponding closest
incoherent state. Similar bounds are obtained for Wigner–Yanase’s coherence. The
reported inequalities are also given as coherence–populations trade-off relations. As an
application example of these inequalities, we derive quantitative wave–particle duality
relations for multi-slit interferometry. Our framework leads to the identification of
predictability measures complementary to Hilbert–Schmidt’s, Wigner–Yanase’s, and
l1-norm quantum coherences. The quantifiers reported here for the wave and particle
aspects of a quanton followdirectly from the defining properties of the quantumdensity
matrix (i.e., semi-positivity and unit trace), contrasting thus with most related results
from the literature.

Keywords Wave–particle duality · Quantum coherence · Predictability measures

1 Introduction

Quantum information science (QIS) is a rapidly developing interdisciplinary field
harnessing and instigating some of the most advanced results in physics, information
theory, computer science, mathematics, material science, engineering, and artificial
intelligence [1–11]. Nowadays we know of several aspects of quantum systems that
contrast them from the classical ones. Of particular interest in QIS is to investigate
how these quantum features can be harnessed to devise more efficient protocols for
information processing, transmission, storage, acquisition, and protection.
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A few examples of connections among quantum features and advantages in QIS
protocols are as follows. Of special relevance for the whole of QIS, and in particular
for the development of a quantum internet, is the use of quantum entanglement as a
channel for quantum teleportation [12,13]. As for one of the most advanced branches
of QIS, it is known that quantum non-locality and quantum steering are needed for
device independent and semi-independent quantum communication, respectively [14,
15]. By its turn, the use of quantum squeezing and quantum discord was related to
increased precision ofmeasurements in quantummetrology [16,17]. Besides, quantum
contextuality and quantum coherence (QC) were connected with the speedup of some
algorithms in quantum computation [18,19].

Quantum coherence, a kind of quantum superposition [20], is directly related to
the existence of incompatible observables in quantum mechanics and is somewhat
connected to most of the quantumnesses mentioned above. Therefore, it is a nat-
ural research program trying to understand QC from several perspectives. Recently,
researchers have been developing a resource theory framework to quantify QC, the so-
called resource theory of coherence (see, e.g., Refs. [21–24] and references therein). In
this resource theory, given an orthonormal reference basis {|βn〉}dn=1, with d = dimH,
for a system with state space H, the free states are incoherent mixtures of these base
states:

ι =
d∑

n=1

ιn|βn〉〈βn|, (1)

where {|ιn〉}dn=1 is a probability distribution. A geometrical way of defining functions
to quantify coherence is via the minimum distance from ρ to incoherent states:

CD(ρ) = min
ι

D(ρ, ι) =: D(ρ, ιDρ ), (2)

where ιDρ is the closest incoherent state to ρ under the distance measure D. If CD

does not increase under incoherent operations, which are those quantum operations
mapping incoherent states to incoherent states, then its dubbed a coherence monotone.

In quantum mechanics [25], the more general description of a system state is given
by its density operator ρ = ∑

m pm |ψm〉〈ψm |, where {pm} is a probability distribution
and {|ψm〉} are state vectors [26]. Because of this ensemble interpretation, the density
operator is required to be a positive (semi-definite) linear operator, besides having
trace equal to one [27]. If we consider, for instance, two-level systems whose density
operator represented in the orthonormal basis {|βn〉}2n=1 reads

ρ =
[〈β1|ρ|β1〉 〈β1|ρ|β2〉
〈β2|ρ|β1〉 〈β2|ρ|β2〉

]
=:

[
ρ1,1 ρ1,2
ρ∗
1,2 1 − ρ1,1

]
, (3)

these properties impose a well-known restriction on the off-diagonal elements of ρ,
its coherences, by the product of its diagonal elements, its populations:

ρ1,1(1 − ρ1,1) ≥ |ρ1,2|2. (4)
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The product of the populations of ρ can be seen as the incoherent uncertainty we
have about measurements of an observable with eigenvectors {|βn〉}2n=1, since it is
independent of the whole ensemble coherences. On the other hand, the presence of
non-null off-diagonal elements of ρ implies that one ormoremembers of the ensemble
are a coherent superposition of the base states {|βn〉}2n=1.

It is an interesting mathematical, physical, and possibly practical problem to derive
quantum coherence–incoherent uncertainty trade-off relations regarding general-
discrete quantum systems. In this article, we obtain such trade-offs for one-qudit
(d-level) quantum systems. We start considering Hilbert–Schmidt’s coherence (HSC)
function [28] that has a convenient algebraic structure but is known not to be a coher-
encemonotone [29].We also regardWigner–Yanase’s coherence (WYC) [30],which is
a coherence monotone. To quantify the incoherent uncertainty of a state ρ, we employ
linear entropy and von Neumann’s entropy of its closest incoherent state or of the
diagonal of

√
ρ. It is worthwhile mentioning that the relation between “quantum” and

“classical” uncertainties and other complementarity relations have been investigated
in other contexts elsewhere [31–36].

Wave–particle duality has been at the center stage of conceptual discussions in
quantum mechanics since its early days [37]. Recently, several authors have investi-
gated about possible definitions of predictability and visibility quantifiers for d-slits
interferometers. For a review of the literature, see, e.g., Ref. [38]. Dürr’s [39] and
Englert et al.’s [40] criteria can be taken as a standard for checking for the reliabil-
ity of newly defined predictability measures P(ρ) and interference pattern visibility
quantifiers W (ρ). For P , these required properties can be restated as follows:

P1 P must be a continuous function of the diagonal elements of the density matrix.
P2 P must be invariant under permutations of the paths’ indexes.
P3 If ρ j, j = 1 for some j , then P must reach its maximum value.
P4 If {ρ j, j = 1/d}dj=1, then P must reach its minimum value.
P5 If ρ j, j > ρk,k for some ( j, k), the value of P cannot be increased by setting

ρ j, j → ρ j, j − ε and ρk,k → ρk,k + ε, for ε ∈ R+ and ε 	 1.
P6 P must be a convex function, i.e., P(ωξ + (1 − ω)η) ≤ ωP(ξ) + (1 − ω)P(η),

for 0 ≤ ω ≤ 1 and for ξ and η being valid density matrices.

One can also write down a list of required properties for the functions to be used
to quantify the wave aspect W of a quanton in a d-slit interferometer [39,40]:

W1 W must be a continuous function of the elements of the density matrix.
W2 W must be invariant under permutations of the paths’ indexes.
W3 If ρ j, j = 1 for some j , then W must reach its minimum value.
W4 If ρ is a pure state and {ρ j, j = 1/d}dj=1, then W must reach its maximum value.
W5 W cannot be increased when decreasing |ρ j,k | by an infinitesimal amount, for

j �= k.
W6 W must be a convex function, i.e.,W (ωξ + (1−ω)η) ≤ ωW (ξ)+ (1−ω)W (η),

for 0 ≤ ω ≤ 1 and ξ and η are well-defined density matrices.

There are convincing arguments indicating quantum coherence as a good measure
for thewave aspect of a quanton [41]. Andwewill show that our coherence–incoherent
uncertainty trade-off relations can be applied to obtain quantitative wave–particle
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duality relations, with the associated predictability and visibility measures satisfying
the criteria listed above. The framework devised in this article shows that the semi-
positiveness and unit trace of the quantum density matrix leads to the identification
of predictability measures complementary to HSC, to WYC, and to l1-norm quantum
coherence (L1C).

We organized the remainder of this article in the following manner. In Sect. 2,
we present the Gell–Mann matrix basis (GMB), defined using any vector basis of
C
d , and discuss the representation of general and diagonal matrices in the GMB.

We obtain trade-off relations between quantum coherence and incoherent uncertainty
measuring the first with Hilbert–Schmidt coherence in Sect. 3.1. We obtain analogous
relations using Wigner–Yanase’s coherence in Sect. 3.2. We show how to write these
inequalities as coherence–populations trade-off relations in Sect. 4. In Sect. 5.1, we
report quantitative visibility–predictability duality relations identified directly from
our coherence–incoherent uncertainty inequalities. In Sects. 5.2 and 5.3, we apply
the positivity and unit trace of the density matrix to identify predictability measures
complementary to WYC and L1C, respectively. We give our conclusions in Sect. 6.

2 Gell–Mann basis forCCCdxd

Let {|βm〉}dm=1 be any given vector basis for Cd . Using this basis, we can define the
generalized Gell–Mann’s matrices as [42]:


d
j :=

√
2

j( j + 1)

j+1∑

m=1

(− j)δm, j+1 |βm〉〈βm |, (5)


s
k,l := |βk〉〈βl | + |βl〉〈βk |, (6)


a
k,l := −i(|βk〉〈βl | − |βl〉〈βk |), (7)

where, if not stated otherwise, we use the following possible values for the indexes
j, k, l up to Sect. 4 of this article:

j = 1, . . . , d − 1 and 1 ≤ k < l ≤ d. (8)

One can easily see that these matrices are Hermitian and traceless. Besides, if we use

d
0 for the d × d identity matrix, it is not difficult to verify that under the Hilbert–

Schmidt’s inner product,
〈A|B〉hs := Tr(A†B), (9)

with A, B ∈ C
d×d , the set {


d
0√
d

,

d

j√
2
,

τ
k,l√
2

}
, (10)
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with τ = s, a, forms an orthonormal basis for Cd×d [42]. So, any matrix X ∈ C
d×d

can be decomposed in this basis, called hereafter of Gell–Mann’s basis (GMB), as
follows:

X = Tr(X)

d

d
0 + 1

2

∑

j

〈
d
j |X〉
d

j + 1

2

∑

k,l,τ

〈
τ
k,l |X〉
τ

k,l . (11)

We observe that the most general decomposition in GMB of a matrix Xd ∈ C
d×d

which is diagonal in the basis {|βm〉}dm=1 shall be given by:

Xd = Tr(Xd)

d

d
0 + 1

2

∑

j

〈
d
j |Xd〉
d

j , (12)

i.e., only the diagonal elements of the GMB can have non-null components in this
decomposition.

3 Trade-off relations between quantum coherence and incoherent
uncertainty

3.1 Upper bound for Hilbert–Schmidt’s coherence

The Hilbert–Schmidt’s coherence (HSC) of a quantum state ρ is defined as [28]

Chs(ρ) := min
ι

||ρ − ι||2hs, (13)

with the Hilbert–Schmidt’s norm of a matrix A ∈ C
d×d being defined as

||A||hs := √〈A|A〉hs, (14)

and here the minimization is taken over the incoherent states of Eq. (1). For general
one-qudit states, using the decompositions in GMB:

ρ = 1

d

d
0 + 1

2

∑

j

〈
d
j |ρ〉
d

j + 1

2

∑

k,l,τ

〈
τ
k,l |ρ〉
τ

k,l , (15)

ι = 1

d

d
0 + 1

2

∑

j

〈
d
j |ι〉
d

j , (16)

the analytical formulas for the HSC and for the associated closest incoherent state
were obtained in Ref. [28] and read, respectively:

Chs(ρ) = 1

2

∑

k,l,τ

〈
τ
k,l |ρ〉2, (17)

ιhsρ = 1

d

d
0 + 1

2

∑

j

〈
d
j |ρ〉
d

j . (18)
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The main tool we use to obtain some of the results reported in this article is a
condition for matrix positivity. The eigenvalues of a matrix A ∈ C

d×d , let us call
them a, can be obtained from [43]:

0 = det(A − a
d
0 ) (19)

=
∑

( j1, j2,..., jd )

sgnd( j1, j2, . . . , jd )(A1, j1 − aδ1, j1)(A2, j2 − aδ2, j2 ) . . . (Ad, jd − aδd, jd )

(20)

= (−1)dcda
d + (−1)d−1cd−1a

d−1 + (−1)d−2cd−2a
d−2 + · · · + c2a

2 − c1a + c0.

(21)

By Descartes rule of signs (see, e.g., Ref. [44] and references therein), we see that
for A to be a positive matrix, we have to have nonnegativity for all the coefficients
{cm ≥ 0}dm=0. In this article, we shall look at the positivity of:

cd−2 =
∑

( j1, j2)

sgnd( j1, j2, 3 . . . , d)A1, j1 A2, j2

+ · · · +
∑

( j1, jd )

sgnd( j1, 2, . . . , d − 1, jd)A1, j1 Ad, jd

+
∑

( j2, j3)

sgnd(1, j2, j3, 4, . . . , d)A2, j2 A3, j3

+ · · · +
∑

( j2, jd )

sgnd(1, j2, 3, . . . , d − 1, jd)A2, j2 Ad, jd

+ · · · +
∑

( jd−1, jd )

sgnd(1, 2, . . . d − 2, jd−1, jd)Ad−1, jd−1 Ad, jd (22)

=
d−1∑

m=1

d∑

n=m+1

(Am,m An,n − Am,n An,m) (23)

= 1

2

(
(Tr(A))2 − Tr

(
A2

))
≥ 0. (24)

Using the orthonormality ofGMB, i.e., the inner product between different elements
of the GMB is zero and 〈
d

0 |
d
0 〉 = d and 〈
d

j |
d
j 〉 = 〈
τ

k,l |
τ
k,l〉 = 2, the positivity

condition for the coefficient in Eq. (24) applied to the density matrix of Eq. (15), as
Tr(ρ) = 1, can be rewritten as

0 ≤ 1 − Tr(ρ2) (25)

= 1 − 1

d
− 1

2

∑

j

〈
d
j |ρ〉2 − 1

2

∑

k,l,τ

〈
τ
k,l |ρ〉2. (26)
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Now, if we use the formula for the HSC in Eq. (17), this inequality can be cast as a
restriction to the HSC:

Chs(ρ) ≤ d − 1

d
− 1

2

∑

j

〈
d
j |ρ〉2. (27)

If we utilize again the orthonormality of the GMB, the right hand side of this
inequality is easily seen to be the incoherent uncertainty of the state ρ measured using
the linear entropy of its closest incoherent state [Eq. (18)], i.e.,

Sl(ι
hs
ρ ) = 1 − Tr

((
ιhsρ

)2) = d − 1

d
− 1

2

∑

j

〈
d
j |ρ〉2. (28)

Now, using − ln x ≥ 1 − x [45], we can get an upper bound for the linear entropy in
terms of von Neumann’s entropy as follows:

Svn(x) := Tr(x(− ln x)) (29)

≥ Tr(x(1 − x)) = Tr(x) − Tr(x2) = Sl(x) + Tr(x) − 1. (30)

Gathering the results above, as Tr(ιhsρ ) = 1, we have obtained the following quantum
coherence–incoherent uncertainty trade-off relations:

Chs(ρ) ≤ Sl(ι
hs
ρ ) ≤ Svn(ι

hs
ρ ), (31)

which are valid for any one-qudit state. The “verification” of these entropic inequalities
using random states is presented in Fig. 1. We observe that the upper bound given by
linear entropy is tight for qubits (d = 2). However, as the dimension increases, and
typicality is approached [46], the upper bounds get less and less tight.

3.2 Upper bound forWigner–Yanase’s coherence

In this subsection, we shall deal with Wigner–Yanase’s coherence (WYC) [30]:

Cwy(ρ) :=
d∑

j=1

Iwy(ρ, |β j 〉〈β j |) := −1

2

d∑

j=1

Tr(([√ρ, |β j 〉〈β j |])2) (32)

= 1

2

d∑

j=1

(
〈β j |ρ|β j 〉 +

d∑

k=1

|〈β j |√ρ|βk〉|2 − 2〈β j |√ρ|β j 〉2
)

, (33)

with [·, ·] being the commutator. Identifying the following relation between a diagonal
element of ρ and the elements in the corresponding row of

√
ρ:

〈β j |ρ|β j 〉 =
d∑

k=1

〈β j |√ρ|βk〉〈βk |√ρ|β j 〉 =
d∑

k=1

|〈β j |√ρ|βk〉|2, (34)
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Fig. 1 (Color online) “Verification” of the Hilbert–Schmidt quantum coherence–incoherent uncertainty
trade-off relations of Eq. (31) for one thousand random density matrices generated for each value of the
system dimension d. The random states were created using the standard method described in Refs. [47,48].
The y axis is for Chs(ρ) and the x axis is for Sl (ι

hs
ρ ) or Svn(ιhsρ ), with ιhsρ given in Eq. (18). The black lines

stand for Chs(ρ) = Sl (ι
hs
ρ ) and for Chs(ρ) = Svn(ιhsρ ).

we can write

Cwy(ρ) =
d∑

j=1

d∑

k=1

|〈β j |√ρ|βk〉|2 −
d∑

j=1

〈β j |√ρ|β j 〉2 (35)

=
∑

j �=k

|〈β j |√ρ|βk〉|2. (36)

Now, by using 〈
s
k,l |

√
ρ〉 = 2Re((

√
ρ)k,l) and 〈
a

k,l |
√

ρ〉 = −2Im((
√

ρ)k,l), where
Re((

√
ρ)k,l) and Im((

√
ρ)k,l) are the real and imaginary parts of (

√
ρ)k,l , respectively,

we get

Cwy(ρ) = 1

2

∑

k,l,τ

〈
τ
k,l |

√
ρ〉2. (37)

A quantum state, with spectral decomposition ρ = ∑d
m=1 rm |rm〉〈rm |, is a positive

matrix [45], i.e., {rm ≥ 0}dm=1. So,
√

ρ = ∑d
m=1

√
rm |rm〉〈rm | is also a positive

matrix. If we apply the positivity condition of Eq. (24) to
√

ρ decomposed in GMB as
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√
ρ = Tr(

√
ρ)

d

d
0 + 1

2

∑

j

〈
d
j |

√
ρ〉
 j + 1

2

∑

k,l,τ

〈
τ
k,l |

√
ρ〉
τ

k,l , (38)

the following inequality is obtained:

0 ≤ (Tr(
√

ρ))2 − Tr((
√

ρ)2) (39)

= (Tr(
√

ρ))2
(
1 − 1

d

)
− 1

2

∑

j

〈
d
j |

√
ρ〉2 − 1

2

∑

k,l,τ

〈
τ
k,l |

√
ρ〉2. (40)

Using WYC in Eq. (37) and the linear and von Neumann’s entropies of

√
ρdiag := Tr(

√
ρ)

d

d
0 + 1

2

∑

j

〈
d
j |

√
ρ〉
 j , (41)

we obtain the following upper bounds for WYC:

Cwy(ρ) ≤
(
Sl(

√
ρdiag) + (Tr(

√
ρdiag))

2 − 1 =: ϒ
)

(42)

≤
(
Svn

(√
ρdiag

)
+ Tr(

√
ρdiag)

(
Tr(

√
ρdiag) − 1

)
=: �

)
. (43)

In the particular case of pure states, ρ = |ψ〉〈ψ | ∴ √
ρ = ρ, we have Cwy(ρ) =

Chs(ρ). Hence, in this case, the inequalities above are equivalent to the ones obtained
for Hilbert–Schmidt’s coherence in Eq. (31), i.e.,

Cwy(|ψ〉〈ψ |) ≤ Sl
(
ιhsρ

)
≤ Svn

(
ιhsρ

)
. (44)

The upper bounds for WYC were also “verified” using random states, as shown in
Fig. 2. Here, the restrictiveness of those upper bounds is also seen to diminish with
the increase of the system dimension.

4 Coherence–populations trade-off relations

In this section, we start rewriting the upper bound for Hilbert–Schmidt’s coher-
ence given in Eq. (27) by expressing the components of the so-called Bloch’s
vector corresponding to the diagonal elements of Gell–Mann’s basis, 〈
d

j |ρ〉 with
j = 1, . . . , d −1, in terms of the density matrix populations, ρm,m = 〈βm |ρ|βm〉with
m = 1, . . . , d. For that purpose, after some algebraic manipulations, one can infer
that for m = 2, . . . , d − 1:

ρm,m = 1

d
−

√
m − 1

2m
〈
d

m−1|ρ〉 +
d−1∑

j=1

〈
d
j |ρ〉√

2 j( j + 1)

d−1∑

n=m

δn, j . (45)
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Fig. 2 (Color online) “Verification” of the upper bounds for Wigner–Yanase quantum coherence in Eqs.
(42) and (43) for five thousand random density matrices generated for each value of the system dimension
d. The method used to create the random states is the same as the one mentioned in Fig. 1. The black lines
stand for Cwy(ρ) = ϒ and for Cwy(ρ) = �

For m = d and m = 1, we can use this same expression for the populations, but
without the last and second terms, respectively. By inverting the expressions in Eq.
(45) iteratively, we obtain the general expression we need to rewrite the trade-offs in
Eq. (31) in terms of ρ’s populations:

〈
d
d− j |ρ〉=

√
2

(d − j + 1)(d − j)

⎛

⎝1−
j∑

n=1

(d − n + 1)δ j,nρd−n+1,d−n+1

⎞

⎠ . (46)

As examples, let us start considering qubit and qutrit systems. For d = 2, 〈
d
1 |ρ〉 =

1−2ρ2,2 and, fromEq. (27),wegetChs(ρ) = 2|ρ1,2|2 ≤ 2ρ1,1ρ2,2,which is equivalent
to Eq. (4). For d = 3, 〈
d

1 |ρ〉 = 1 − ρ3,3 − 2ρ2,2, 〈
d
2 |ρ〉 = (1 − 3ρ3,3)/

√
3 and

Chs(ρ) ≤ 2(ρ1,1ρ2,2 + ρ1,1ρ3,3 + ρ2,2ρ3,3). (47)
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As this same pattern appears also for d = 4 and for d = 5, one would conjecture that
for any one-qudit state the following inequality will be satisfied:

Chs(ρ) ≤ 2
d−1∑

m=1

d∑

n=m+1

ρm,mρn,n . (48)

We could not give limitations for the Wigner–Yanase’s coherence of a state ρ

directly in terms of the densitymatrix populations.Notwithstanding, relations identical
to the ones above shall follow for this quantum coherence measure if we replace ρ by√

ρ in Eqs. (45) and (46) and on the right hand side of Eq. (48), i.e.,

Cwy(ρ) ≤ 2
d−1∑

m=1

d∑

n=m+1

(
√

ρ)m,m(
√

ρ)n,n . (49)

A simpler and general proof of this kind of inequality can be given as follows. It
is known from matrix analysis [49] that all principal sub-matrices of a positive semi-

definite matrix are also positive semi-definite. In particular, A ≥ O ⇒
[
A j, j A j,k

Ak, j Ak,k

]
≥

O∀ j, k. It follows then that

∑

j �=k

|A j,k |2 =
∑

j,k

|A j,k |2 −
∑

j

A2
j, j ≤

∑

j,k

A j, j Ak,k −
∑

j

A2
j, j =

∑

j �=k

A j, j Ak,k,

(50)
from which we can obtain the inequalities in Eqs. (48) and (49).

In the next section, we will use one of these two expressions for giving closed
formulas for measures of path information and interference pattern visibility.

5 Quantitative complementarity relations for d-slits interferometers

5.1 Complementarity relations with Hilbert–Schmidt’s coherence

Here, we use HSC written in terms of the density matrix elements:

Chs(ρ) := min
ι

||ρ − ι||2hs = min
ι

d∑

j,k=1

|(ρ − ι) j,k |2 = min
ι

d∑

j,k=1

|ρ j,k − ι jδ j,k |2

(51)

=
∑

j �=k

|ρ j,k |2. (52)

In the sequence, we show thatW := Chs satisfies the properties listed in the introduc-
tion. One can easily see from the expression for Chs that it has the properties W1 and
W2, i.e., Chs is continuous and invariant under paths’ indexes exchanges. Besides:
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W3 If ρ j, j = 1 for any j , then all the other populations and all the coherences are
null (by the restrictions |ρ j,k |2 ≤ ρ j, jρk,k∀ j, k). Therefore, Chs = 0, which is
the required minimum, since we have Chs ≥ 0.

W4 If ρ j, j = 1/d∀ j , we shall have from

[
ρ j, j ρ j,k

ρk, j ρk,k

]
≥ O that |ρ j,k | ≤ 1/d∀ j �= k.

So, for themaximum value for the density matrix coherences ρ j,k = 1/d∀ j �= k,
we see that Tr(ρ2) = 1 and that Chs reaches its maximum value, (d − 1)/d.

W5 If we set ρ j,k → ρ̃ j,k = ρ j,k −ε, with Re(ρ j,k)Re(ε) ≥ 0 and Im(ρ j,k)Im(ε) ≥
0, then |ρ̃ j,k |2 ≈ |ρ j,k |2 − 2(Re(ρ j,k)Re(ε) + Im(ρ j,k)Im(ε)) ≤ |ρ j,k |2, which
implies that C̃hs ≤ Chs.

W6 For 0 ≤ ω ≤ 1 and ξ and η valid density operators, we verify that Chs is convex
as follows:

Chs(ωξ + (1 − ω)η) − ωChs(ξ) − (1 − ω)Chs(η)

=
∑

j �=k

|(ωξ + (1 − ω)η) j,k |2 − ω
∑

j �=k

|ξ j,k |2 − (1 − ω)
∑

j �=k

|η j,k |2 (53)

=
∑

j �=k

ω(ω − 1)
(
(Re(ξ j,k) − Re(η j,k))

2 + (Im(ξ j,k) − Im(η j,k))
2
)

(54)

≤ 0. (55)

Let us define
Smax
τ := max

ρ
Sτ (ρ), with τ = l, vn. (56)

For d-dimensional density matrices, ρ = Id/d gives the maximum for the entropies:

Smax
l = (d − 1)/d and Smax

vn = ln d. (57)

Now, we can rewrite the inequalities in Eqs. (31) as

Chs(ρ) + Smax
τ − Sτ (ι

τ
ρ) ≤ Smax

τ . (58)

By defining the Hilbert–Schmidt’s predictability measures

Pl
hs(ρ) := Smax

l − Sl(ι
hs
ρ ) = d − 1

d
− 2

d−1∑

m=1

d∑

n=m+1

ρm,mρn,n, (59)

Pvn
hs (ρ) := Smax

vn − Svn(ι
hs
ρ ) = ln d +

d∑

j=1

ρn,n ln ρn,n, (60)

we obtain the coherence–predictability complementarity relations:

Chs(ρ) + Pτ
hs(ρ) ≤ Smax

τ . (61)
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One could put the upper bounds for these inequalities in the usual form, equal to one,
by normalizing Chs and Pτ

hs.
In the sequence, we shall verify that the predictability measures introduced here

satisfy the criteria listed in Sect. 1:

P1 As Sτ (ι
hs
ρ ) is a continuous function of {ρ j, j }dj=1, so is P

τ
hs(ρ).

P2 It is straightforward to see in the right hand side of Eqs. (59) and (60) that Pl
hs and

Pl
hs are invariant under exchange of paths’ labels.

P3 If ρ j, j = 1 for some j , then ρk,k = 0∀k �= j and Sl = 1− ρ2
j, j − ∑

k �= j ρ
2
k,k = 0

and Svn = −ρ j, j ln ρ j, j − ∑
k �= j ρk,k ln ρk,k = 0. So Pτ

hs := Smax
τ .

P4 If {ρ j, j = 1/d}dj=1, then Sl = 1 − ∑d
j=1(1/d

2) = Smax
l and Svn =

−∑d
j=1(1/d) ln(1/d) = Smax

vn . So Pτ
hs = 0.

P5 Once Pτ
hs is invariant under exchange ρ j, j ↔ ρk,k∀ j, k we can, without loss of

generality, consider ρ1,1 > ρ2,2, ρ1,1 → ρ1,1 − ε, and ρ2,2 → ρ2,2 + ε for ε > 0
and ε 	 1. Thus,

P̃l
hs = Smax

l − 1 + (ρ1,1 − ε)2 + (ρ2,2 + ε)2 +
d∑

j=3

ρ2
j, j (62)

= Smax
l − (1 −

d∑

j=1

ρ2
j, j ) − 2ε(ρ1,1 − ρ2,2) + O(ε2) (63)

≤ Pl
hs (64)

and

P̃vn
hs = Smax

vn + (ρ1,1 − ε) ln(ρ1,1 − ε) + (ρ2,2 + ε) ln(ρ2,2 + ε) +
d∑

j=3

ρ j, j ln ρ j, j

= Smax
vn +

d∑

j=1

ρ j, j ln ρ j, j − ε(ln ρ1,1 − ln ρ2,2) (65)

+ (ρ1,1 − ε)(−ε/ρ1,1) + (ρ2,2 + ε)(ε/ρ2,2) + O(ε2) (66)

= Pvn
hs − ε(ln ρ1,1 − ln ρ2,2) + O(ε2) (67)

≤ Pvn
hs . (68)

Above we used ln(1 ± x) ≈ ±x for x > 0 and x 	 1.
P6 The convexity of the predictability measure Pl

hs is verified as follows:

Pl
hs(ωξ + (1 − ω)η) − ωPl

hs(ξ) − (1 − ω)Pl
hs(η) (69)

= d − 1

d
−

∑

j �=k

(ωξ j, j + (1 − ω)η j, j )(ωξk,k + (1 − ω)ηk,k) (70)
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− ω

⎛

⎝d − 1

d
−

∑

j �=k

ξ j, jξk,k

⎞

⎠ − (1 − ω)

⎛

⎝d − 1

d
−

∑

j �=k

η j, jηk,k

⎞

⎠ (71)

= ω(1 − ω)
∑

j �=k

(ξ j, j − η j, j )(ξk,k − ηk,k) = ω(ω − 1)
∑

j �=k

(ξ j, j − η j, j )
2 (72)

≤ 0. (73)

For Hilbert–Schmidt’s predictability quantifier Pvn
hs , convexity follows from the

concavity of von Neumann’s entropy [50].

With this, we have shown that although Hilbert–Schmidt distance does not provide
a coherence monotone, it can be used, in conjunction with the positivity of the density
matrix, to provide bona fide measures for the particle and wave aspects of a quanton
in d-slits interferometry.

In order to exemplify the application of our complementarity relations, we shall
regard a generalized Werner’s state of a ququart (d = 4) [51]:

ρw,a = (1 − w)
I4

4
+ w|ψ〉〈ψ |, (74)

with |ψ〉 = √
a|β0〉 + √

1 − a|β1〉. The Hilbert–Schmidt coherence function, the
linear- and von Neumann-Hilbert–Schmidt predictability measures, their sum, and
the associated upper bounds are shown graphically in Fig. 3 as a function of a for
some values of w.

This figure shows that Pl
hs and Pvn

hs reach the respective upper bounds for
ρw=1,a=1 = |β0〉〈β0| and for ρw=1,a=0 = |β1〉〈β1|. Besides, the equality in the
complementarity relation Chs + Pl

hs ≤ (d − 1)/d is obtained for all ρw=1,a , while the
inequality Chs + Pvn

hs ≤ ln d is saturated only for ρw=1,a=1 and ρw=1,a=0.

5.2 Complementarity relations withWigner–Yanase’s coherence

In this subsection, we will start by using the defining properties of a density matrix,
ρ ≥ O and Tr(ρ) = 1, to show that 〈β j |√ρ|β j 〉 ≥ 〈β j |ρ|β j 〉. If we define
|r j 〉 := ∑d

k=1Uj,k |βk〉, from the spectral decomposition ρ = ∑d
j=1 r j |r j 〉〈r j | =

∑d
k,l=1

(∑d
j=1 r jU j,kU∗

j,l

)
|βk〉〈βl |, we have

√
ρ = ∑d

j=1
√
r j |r j 〉〈r j | = ∑d

k,l=1(∑d
j=1

√
r jU j,kU∗

j,l

)
|βk〉〈βl | and thus

(
√

ρ) j, j =
∑

k

√
rk |Uk, j |2 ≥

∑

k

rk |Uk, j |2 = ρ j, j . (75)

So

Cwy(ρ) = 1 −
d∑

j=1

〈β j |√ρ|β j 〉2 (76)
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≤ 1 −
d∑

j=1

〈β j |ρ|β j 〉2 = Sl(ρdiag) ≤ Svn(ρdiag), (77)

with ρdiag = diag(ρ1,1, ρ2,2, . . . , ρd,d) and the linear and von-Neumann entropies are
defined in Sect. 3.1. Thus, we identify the complementarity relations:

Cwy(ρ) + Pτ
hs(ρ) ≤ Smax

τ , (78)

with τ = l, vn and with the predictability measures complementary to Wigner–
Yanase’s coherence being the same as for Hilbert–Schmidt’s coherence, since ρdiag =
ιhsρ . These functions appear, together with Smax

τ , in Sect. 5.1. We observe that other
candidate predictability measures Pwy could be defined using the inequalities in Eqs.
(42) and (43). But we do not include such functions here because for them we suc-
ceed in verifying axioms P1–P6 only in terms of changes in

√
ρdiag, which still lacks

physical significance.
In the sequence, we verify that Wigner–Yanase’s coherence satisfies the properties

listed in the Introduction for a measure of the wave character of a quanton:

W1 Continuity if Cwy follows from the continuity of {(√ρ) j, j }dj=1.

W2 Once
∑d

j=1((
√

ρ) j, j )
2 does not change under |β j 〉 ↔ |βk〉, Cwy is invariant

under paths’ indexes exchanges.
W3 If ρ j, j = 1 for some j , then by Tr(ρ) = 1 we have to have ρk,k = 0∀k �= j ,

which implies that ρ = |β1〉〈β1| = √
ρ. Therefore, (

√
ρ) j, j = 1 and (

√
ρ)k,k =

0∀k �= j . So Cwy = 1 − 1 = 0, which is its minimum value.
W4 If ρ is a pure state, then

√
ρ = ρ. Therefore, if {ρ j, j = 1/d})dj=1, then Cwy =

(d − 1)/d, which is its maximum value.
W5 We can diminish |ρ j,k | infinitesimally by takingρ j,k → (1−ε)ρ j,k , with ε ∈ R+

and ε 	 1. By noticing that ρ j,k = ∑
l(

√
ρ) j,l(

√
ρ)l,k , we see that this change

leads to ρ j,k → ∑
l((1− ε)(

√
ρ) j,l)(

√
ρ)l,k , which is equivalent to multiplying

the j-th row of
√

ρ by 1 − ε. Thus, it follows that

C̃wy =
∑

l �= j

|(1 − ε)(
√

ρ) j,l |2 +
∑

k �= j

∑

l �=k

|(√ρ)k,l |2 (79)

≈ (1 − 2ε)
∑

l �= j

|(√ρ) j,l |2 +
∑

k �= j

∑

l �=k

|(√ρ)k,l |2 (80)

= Cwy(ρ) − 2ε
∑

l �= j

|(√ρ) j,l |2 (81)

≤ Cwy(ρ). (82)

W6 Convexity of Cwy follows from the convexity of Wigner–Yanase’s skew infor-
mation Iwy [52].

In Fig. 4, we exemplify the application of the complementarity relations of Eq. (78)
for the state of Eq. (74). The general aspects of the obtained results are similar to those
described above for the Hilbert–Schmidt coherence.
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5.3 Complementarity relations with l1-norm coherence

In this subsection, we derive quantitative complementarity relations for d- dimensional
systems by applying l1-norm coherence [29]:

Cl1(ρ) = min
ι

||ρ − ι||l1 = min
ι

d∑

j,k=1

|(ρ − ι) j,k | = min
ι

d∑

j,k=1

|ρ j,k − ι jδ j,k | (83)

=
∑

j �=k

|ρ j,k |. (84)

Here, we will use again ρ ≥ O ⇒ |ρ j,k |2 ≤ ρ j, jρk,k∀ j, k to obtain

Cl1(ρ) ≤
∑

j �=k

√
ρ j, jρk,k ≤ d − 1, (85)

from which follows the complementarity relation:

Cl1(ρ) + Pl1(ρ) ≤ d − 1, (86)

with the l1-norm predictability defined as:

Pl1(ρ) := d − 1 −
∑

j �=k

√
ρ j, jρk,k (87)

= d − 1 − 2
∑

j<k

√
ρ j, jρk,k . (88)

It worthwhile mentioning that for d = 2 we can write Pl
hs(ρ) = (ρ1,1 − ρ2,2)

2,
which is similar to predictability measure used in [39,40]. But we notice that P =
( f (ρ1,1) − f (ρ2,2))2 is also a bona-fide measure of predictability, with f being any
monotonic increasing function of the probabilities ρ j, j , j = 1, 2. Hence, for f (x) =√
x the l1-norm predictability is a generalization of two dimensional function P =

(
√

ρ1,1 − √
ρ2,2)

2.
Next, we verify that Cl1 satisfy the axioms for a measure of the wave aspect of a

quanton:

W1 Continuity follows from the continuity of the absolute value function.
W2 Invariance under paths’ indexes exchange follows directly from the analytical

expression for Cl1 .
W3 If ρ j, j = 1 for some j , then ρk,k = 0∀k �= j and, by |ρ j,k |2 ≤ ρ j, jρk,k ,

ρ j,k = 0∀ j �= k. Therefore, Cl1 = 0.
W4 If {ρ j, j = 1/d}dj=1, then the same inequality used to prove W3 leads to |ρ j,k | ≤

1/d. The equality gives Tr(ρ2) = 1 and Cl1 = d − 1, which is its maximum
value.
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W5 For ε ∈ C, |ε| 	 1, Re(ρ j,k)Re(ε) > 0, Im(ρ j,k)Im(ε) > 0, we set ρ̃ j,k =
ρ j,k − ε. Then

|ρ̃ j,k | =
√

(ρ j,k − ε)(ρ∗
j,k − ε∗) (89)

≈
√

|ρ j,k |2 − 2Re(ρ j,kε∗) (90)

≈ |ρ j,k |
(
1 − Re(ρ j,kε

∗)/|ρ j,k |2
)

, (91)

which gives C̃l1 = Cl1 − Re(ρ j,kε
∗)/|ρ j,k | ≤ Cl1 .

W6 For 0 ≤ ω ≤ 1 and ξ and η valid density operators, we verify convexity of Cl1
as follows:

Cl1(ωξ + (1 − ω)η) =
∑

j �=k

|(ωξ + (1 − ω)η) j,k | (92)

=
∑

j �=k

|ωξ j,k + (1 − ω)η j,k | (93)

≤
∑

j �=k

(|ωξ j,k | + |(1 − ω)η j,k |) (94)

= ωCl1(ξ) + (1 − ω)Cl1(η). (95)

At last we verify that Pl1 satisfies the axioms listed in Sect. 1 for a measure of
predictability:

P1 Continuity of Pl1 follows from the continuity of the square root.
P2 The sum

∑
j �=k

√
ρ j, jρk,k warrants invariance under paths’ indexes exchanges.

P3 If ρ j, j = 1 for some j , then ρk,k = 0∀k �= j . Thus, Pl1 = d − 1− 0, which is its
maximum value.

P4 If {ρ j, j = 1/d}dj=1, then
∑

j �=k
√

ρ j, jρk,k = d − 1, and Pl1 = 0, which is its
minimum value.

P5 In view of P2, we set ρ1,1 > ρ2,2, ρ1,1 → ρ1,1 − ε, and ρ2,2 → ρ2,2 + ε with
ε ∈ R+ and ε 	 1. So

P̃l1 = d − 1 − 2
√

ρ1,1 − ε
√

ρ2,2 + ε − 2
√

ρ1,1 − ε

d∑

k=3

√
ρk,k

− 2
√

ρ2,2 + ε

d∑

k=3

√
ρk,k − 2

d−1∑

j=3

d∑

k= j+1

√
ρ j, jρk,k (96)

≈ d − 1 − 2
√

ρ1,1ρ2,2
(
1 − ε/2ρ1,1

) (
1 + ε/2ρ2,2

)

− 2
√

ρ1,1
(
1 − ε/2ρ1,1

) d∑

k=3

√
ρk,k
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− 2
√

ρ2,2
(
1 + ε/2ρ2,2

) d∑

k=3

√
ρk,k − 2

d−1∑

j=3

d∑

k= j+1

√
ρ j, jρk,k (97)

≈ Pl1 − ε

(√
ρ1,1

ρ2,2
−

√
ρ2,2

ρ1,1

)
− ε

(
1√
ρ2,2

− 1√
ρ1,1

) d∑

k=3

√
ρk,k (98)

< Pl1 . (99)

P6 We will prove convexity through the positivity of the Hessian matrix (Hn,m) =
(∂n∂m f ), with ∂n := ∂

∂xn
and f = α − ∑

j �=k
√
x j xk where α is a constant,

i.e., we will verify that 〈y|H |y〉 = ∑
n,m y∗

n ymHn,m ≥ 0∀|y〉 ∈ C
d . Once the

diagonal and off-diagonal elements of H are given, respectively, by: ∂m∂m f =
1
2

∑
j �=m

√
x j/x3m and ∂n∂m f = −1/2

√
xnxm , we shall have:

〈y|H |y〉 =
∑

m

|ym |2 1
2

∑

n �=m

√
xn
x3m

+
∑

n �=m

y∗
n ym

−1

2
√
xnxm

(100)

= 1

4

∑

m �=n

(
|ym |2x1/2n

x3/2m

+ |yn|2x1/2m

x3/2n

− y∗
n ym + y∗

m yn√
xnxm

)
(101)

= 1

4

∑

m �=n

x1/2n x1/2m

( |ym |2
x2m

+ |yn|2
x2n

− y∗
n ym + y∗

m yn
xnxm

)
(102)

= 1

4

∑

m �=n

x1/2n x1/2m

∣∣∣∣
ym
xm

− yn
xn

∣∣∣∣
2

≥ 0. (103)

In Fig. 5, we instantiate the application of the inequality of Eq. (86) for the quantum
state in Eq. (74). We observe that although Cl1 does not reach the upper bound and Pl1
does reach this value only forρw=1,a=0 and forρw=1,a=1, the coherence–predictability
relation is saturated for all ρw=1,a .

6 Conclusions

Quantum coherence (QC) is an important resource in Quantum Information Science
[19,53–68]. In this article, we proved upper bounds for Hilbert–Schmidt’s QC of a
general one-qudit state ρ by its associated incoherent uncertainty measured using the
linear entropy and von Neumann’s entropy of the closest incoherent mixture. Similar
bounds were obtained for Wigner–Yanase QC in terms of entropies of the diagonal
part of

√
ρ. We also wrote these inequalities with the upper bound given in terms of

the populations of the density matrix or of its square root.
We have presented numerical examples of the proven inequalities using random

quantum states. These examples showed that the given upper bounds are tight for
qubits and that they have their restrictiveness progressively weakened as the system
dimension grows. So, in the future it would be interesting to investigate if the positivity
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of coefficients in Eq. (21) others than the one considered in this article (see, e.g.,
[69,70]) may be used to obtain similar but more generally stronger upper bounds for
quantum coherence.

We showed that our inequalities can be used to derive quantitative wave–particle
duality relations. In our formalism, these relations appear naturally, with the pre-
dictability measures defined by the inequalities themselves, which, by its turn, follows
directly from the positivity of the density matrix (akin to what was implicitly done
for 2-slit interferometers in Ref. [71]). Finding another applications for the reported
inequalities is another natural continuation for the present research. One possibility for
investigation is regarding coherence generation via quantum operations with restric-
tions on the possible density matrix populations changes [72,73]. Other promising
candidate area for application of quantum coherence–incoherent uncertainty trade-off
relations reported here is quantum thermodynamics [74–77]. In this scenario, if the
reference basis is the energy basis, restrictions on populations changes shall be related
to restrictions on energy changes. And these restrictions may be useful for analyzing
thermodynamical processes that consume or create quantum coherence.
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