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Abstract
We present a numerical method for solving the separability problem of Gaussian
quantum states in continuous-variable quantum systems.We show that the separability
problem can be cast as an equivalent problem of determining the feasibility of a set of
linear matrix inequalities. Thus, it can be efficiently solved using existent numerical
solvers.We apply this method to the identification of bound entangled Gaussian states.
We show that the proposed method can be used to identify bound entangled Gaussian
states that could be simple enough to be producible in quantum optics.

Keywords Entanglement · Separability · Gaussian states · Bound entanglement ·
Continuous variable

1 Introduction

Quantum entanglement plays a central role in quantum information technologies, e.g.,
in quantum computation, quantum communication, and quantum metrology [1–7]. In
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recent years, a great deal of research effort has been put into the analysis of the
entanglement properties of multiparticle systems [8–17]. While most of the effort has
been devoted to systems with finite-dimensional Hilbert spaces, in particular discrete-
variable qubit states, recently there has been considerable interest in the continuous-
variable (CV) case [18–26]. Gaussian states, as a particularly useful class of CV
states, are commonly produced in quantum optics laboratories. Given a Gaussian state
of a bipartite CV system, the most fundamental problem in CV quantum information
theory is to determine whether the state is entangled or not with respect to the splitting.
Consider two CV quantum systems A with m modes and B with n modes having
infinite-dimensional Hilbert spaces HA and HB , respectively. The global bipartite
system A + B with m + n modes has a Hilbert space H = HA ⊗ HB . By definition,
a quantum state ρ̂ of the global bipartite system A+ B is said to be separable if it can
be written as a convex sum of pure product states, namely,

ρ̂ =
∑

j

p j ρ̂
A
j ⊗ ρ̂B

j , (1)

where p j ≥ 0 and
∑

j p j = 1 [4,27]. Note that in Eq. (1), the sum can also be
an integral and the probabilities are then replaced by a continuous probability den-
sity function. Physically, Eq. (1) means that separable states can be produced from
product states by means of local operations and classical communications (LOCCs).
By definition, entangled states are states which are not separable. Then, the so-called
separability problem is to determine whether a given quantum state is separable or
not. Despite considerable progress made in recent years, the separability problem is
still far from being completely solved [28–34].

Perhaps, the most commonly used tool in quantum information theory for checking
if a given state is separable or not is based on the partial transpose [35,36]. For a
separable quantum state ρ̂ as in Eq. (1), the partial transpose with respect to one of the
two subsystems yields again a legitimate density operator and, in particular, positive,

i.e., ρ̂TA = ∑
j p j

(
ρ̂A
j

)T ⊗ ρ̂B
j ≥ 0. Hence, the positivity of the partial transpose

(PPT) provides us a necessary condition for separability. However, it should be noted
that the PPT criterion is, in general, not a sufficient condition for separability. In fact,
a 2 × 2-mode Gaussian state, which has positive partial transpose but nevertheless is
entangled, has been constructed in Ref. [30]. This type of Gaussian state is known
as a bound entangled Gaussian state. Bound entangled Gaussian states are entangled
states but their entanglement cannot be distilled into maximally entangled pure states
with LOCCs [37–42].

For Gaussian quantum states, all the entanglement information is contained in the
covariancematrix of position andmomentumobservables [4,24]. Thus, the separability
problem can be investigated at the level of covariance matrices. In fact, both the
separability problem and the PPT criterion have been successfully reformulated in
terms of the covariance matrix language in Ref. [30]. Built upon this work, Ref. [31]
proposes a nonlinear iterative procedure to check the separability of a Gaussian state.
Reference [33] developed a numerical method for finding an optimal entanglement
witness that robustly detects the entangled state. Both methods are nice and effective
for Gaussian states.

123



Numerical detection of Gaussian entanglement and its… Page 3 of 14 225

In this paper, we show that the separability problem can be cast as an equivalent
problem of solving a set of linear matrix inequalities. If there exist solutions to the
set of linear matrix inequalities, then the Gaussian state is separable; otherwise, it is
entangled. Thus, the feasibility of the linear matrix inequalities serves as a necessary
and sufficient condition for the separability of the corresponding Gaussian state. On
the other hand, solving linearmatrix inequalities is amature technology [43]. There are
many efficient numerical methods that can be used to solve linear matrix inequalities.
For example, the linear matrix inequalities solver SeDuMi [44] or SDTP3 [45] with
YALMIP interface [46] can perform very well. Thus, Gaussian entanglement can, in
principle, be detected by using this method. Strictly speaking, the numerical method
proposed in this papermaybe considered as a special case of the numericalmethod pro-
posed inRef. [33]. It receives particular attention in this paper since themethod of solv-
ing linear matrix inequalities is quite familiar to researchers from engineering [43]. By
using the above LMI solvers, Gaussian entanglement can be detected very efficiently.
As an application, we use this numerical method to identify bound entangled Gaussian
states. It iswell known that bound entanglement is a rare phenomenon [1] and the detec-
tion of bound entanglement is a challenging problem [47]. In this paper, we use the pro-
posed numericalmethod to identify a 2×2 bound entangledGaussian state that is easily
prepared in quantumoptics.Wefirst parametrize the covariancematrices of 2×2Gaus-
sian states using some free parameters. Then, we choose the values of these parameters
and see if the resulting covariance matrix passes the PPT and entanglement tests. If so,
then we know the corresponding Gaussian state is a bound entangled Gaussian state.
Based on the decomposition result, we can further provide a theoretical optical imple-
mentation for the generation of the bound entangled state. Finally, we highlight some
important characteristics of this bound entangled state example, which may make it
the best candidate for a realistic experimental verification of bound entanglement.

2 Preliminaries

WeconsiderCVquantumsystemswithGaussian states.Quantumcontinuous variables
describe quantummechanics applied to an infinite-dimensionalHilbert space equipped
with a set of canonical quadrature operators q̂ j and p̂ j ( j = 1, 2, . . . , n). Here, q̂ j and
p̂ j are position and momentum operators, respectively. They obey canonical commu-
tation relations [q̂ j , p̂k] = iδ jk (in natural units, � = 1). The quadrature operators q̂ j

and p̂ j are collected to form a vector of operators ξ̂ = (q̂1, p̂1, . . . , q̂n, p̂n)T . Then,
the commutation relations can be written as

[ξ̂ j , ξ̂k] = iΩ jk, (2)

where Ω jk is the generic entry of the 2n × 2n matrix Ω := ω⊕n =
⎛

⎜⎝
ω 0

. . .

0 ω

⎞

⎟⎠,

ω :=
(

0 1
−1 0

)
.
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Gaussian states are CV states with Gaussian characteristic functions. Gaussian
states are completely characterized by a real displacement vector 〈ξ̂ 〉 = tr(ρ̂ξ̂ ) and a
real covariance matrix γ with elements

γ jk = tr(ρ̂{ξ̂ j − 〈ξ̂ j 〉, ξ̂k − 〈ξ̂k〉}) (3)

where we define the anticommutator product as { Â, B̂} = Â B̂ + B̂ Â. The covariance
matrix γ is real and symmetric, and due to the commutation rules (2), the covariance
matrix γ satisfies the uncertainty relation

γ + iΩ ≥ 0. (4)

Inequality (4) is a necessary and sufficient condition for a real symmetric matrix γ

to correspond to a physical quantum state [48]. The displacement vector 〈ξ̂ 〉 contains
no entanglement information. All the entanglement information is contained in the
covariance matrix of the state. Thus, we will restrict ourselves to the analysis of
covariance matrices γ . For a Gaussian state ρ̂AB pertaining to an (m + n)-mode
bipartite system A + B, a necessary and sufficient condition has been developed in
Ref. [30] for the separability of the state. It states that an (m + n)-mode Gaussian
state ρ̂AB with covariance matrix γ is separable if and only if there exist an m-mode
covariance matrix γA ≥ iΩA and an n-mode covariance matrix γB ≥ iΩB such that

γ ≥ γA ⊕ γB . (5)

Here, γA⊕γB denotes thematrix direct sumof γA and γB ; that is, γA⊕γB =
(

γA 0
0 γB

)
.

The condition (5) is a necessary and sufficient condition for the separability of a
Gaussian state. Given the covariance matrix γ , if we can find γA and γB that satisfy
the inequality (5), then the state is separable; otherwise, it is entangled.

A very convenient method for checking if a given state is separable or not is the PPT
criterion. The PPT criterion provides a necessary condition for a state to be separable.
The partial transpose of a state corresponds physically to a local time reversal. For
a bipartite Gaussian system A + B, the partial transpose with respect to system A
transforms the covariance matrix γ into γ̃ = (� ⊕ IB)γ (� ⊕ IB), where � =
⊕m

k=1 diag(1,−1) corresponds to a sign change of the momentum variables belonging
to system A and IB is the n-mode identity matrix. Clearly, if the partial transpose of
ρ̂ is a valid density operator, we must have γ̃ + iΩ ≥ 0. But this is equivalent to
γ + iΩ̃ ≥ 0, where Ω̃ = (−ΩA) ⊕ ΩB . Summarizing, suppose γ is the covariance
matrix of a Gaussian state, with finite second moments, which has positive partial
transpose. Then, we have

γ + iΩ̃ ≥ 0, where Ω̃ =
(−ΩA 0

0 ΩB

)
. (6)

The PPT criterion (6) is a necessary condition for separability. This can be seen from
the fact that the inequality (6) directly follows from the inequality (5). In general, the
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PPT criterion is not sufficient to guarantee separability. There exist Gaussian states
that satisfy the PPT criterion but nevertheless are entangled. Such states are known as
bound entangled Gaussian states. Bound entangled states are entangled states, but they
cannot be distilled into pure entangled states using LOCCs. Bound entangled states
have practical applications in quantum cryptography [49], channel discrimination [50]
and many quantum information protocols [40].

3 Detection of Gaussian entanglement via solving linear matrix
inequalities

As mentioned in Eq. (5), an (m+n)-mode Gaussian state ρ̂AB with covariance matrix
γ is separable if and only if there exist an m-mode covariance matrix γA ≥ iΩA and
an n-mode covariance matrix γB ≥ iΩB such that γ ≥ γA ⊕ γB . Since the inequality

γA ≥ iΩA is equivalent to

(
γA ΩA

ΩT
A γA

)
≥ 0 and the inequality γB ≥ iΩB is equivalent

to

(
γB ΩB

ΩT
B γB

)
≥ 0 (see Lemma 2 in Ref. [31] for a proof), the separability problem

of a Gaussian state ρ̂AB can be recast as an equivalent feasibility problem involving
linear matrix inequalities as follows:
Separability problem

find γA and γB

subject to γ −
(

γA 0
0 γB

)
≥ 0, (7)

(
γA ΩA

ΩT
A γA

)
≥ 0, (8)

(
γB ΩB

ΩT
B γB

)
≥ 0. (9)

The separability problem is thus to determine whether the constraints (7), (8) and (9)
are consistent for a given bipartite Gaussian state γ , and if so, find a pair of positive
definite matrices γA and γB satisfying them. If the above problem is feasible, that
is, there exist solutions γA and γB to the constraints (7), (8), and (9), then we can
conclude that the covariance matrix γ is separable; otherwise, it is entangled. The
linear matrix inequalities (7), (8) and (9) can be solved efficiently by using existent
numerical solvers such as SeDuMi [44] and the SDTP3 [45].

It should be mentioned that although the linear matrix inequalities (7), (8) and (9)
are necessary and sufficient for checking separability of γ , one has to be very careful
when the state γ lies very close to the boundary of the set of separable states or to
the boundary of the set of physical states (i.e., the smallest eigenvalue of γ + iΩ is
very close to zero). For such cases, since the constraints (7), (8) and (9) are non-strict
linear matrix inequalities, the unavoidable round-off errors caused by floating point
computations may have a significant impact on the solvability of the problem. We
consider an example to illustrate this fact.
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Example. Consider the Gaussian state constructed in Ref. [30]. The covariance
matrix of this 2 × 2 Gaussian state is given by

γ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 1 0 0 0
0 1 0 0 0 0 0 −1
0 0 2 0 0 0 −1 0
0 0 0 1 0 −1 0 0
1 0 0 0 2 0 0 0
0 0 0 −1 0 4 0 0
0 0 −1 0 0 0 2 0
0 −1 0 0 0 0 0 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

The eigenvalues of γ + iΩ are 0, 3−√
3, 3, 3+√

3, each with multiplicity 2. Because
0 is an eigenvalue of γ + iΩ , the state lies just on the boundary of the set of physical
states. For this particular γ , even if numerical computation shows that the problem
with constraints (7), (8) and (9) is infeasible, it is still too early to make a conclusion
on whether the state is entangled or not, since we have not yet ruled out the possibility
that the infeasibility is a result of the application of floating point computations to
non-strict inequalities. Fortunately, for this particular γ , we can relax the problem and
solve the following strict inequalities instead:

find γA and γB

subject to γ −
(

γA 0
0 γB

)
> −ε I , (11)

(
γA ΩA

ΩT
A γA

)
> −ε I , (12)

(
γB ΩB

ΩT
B γB

)
> −ε I . (13)

Here, ε > 0 is a small number such that the LMI problem (11), (12) and (13) slightly
relaxes the LMI problem (7), (8) and (9). Typically, wemay choose 10−6 < ε < 10−9.
For any ε > 0, if there is no solution γA, γB to the inequalities (11), (12) and (13),
then there is no solution γA, γB to the LMI problem (7), (8) and (9), and we can safely
conclude that the state γ is an entangled state. For this particular example, we choose
ε = 10−8. We find that even in this case, there is still no solution γA, γB to the relaxed
inequalities (11), (12) and (13). So we can safely conclude that the state γ in Eq. (10)
is an entangled state. On the other hand, a direct calculation shows that γ has a positive
partial transpose, i.e., γ + iΩ̃ ≥ 0. Thus, the state with covariance matrix (10) is a
bound entangled Gaussian state with respect to the bipartite splitting {{1, 2}, {3, 4}}.
Remark 1 e make some remarks about how to solve linear matrix inequalities numer-
ically. Linear matrix inequalities are essentially convex constraints and can be solved
efficiently using many existing numerical methods [43,51]. A simple algorithm that is
guaranteed to solve linear matrix inequality problems is the ellipsoid algorithm [52].
A more computationally efficient algorithm is the interior point method [53]. The
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basic idea of these algorithms can be found in [43]. Based on these algorithms, several
software packages for solving linear matrix inequalities have been produced such as
the solvers SeDuMi [44] and the SDTP3 [45]. We refer the reader to the appendices
of Ref. [54] for some code examples on how to use these solvers.

4 Identification of 2× 2 bound entangled Gaussian states

Bound entangled Gaussian states are a class of Gaussian states that satisfy the PPT
criterion, but nevertheless are entangled. In order to guarantee a bound entangled state,
we need to make sure that the following two conditions hold: (1) the covariance matrix
γ satisfies the PPT criterion (6); (2) the linearmatrix inequalities (7)–(9) are infeasible;
that is, there exist no solutions γA and γB to the constraints (7)–(9).

According to a theorem byWilliamson [55], every positive-definite real symmetric
matrix of even dimension can be diagonalized through a symplectic transformation.
In particular, this theorem can be applied to covariance matrices of Gaussian states.
Given an arbitrary n-mode Gaussian state with covariance matrix γ , there exists a
symplectic matrix S such that

γ = S[
n⊕

k=1

νk I2]ST , (14)

where S is a symplecticmatrix, i.e., SΩST = Ω . The n positive quantities νk are called
the symplectic eigenvalues of γ and can also be computed by taking the modulus of
the standard eigenspectrum of thematrix iΩγ . The symplectic spectrum expresses the
fundamental properties of the correspondingGaussian quantum state. For example, the
uncertainty principle (4) is equivalent to νk ≥ 1. When νk = 1 for all k, the resulting
covariance matrix γ = SST corresponds to a pure Gaussian state [48,56,57].

Furthermore, the symplecticmatrix S in Eq. (14) can be decomposed using theEuler
decomposition [58,59]. In fact, every n-mode symplectic matrix S can be written as

S = K [
n⊕

k=1

S(rk)]L, (15)

where K and L are symplectic and orthogonal matrices, and S(rk) =
(
e−rk 0
0 erk

)
is

a set of single-mode squeezing matrices. It is worth mentioning that the symplectic
and orthogonal matrices K and L correspond to passive interferometers which can be
implemented using a network of beam splitters and phase shifters in quantum optics.
CombiningEq. (14) andEq. (15), we obtain that an arbitrary n-mode covariancematrix
γ can be written as

γ = K [
n⊕

k=1

S(rk)]L[
n⊕

k=1

νk I2]LT [
n⊕

k=1

S(rk)]KT . (16)
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Physically, Eq. (16) means that every n-mode zero-mean Gaussian quantum state can
be prepared beginning with n thermal states described by the diagonal covariance
matrix ν = ⊕n

k=1 νk I2, followed by applying an interferometer L , then single-mode
squeezers S(rk) and finally an interferometer K .

In this section, our main objective is to construct an example of a 2 × 2 bound
entangled Gaussian state that is simple to be prepared in quantum optics. This is done
by using Eq. (16) with the help of the numerical detection method discussed in Sect. 3.
Firstly, we consider the symplectic and orthogonal matrices K and L in Eq. (16). We

rearrange the entries of the matrix Ω such that we have J := PTΩP =
(

0 I4
−I4 0

)

where

P =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us define O := PT K P . Then, it can be shown that O is orthogonal (i.e.,
OT O = I ) and satisfies OJOT = J , which means that the matrix O can be written

as O =
(

X Y
−Y X

)
, where XXT + YY T = I and XY T − Y XT = 0. This implies

that Q := X + iY is a unitary matrix. Therefore, if we choose a unitary matrix Q,

and let X := Re(Q) and Y := Im(Q), the matrix O =
(

X Y
−Y X

)
is orthogonal

and satisfies OJOT = J . As a result, the corresponding symplectic and orthogo-
nal matrix K can be obtained by K = POPT . We mention that the class of 4 × 4
unitary matrices has been parametrized in Ref. [60]. After determining K and L ,
we choose symplectic eigenvalues νk and squeezing matrices S(rk) in Eq. (16) and
we obtain a Gaussian state γ . This Gaussian state γ is then tested by the numeri-
cal detection method discussed in Sect. 3. If the obtained Gaussian state γ satisfies
the PPT criterion (6), but nevertheless is entangled, then we obtain a bound entan-
gled state. Otherwise, we try different parameters until we get a bound entangled
state.

Using the idea above, we have successfully obtained a 2 × 2 bound entangled
Gaussian state. The covariance matrix of this Gaussian state is calculated as
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γ

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.8605 0 −0.7593 0 0.1030 0 0.6384 0
0 1.8687 0 −0.3556 0 0.6854 0 1.0340

−0.7593 0 2.3534 0 1.0738 0 −0.7593 0
0 −0.3556 0 1.9334 0 0.5029 0 −0.3556

0.1030 0 1.0738 0 2.4990 0 0.1030 0
0 0.6854 0 0.5029 0 2.9027 0 0.6854

0.6384 0 −0.7593 0 0.1030 0 1.8605 0
0 1.0340 0 −0.3556 0 0.6854 0 1.8687

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(17)

We obtain the covariance matrix (17) by using the following procedure. First, we
choose the symplectic eigenvalues νk ≥ 1 in Eq. (16). Here, we have chosen

ν =
n⊕

k=1

νk I2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.01 0
1.01

1.01
1.01

3.2
3.2

3.2
0 3.2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

Second,we choose the symplectic andorthogonalmatrix L and the squeezingoperators
S(rk). Here, for simple implementation of the resulting state, we have chosen L = I
and

S(r1) = S(r3) =
(
1.1 0
0 1

1.1

)
, (19)

S(r2) = S(r4) =
( 1

1.1 0
0 1.1

)
. (20)

Finally, we choose the symplectic matrix K . Using the method described before, we

choose the unitary matrix Q =

⎛

⎜⎜⎜⎝

√
2
2

√
2
4 −

√
2
4

1
2

0
√
2
2

√
2
2 0

0 − 1
2

1
2

√
2
2

−
√
2
2

√
2
4 −

√
2
4

1
2

⎞

⎟⎟⎟⎠. The resulting symplectic and
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orthogonal matrix K is then calculated as

K =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2
2 0

√
2
4 0 −

√
2
4 0 1

2 0

0
√
2
2 0

√
2
4 0 −

√
2
4 0 1

2

0 0
√
2
2 0

√
2
2 0 0 0

0 0 0
√
2
2 0

√
2
2 0 0

0 0 − 1
2 0 1

2 0
√
2
2 0

0 0 0 − 1
2 0 1

2 0
√
2
2

−
√
2
2 0

√
2
4 0 −

√
2
4 0 1

2 0

0 −
√
2
2 0

√
2
4 0 −

√
2
4 0 1

2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Substituting the above values of ν, L , S(rk) and K into the decomposition (16), we
will obtain the covariance matrix (17). The physicality of the state (17) is guaranteed
by our choice of the symplectic eigenvalues νk ≥ 1. Next, we show that it is a bound
entangled state. It is found that min eig(γ + iΩ̃) = 0.0840 > 0; thus, the covariance
matrix (17) satisfies the PPT criterion (6) and is not distillable. On the other hand,
we find by numerical computation that the set of strict inequalities (11)-(13) with
ε = 10−8 is infeasible given the covariance matrix (17). Hence, it is an entangled
state. In conclusion, the 2 × 2 Gaussian state (17) satisfies the PPT criterion (6), but
is an entangled state. So it is a bound entangled state.

Now, we show how to construct an optical system to generate the bound entangled
Gaussian state (17). We note that the symplectic map K corresponds to the following
linear unitary transformation on the annihilation operators

⎛

⎜⎜⎝

ĉ1
ĉ2
ĉ3
ĉ4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎜⎝

√
2
2

√
2
4 −

√
2
4

1
2

0
√
2
2

√
2
2 0

0 − 1
2

1
2

√
2
2

−
√
2
2

√
2
4 −

√
2
4

1
2

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎝

b̂1
b̂2
b̂3
b̂4

⎞

⎟⎟⎠ .

Here, b̂1−b̂4 and ĉ1− ĉ4 are annihilation operators; see Fig. 1 for details. Furthermore,
using the result developed in Ref. [61,62], this unitary transformation can be realized
as a network of three beam splitters as follows:

⎛

⎜⎜⎜⎝

√
2
2

√
2
4 −

√
2
4

1
2

0
√
2
2

√
2
2 0

0 − 1
2

1
2

√
2
2

−
√
2
2

√
2
4 −

√
2
4

1
2

⎞

⎟⎟⎟⎠ = B3B2B1, (21)

where B1 − B3, representing beam splitter transformations, are given by
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Fig. 1 Diagram for preparation of the bound entangled Gaussian state (17) in quantum optics. The initial
inputs â1, â2, â3 and â4 are in thermal states described by the covariance matrix ν shown in Eq. (18). B1,
B2 and B3 are balanced beam splitters and realize the corresponding unitary transformations (22) and (23);
S(r1), . . ., S(r4) are a set of single-mode squeezers as described by Eqs. (19) and (20). The output Gaussian
state (ĉ1, . . . , ĉ4) has the covariance matrix (17) and is a 2 × 2 bound entangled state with respect to the
bipartite splitting {{ĉ1, ĉ2}, {ĉ3, ĉ4}}

B1 =

⎛

⎜⎜⎜⎝

1 0 0 0

0
√
2
2

√
2
2 0

0 −
√
2
2

√
2
2 0

0 0 0 1

⎞

⎟⎟⎟⎠ , B2 =

⎛

⎜⎜⎜⎝

1 0 0 0
0 1 0 0

0 0
√
2
2

√
2
2

0 0 −
√
2
2

√
2
2

⎞

⎟⎟⎟⎠ , (22)

B3 =

⎛

⎜⎜⎜⎝

√
2
2 0 0

√
2
2

0 1 0 0
0 0 1 0

−
√
2
2 0 0

√
2
2

⎞

⎟⎟⎟⎠ . (23)

Hence, the symplectic map K is implemented by a network of beam splitters as
described in the dotted box in Fig. 1. B1, B2 and B3 are balanced beam splitters
(50 : 50). According to Eq. (16), the output Gaussian state (ĉ1, . . . , ĉ4) generated by
the optical system described in Fig. 1 has the covariance matrix (17) and is a bound
entangled state with respect to the bipartite splitting {{ĉ1, ĉ2}, {ĉ3, ĉ4}}.

The bound entangled Gaussian state (17) has some nice characteristics as follows
that make it simple enough to be producible in quantum optics.

1. L = I in Eq. (16). It means that we do not need to implement another beam splitter
network before the single-mode squeezers S(r1), . . ., S(r4).

2. The optical system only consists of three beam splitters B1, B2 and B3. It happens
that this is theminimumnumber of beamsplitters to prepare a 2×2bound entangled
Gaussian state. Besides, all the beam splitters B1, B2 and B3 are balanced (50 : 50),
and hence they can be easily implemented experimentally.

3. As shown in Eq. (18), all the symplectic eigenvalues νk are strictly larger than 1. In
other words, the initial inputs â1–â4 are all in thermal states. This is clearly realistic
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since in actual implementations we cannot prepare precisely vacuum inputs due
to the presence of noise and imperfections. For comparison, the preparation of the
bound entangled state (10) requires two vacuum inputs as illustrated in Ref. [42].

4. The state (17) is fairly robust for experimental verification. Numerical simulations
show that small imperfections in the implementation (such as input fields and
squeezers) can still generate bound entanglement (though not the original state).
An important reason is that the state (17) has strictly positive partial transpose,
i.e., γ + iΩ̃ > 0. Hence, small imperfections in experimental implementations
still lead to a PPT state.

Because of the above characteristics, the Gaussian state (17) may serve as a good
candidate for a realistic experimental verification of bound entanglement.

5 Conclusion

In this paper, we have shown that the separability problem of Gaussian quantum
states can be cast as an equivalent problem of determining feasibility of a set of linear
matrix inequalities. Thus, Gaussian entanglement can be directly detected by checking
the feasibility of the corresponding linear matrix inequalities. We have applied this
method to the identification of bound entangled Gaussian states. By choosing some
parameters in the decomposition of a covariance matrix, we can find bound entangled
states that are simple enough to be producible in quantum optics. We have provided an
optical scheme for generating a particular bound entangled Gaussian state in quantum
optics. We have highlighted some characteristics of the bound entangled Gaussian
state which may make it a good candidate for a realistic experimental verification of
bound entanglement. In future work, it would be interesting to investigate potential
applications of bound entangled Gaussian states to quantum engineering areas such
as multiparty quantum communication [40,49] and quantum metrology [6,7].
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