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Abstract
Let q be a prime power and m ≥ 2 be a positive integer. A sufficient condition for
the q2-ary images of constacyclic codes over Fq2m to be Hermitian self-orthogonal
is presented. Hermitian self-orthogonal codes over Fq2 are obtained as the images of
constacyclic codes overFq2m . Two classes of quantum codes are derived by employing
the Hermitian construction. The construction produces quantum codes with better
parameters than the previously known ones.
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1 Introduction

Quantum computation and communication attracted much attention due to efficient
quantum algorithms in the late 1990s. It is well known that quantum computation and
communication rely on undisturbed evolution of quantum coherence. Unfortunately,
the decoherence caused by interaction with the environment destroys the information
in a superposition of states. At the same time, because of the no-cloning theorem [42],
the technique that duplicates information could not be applied to quantum information.
To overcome these difficulties, Shor [33] and Steane [34] showed that quantum error-
correcting codes do exist and constructed the first example of quantum codes. This
signs the birth of quantum error-correcting codes. Quantum error-correcting codes
introduce some auxiliary qubits and make them entangle with the transmitted qubits.
The redundancy is stored in the new entangled state. The original state can be recov-
ered by making use of the auxiliary qubits (see [29,31]). Soon afterwards, Calderbank
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et al. [5] presented a mathematical scheme to obtain quantum codes from classi-
cal error-correcting codes over F2 or F4 with certain orthogonal properties. Finding
good quantum error-correcting codes has become another subject of quantum error-
correction besides fault-tolerant quantum hardware design. A number of good binary
quantum codes were constructed from classical self-orthogonal codes over F2 or F4
(see [5,7,10,24]). Later, non-binary quantum codes have received increasing attention
because they can be used in the realization of fault-tolerant quantum computation
[4,25]. Several construction methods were presented based on self-orthogonal codes
over finite fields [2,20].

Due to good algebraic structure, classical cyclic codes were used to construct
quantum codes. This yields quantum cyclic codes including quantum BCH codes
and quantum Reed-Solomon codes. In [35], Steane discovered efficient binary quan-
tum codes via BCH codes. Non-binary quantum cyclic codes were constructed from
Euclidean orHermitian self-orthogonal codes (see [1,22,27]). Since then, various tech-
niques are applied to construct new and good quantum cyclic codes. At the application
level, the theory of quantum shift registers has been discussed in [15,41] and their real-
ization was performed by the ion traps or nuclear magnetic resonance (NMR) in the
experiments [9,23]. Meanwhile, designing arithmetic and logic unit based on quantum
technologies was proposed in [13,30,32].

As a generalization of cyclic codes, constacyclic codes have been naturally consid-
ered to construct quantum codes. Many quantum maximal distance separable (MDS)
codes were derived from constacyclic codes (see [6,18,39]). In contrast with quantum
cyclic codes, numerous quantum constacyclic codes have better parameters on the
same length [17,19]. Liu et al. [26] explored quantum constacyclic codes of length
q2m + 1 and found a lot of good quantum codes. Wang and Gao [40] constructed
new quantum codes from constacyclic codes over the finite non-chain ring Fq + vFq

with v2 = v. Chen et al. [8] constructed new optimal asymmetric quantum codes
and quantum convolutional codes from constacyclic codes. The research above indi-
cates that constacyclic codes have advantages in constructing quantumerror-correcting
codes. Based on concatenated method, Grassl et al. [16] constructed quantum codes
from the binary images of Reed-Solomon codes over F2k . Tangataj and McLaugh-
lin [37] derived good quantum codes from Hermitian self-orthogonal codes over F4
as the images of cyclic codes over F4m . Sundeep and Tangataj [36] studied the self-
orthogonality of q-ary images of qm-ary codes and constructed new quantum codes
from the images of cyclic codes over F4m . In the above literature, Hermitian self-
orthogonal cyclic codes over large fields or rings were used to construct quantum
codes.

In this paper, we utilize a class of constacyclic codes overFq2m to construct quantum
codes. Let Fq2m be the extension field of Fq2 with degree m. Let η be a nonzero
element of Fq2 . We provide an explicit criterion for judging the q2-ary images of
η-constacyclic codes over Fq2m to be Hermitian self-orthogonal. Based on Hermitian
self-orthogonal images of constacyclic codes over Fq2m , we construct some quantum
codes with parameters better than the ones available in the literature. It is worth noting
that constacyclic codes over Fq2m are not necessarily Hermitian self-orthogonal. The
paper is organized as follows. In Sect. 2, basic notations and results about constacyclic
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codes and quantum codes are recalled. In Sect. 3, a sufficient condition for q2-ary
images of q2m-ary constacyclic codes is given. In Sect. 4, some quantum codes are
constructed. Section 5 gives a conclusion.

2 Preliminaries

Let Fq2 be the finite field with q2 elements, where q is a power of a prime p. The
Hamming weight of a vector x = (x0, x1, . . . , xn−1) ∈ F

n
q2

is the number of nonzero

xi and is denoted by wt(x). Let F∗
q2

be the multiplicative group of Fq2 . Assume that η

is an element of F∗
q2
. An η-constacyclic code C over Fq2 of length n is a linear code

with the property that if (c0, c1, . . . , cn−1) ∈ C then (ηcn−1, c0, . . . , cn−2) ∈ C. An η-
constacyclic code C overFq2 of length n can be viewed as an ideal in the principal ideal
ring Fq2 [x]/〈xn−η〉. Hence, C = 〈g(x)〉, where g(x) is a monic divisor of xn−η. The
polynomial g(x) is called the generator polynomial of C, and h(x) = (xn −η)/g(x) is
referred to as the parity-check polynomial of C. The roots of g(x) and h(x) are called
the zeros and nonzeros of C, respectively. Assume that gcd(n, q) = 1 and η has order
r in F

∗
q2
. Let ξ be a primitive nr -th root of unity such that η = ξn . Then, the roots of

xn − η are ξ1+r j for 0 ≤ j ≤ n − 1. Denote Ω = {1+ r j | 0 ≤ j ≤ n − 1}. For each
s ∈ Ω , denote by Cq2 [s, nr ] the q2-cyclotomic coset modulo nr containing s. Then
g(x) =∏s

∏
i∈Cq2 [s,nr ](x − ξ i ), where s runs through some subset of representatives

of the q2-cyclomotic cosets modulo nr . Let Z =⋃s Cq2 [s, nr ] be the union of these
q2-cyclotomic cosets. The set Z is called the zero set of C, and the set T = Ω\Z is
called the nonzero set of C. The following is the BCH-type bound for constacyclic
codes (see [3,21]).

Theorem 2.1 Assume that gcd(n, q) = 1. Let C be an η-constacyclic code of length
n over Fq2 . If the generator polynomial g(x) of C has the elements {ξ1+ri | b ≤ i ≤
b + d − 1} as the zeros for some integer b, then the minimum Hamming distance of C
is at least d + 1.

The Euclidean dual code of a linear code C of length n over Fq2 is defined as

C⊥E = {c ∈ F
n
q2 | c · x = 0 for all x ∈ C},

where c·x =∑n−1
i=0 ci xi denotes the Euclidean product inner of c and x. TheHermitian

dual code of C is defined as

C⊥H = {c ∈ F
n
q2 | 〈c, x〉H = 0 for all x ∈ C},

where 〈c, x〉H =∑n−1
i=0 ci x

q
i denotes the Hermitian product inner of c and x. For any

x = (x0, x1, . . . , xn−1) ∈ F
n
q2
, let xq = (xq0 , xq1 , . . . , xqn−1). Set Cq = {cq | c ∈ C}. It

can be directly checked that C⊥H = (Cq)⊥E = (C⊥E )q . Hence, C⊥E and C⊥H have the
same minimum Hamming distance. If C ⊆ C⊥H (resp. C ⊆ C⊥E ), then C is called a
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Hermitian self-orthogonal code (resp. an Euclidean self-orthogonal code). Define the
symplectic weight of a vector (a|b) = (a0, a1, . . . , an−1|b0, b1, . . . , bn−1) ∈ F

2n
q as

wts((a|b)) = |{i | (ai , bi ) 
= (0, 0), 0 ≤ i ≤ n − 1}|.

For two vectors (a|b), (a′|b′) ∈ F
2n
q , define the trace-symplectic inner product as

〈
(a|b), (a′|b′)

〉
s = Trq/p(b · a′ − b′ · a),

where Trq/p denotes the trace map from Fq to Fp. For a linear code D ⊆ F
2n
q , the

trace-symplectic dual code of D is defined as

D⊥s = {c ∈ F
2n
q | 〈c, x〉s = 0 for all x ∈ C}.

If D ⊆ D⊥s , then D is called a symplectic self-orthogonal code. For any nonempty
subset A ⊆ F

2n
q , define the weight of A as wts(A) = min{wts(a) | 0 
= a ∈ A}.

Let C be an η-constacyclic code over Fq2 of length n. Assume that the order r of
η in F

∗
q2

is a divisor of q + 1. Then C⊥H is still η-constacyclic [18]. Suppose that C
has nonzero set T ⊆ Ω . Then C⊥H has zero set −qT = {−qz(mod nr) | z ∈ T }.
Moreover, C ⊆ C⊥H if and only if −qT

⋂
T = ∅. In the next section, we will derive

Hermitian self-orthogonal codes over Fq2 from constacyclic codes over Fq2m , where
m ≥ 2 is a positive integer. Let Fq2m be an extension field of Fq2 with degree m.
Then Fq2m can be viewed as an m-dimensional vector space over Fq2 . The trace map
Trq2m/q2 : Fq2m → Fq2 is defined as

Trq2m/q2(a) = a + aq
2 + · · · + aq

2(m−1)
.

Let A = {α0, α1, . . . , αm−1} and B = {β0, β1, . . . , βm−1} be two bases of Fq2m over
Fq2 . If

Trq2m/q2(αiβ
qm

j ) =
{
1, i = j,
0, i 
= j

for 0 ≤ i, j ≤ m − 1, then the bases A and B are said to be Hermitian dual to each
other. Similar to the Euclidean dual bases, it can be verified that any basis of Fq2m over
Fq2 has a unique Hermitian dual basis (see [38]).

Now,we review some basic concepts on quantum error-correct codes. Quantum bits
or qubits are the basic unit for quantum systems used to store quantum information.
The state of a qubit is a nonzero vector in the complex vector space Cq . Denote by
{|x〉 | x ∈ Fq} an orthonormal basis ofCq with respect to the Hermitian inner product.
Let H = (Cq)⊗n = C

qn be the n-th tensor product of Cq . A quantum system of n
qubits has basis states of the form

|x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉 = |x1x2 · · · xn〉.
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So a quantum state of such a system can be represented as a superposition of these
basis states and is specified by qn amplitudes. A quantum state having the property
that it cannot be written as a product of states of its component systems is said to be
an entangled state. Entangled states play a crucial role in quantum computation and
quantum information. In an entangled state, the component systems are correlated. A
quantum error-correcting scheme is proposed by entangling the transmitted qubits of
a quantum codeword with some ancilla qubits (see [29,31]).

A q-ary quantum code is a K -dimensional subspace of the Hilbert space Cqn . Let
a and b be any two elements of Fq . Define the unitary operators X(a) and Z(b) on
C
q as X(a)|x〉 = |x + a〉 and Z(b)|x〉 = ωTrq/p(bx)|x〉, where ω = exp(2π i/p)

is a primitive p-th root of unity. For any vector a = (a0, a1, . . . , an−1) ∈ F
n
q , let

X(a) = X(a1) ⊗ · · · ⊗ X(an). The set En = {X(a)X(b) | a,b ∈ F
n
q} forms an error

basis on C
qn . The basis En can generate a finite error group Gn = {ωi X(a)X(b) |

a,b ∈ F
n
q , 0 ≤ i ≤ p − 1}. For a quantum error e = ωλX(a)X(b) ∈ Gn with

a = (a0, a1, . . . , an−1) ∈ F
n
q and b = (b0, b1, . . . , bn−1) ∈ F

n
q , the quantum weight

is defined as wtQ(e) = wts((a|b)). A quantum code has minimum distance d if and
only if it can detect all errors in Gn of weight less than d, but cannot detect some
error of weight d. A quantum stabilizer code Q is a nonzero subspace of Cqn that
satisfies Q = ⋂

E∈S{v ∈ C
qn | Ev = v}, where S is a subgroup of Gn . Denoted

by ((n, K , d))q or [[n, k, d]]q a quantum stabilizer code Q with dimension K and
minimum distance d, where k = logq K . An [[n, k, d]]q quantum code can encode k
logical qubits of information into n physical qubits and has qk basis codewords. For
a subgroup S of Gn , let CGn (S) be the centralizer of S in Gn and SZ(Gn) be the
subgroup generated by S and the center Z(Gn). Regard a quantum error ωλX(a)X(b)

in Gn as an element (a|b) in F2n
q , then CGn (S) and SZ(Gn) are, respectively, mapped

into an additive code and its dual code with respect to the symplectic inner product.
Moreover, SZ(Gn) is a subgroup of CGn (S). Based on this, the connection between
quantum stabilizer codes and classical additive codes was established in [2,20]

Theorem 2.2 [2,20] An ((n, K , d))q quantum stabilizer code exists if and only if there
exists an additive code C ⊆ F

2n
q of size qn/K such that C ⊆ C⊥s andwts(C⊥s\C) = d

if K > 1 (and wts(C⊥s ) = d if K = 1).

We briefly recall the connection between Hermitian codes and quantum stabilizer
codes (see [2,5]). Let γ0 be a nonzero element in Fq . Take γ ∈ Fq2\Fq so that
γ q = −γ + γ0. It is easy to verify that B = {1, γ } is a basis of Fq2 over Fq . LetD be
a Hermitian self-orthogonal code over Fq2 of length n, then the image LB(D) of D
under the basisB is a linear code overFq of length 2n. Let a = (a0, a1, . . . , an−1) ∈ D
and b = (b0, b1, . . . , bn−1) ∈ D⊥H . Let ai = a(1)

i + γ a(2)
i and bi = b(1)

i + γ b(2)
i .

Then

〈a,b〉H =
n−1∑

i=0

aib
q
i

=
n−1∑

i=0

[
a(1)
i + γ a(2)

i

] [
b(1)
i + (γ0 − γ )b(2)

i

]
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=
n−1∑

i=0

[
a(1)
i b(1)

i + γ0a
(1)
i b(2)

i + γ
(
a(2)
i b(1)

i − a(1)
i b(2)

i

)
+ γ q+1a(2)

i b(2)
i

]

= 0.

Note that γ q+1 is in Fq , so it must be 〈a,b〉H = a(2)
i b(1)

i −a(1)
i b(2)

i = 0, implying that
LB(D) is a trace-symplectic self-orthogonal code. Applying Theorem 2.2 produces
an explicit construction of quantum stabilizer codes from Hermitian self-orthogonal
codes.

Theorem 2.3 (Hermitian Construction) [2,5] Let C be a Hermitian self-orthogonal
[n, k] linear code over Fq2 and let d = min{wt(v) | v ∈ C⊥H \C}. Then a q-ary
[[n, n − 2k, d]] quantum stabilizer code can be obtained from C.

3 Images of constacyclic codes

Let A = {α0, α1, . . . , αm−1} be a basis of Fq2m over Fq2 . For any x =
(x0, x1, . . . , xn−1) ∈ F

n
q2m

, each entry of x can be expressed as xi = ∑m−1
j=0 xi jα j ,

where xi j ∈ Fq2 . We can define a map LA from F
n
q2m

to Fnm
q2

as

LA((x0, x1, . . . , xn−1)) = (x00, . . . , xn−1,0, x01, . . . , xn−1,1, x0,m−1, . . . , xn−1,m−1).

It is obvious that LA is an isomorphism of the Fq2 -vector space. Let C be a linear
[n, k, d] code over Fq2m . Define the q

2-ary image of C with respect to the basis A to
be LA(C) = {LA(c) | c ∈ C}. Then LA(C) is an [mn, km,≥ d] linear code over Fq2 .

Lemma 3.1 Let A = {α0, α1, . . . , αm−1} be a basis of Fq2m over Fq2 and B =
{β0, β1, . . . , βm−1} be a Hermitian dual basis ofA. Let C be a linear [n, k] code over
Fq2m and C⊥H be its Hermitian dual code. If m is odd, then LA(C)⊥H = LB(C⊥H ). If
m is even, then LA(C)⊥H = LB(C⊥H )q .

Proof Let u = (u0, u1, . . . , un−1) be any codeword in C with ui = ∑m−1
j=0 ui jα j ,

where ui j ∈ Fq2 . Let v = (v0, v1, . . . , vn−1) be any codeword in C⊥H with vi =
∑m−1

�=0 vi�β�, where vi� ∈ Fq2 . Then

(u, v)H =
n−1∑

i=0

uiv
qm

i =
n−1∑

i=0

⎛

⎝
m−1∑

j=0

ui jα j

⎞

⎠

(
m−1∑

�=0

v
qm

i� β
qm

�

)

= 0. (1)

Taking the trace on two sides of (1), we can get that

TrFq2m /Fq2
((u, v)H ) =

n−1∑

i=0

m−1∑

j=0

m−1∑

�=0

ui jv
qm

i� TrFq2m /Fq2

(
α jβ

qm

�

)
= 0. (2)
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If m is odd, then v
qm

i� = v
q
i� for 0 ≤ i ≤ n − 1 and 0 ≤ � ≤ m − 1. By

the orthogonality of bases, (2) becomes
∑n−1

i=0
∑m−1

j=0 ui jv
q
i j = 0. This shows that

LB(C⊥H ) ⊆ LA(C)⊥H . If m is even, then v
qm

i� = vi� for 0 ≤ i ≤ n − 1 and

0 ≤ � ≤ m − 1. By the orthogonality of bases, (2) becomes
∑n−1

i=0
∑m−1

j=0 ui jvi j = 0.

This shows that LB(C⊥H ) ⊆ LA(C)⊥E , i.e., LB(C⊥H )q ⊆ LA(C)⊥H . Note that
LB(C⊥H ) and LA(C)⊥H have the same cardinality. The desired result follows. ��

Let η be a fixed nonzero element of Fq2 . Assume that η has order r in F∗
q2
. Note that

F
∗
q2

is a subgroup of F∗
q2m

, so η must be in F
∗
q2m

and has order r . An η-constacyclic

code over Fq2m of length n is an ideal in Fq2m [x]/〈xn − η〉. Let ξ be a primitive nr -th
root of unity. Let C ⊆ Fq2m [x]/〈xn − η〉 be the η-constacyclic code with zero set
Z2m ⊆ Ω = {1 + r j | 0 ≤ j ≤ n − 1}. Note that Z2m is a union of some q2m-
cyclotomic cosets modulo nr , moreover, C = 〈g(x)〉 where g(x) =∏z∈Z2m

(x − ξ z).
To study the q2-ary image of C, we consider an η-constacyclic code over Fq2 of length
n. For any λ ∈ Cq2m [s, nr ], it is obvious that λ ∈ Cq2 [s, nr ]. Define the set Z2 to be
the union of the q2-cyclotomic cosets modulo nr contained in Z2m , i.e.,

Z2 =
⋃

Cq2 [λ,nr ]⊆Z2m
Cq2 [λ, nr ]. (3)

Let D be the η-constacyclic code over Fq2 of length n with zero set Z2 ⊆ Ω . Then D
has generator polynomial

gq2(x) =
∏

z∈Z2

(x − ξ z).

Note that gq2(x) is a polynomial over Fq2 . It is obvious that gq2(x) is a divisor of g(x)
with the highest degree in Fq2 [x].

Assume that g(x) = gq2(x)h(x), for some h(x) ∈ Fq2m [x]. Let c(x) =∑n−1
i=0 ci xi

be a codeword in C, where ci ∈ Fq2m . Under the basis A = {α0, α1, . . . , αm−1}, we
can write ci =∑m−1

j=0 ci jα j , where ci j ∈ Fq2 . Then

c(x) =
n−1∑

i=0

⎛

⎝
m−1∑

j=0

ci jα j

⎞

⎠ xi =
m−1∑

j=0

(
n−1∑

i=0

ci j x
i

)

α j .

Write c j (x) =∑n−1
i=0 ci j xi , for 0 ≤ j ≤ m − 1. Then c j (x) can be viewed as a word

over Fq2 of length n. The following result tells us that the word is from the code D.

Lemma 3.2 Let c j (x), 0 ≤ j ≤ m−1, be defined as above. Let C be the η-constacyclic
code inFq2m [x]/〈xn−η〉with generator polynomial g(x). LetD be the η-constacyclic
code inFq2 [x]/〈xn−η〉with generator polynomial gq2(x). Then c j (x),0 ≤ j ≤ m−1,
are codewords in D.
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Proof Let deg(g(x)) = �1 and deg(gq2(x)) = �2. Since c(x) belongs to C, we
have c(x) = g(x)s(x), for some s(x) ∈ Fq2m [x] and deg(s(x) < n − �1.
Hence, c(x) = gq2(x)h(x)s(x). Write t(x) = h(x)s(x), then t(x) ∈ Fq2m [x]
and deg(t(x) < n − �2. Under the basis A = {α0, α1, . . . , αm−1}, we can write
t(x) = ∑m−1

j=0 u j (x)α j , where u j (x) ∈ Fq2 [x] and deg(u j (x)) < n − �2. It then fol-

lows that c(x) = ∑m−1
j=0 gq2(x)u j (x)α j . Note that gq2(x)u j (x) has degree less than

n. Thus, c j (x) = gq2(x)u j (x). The desired result follows. ��
From Lemma 3.2, we see that each codeword of LA(C) is a concatenation of the

codewords of an η-constacyclic code in Fq2 [x]/〈xn − η〉. This directly yields the
following theorem.

Theorem 3.3 Let C be the η-constacyclic code in Fq2m [x]/〈xn −η〉 with zero set Z2m.
Let D be the η-constacyclic code in Fq2 [x]/〈xn − η〉 with zero set Z2, where Z2 is
defined as (3). If D ⊆ D⊥H , then LA(C) ⊆ LA(C)⊥H .

According to Theorem 3.3, if C is an η-constacyclic [n, k] code over Fq2m such that
D ⊆ D⊥H , thenLA(C) is Hermitian self-orthogonal and has parameters [nm,mk]. By
Lemma 3.1,LA(C)⊥H = LB(C⊥H ) orLA(C)⊥H = LB(C⊥H )q . Hence,LA(C)⊥H has
parameters [nm, nm − mk,≥ d⊥], where d⊥ is the minimum Hamming distance of
C⊥H . By the Hermitian construction, a q-ary [[mn,mn−2mk,≥ d⊥]] can be obtained
fromLA(C). To construct quantum codes of lengthmn, we need to findHermitian self-
orthogonal constacyclic codes over Fq2 of length n. For this, assume that η = ω�(q−1),
for some � ∈ {0, 1, . . . , q}, then the Hermitian dual code of an η-constacyclic code
over Fq2 is still η-constacyclic [18]. We now give a sufficient condition for LA(C) to
be Hermitian self-orthogonal. We first give the following useful lemma.

Lemma 3.4 Let C be the η-constacyclic code inFq2m [x]/〈xn−η〉with nonzero set T2m.
Denote T2 = ⋃

s∈T2m Cq2 [s, nr ]. Then −qT2
⋂

T2 = ∅ if and only if aq2�+1 + b 
≡
0(mod nr) for any a, b ∈ T2m and any nonnegative integer �.

Proof The necessity directly follows from the condition that −qT2
⋂

T2 = ∅. We
now prove the sufficiency. Suppose that −qT2

⋂
T2 
= ∅. Then there exists z ∈ Ω

such that z ∈ −qT2
⋂

T2. This means that Cq2 [z, nr ] ⊆ −qT2
⋂

T2. Hence, we can
find y ∈ T2m such that y ∈ Cq2 [z, nr ]. Meanwhile, we can also find x ∈ T2 such
that y ≡ −qx(mod nr) ∈ Cq2 [z, nr ]. By the condition, x must be not in T2m . From
the definition of T2, there exists w ∈ T2m such that x ∈ Cq2 [w, nr ]. This means
that x ≡ wq2�(mod nr), for some integer �. Hence, y ≡ −wq2�+1(mod nr), which
contradicts the assumption. Hence, −qT2

⋂
T2 = ∅. This completes the proof. ��

Theorem 3.5 Let C be the η-constacyclic code in Fq2m [x]/〈xn − η〉 with nonzero set

T2m. Assume that aq2�+1 + b 
≡ 0(mod nr) for any a, b ∈ T2m and any nonnegative
integer �. Then LA(C) ⊆ LA(C)⊥H .

Proof Let Z2m be the zero set of C. Let D be the η-constacyclic code over Fq2 of
length n with zero set Z2, where Z2 is given as (3). Then D⊥H has zero set

Z⊥H
2 = {z ∈ Ω | −qz(mod nr) /∈ Z2}.
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Let y be any element in Z⊥H
2 . Then −qy(mod nr) /∈ Z2. We claim that −qy(mod

rn) ∈ T2 = ⋃
s∈T2m Cq2 [s, nr ]. In fact, if −qy(mod nr) ∈ T2m , then it is obvious

that −qy(mod nr) ∈ T2. If −qy(mod rn) /∈ T2m , then −qy(mod rn) ∈ Z2m . By
the definition of Z2, there exists w ∈ T2m such that −qy(mod nr) ∈ Cq2 [w, nr ],
which means that −qy(modnr) ∈ T2. By Lemma 3.4, we know −qT2

⋂
T2 = ∅. So,

y /∈ T2, which means y ∈ Z2. This shows that Z
⊥H
2 ⊆ Z2. Hence, D ⊆ D⊥H . By

Theorem 3.3, LA(C) ⊆ LA(C)⊥H . ��
Theorem 3.5 provides a method for constructing Hermitian self-orthogonal codes

by exploiting the q2-ary images of constacyclic codes over Fq2m . It is worth mention-
ing that constacyclic codes over Fq2m in Theorem 3.5 are not necessarily Hermitian
self-orthogonal. For any a, b ∈ T2m , note that aq2�+1 + b 
≡ 0(mod nr) for any
nonnegative integer � if and only if Cq2 [a, nr ] 
= −qCq2 [b, nr ].

4 Quantum codes

In this section, we will use constacyclic MDS codes over Fq2m to construct two classes
of quantum codes.

4.1 Construction I

We first consider constacyclic MDS codes over Fq2m of length n = q2m + 1, where
m ≥ 2. We divide the prime power q into two cases.

Case 1: q is even
In this case, all the q2m-cyclotomic cosets modulo n are given by Cq2m [0, n] = {0}
and Cq2m [ n−1

2 − i, n] = { n−1
2 − i, n−1

2 + i + 1}, for 0 ≤ i ≤ n−3
2 [28]. Define

Δ1 =
{

qm+1−q2−2
2 , if m = 2ν ≥ 2;

qm−2
2 , if m = 2ν + 1 ≥ 3.

(4)

Lemma 4.1 Let n = q2m + 1, where q is an even prime power and m ≥ 2 is a
positive integer. If C is the cyclic code over Fq2m of length n with nonzero set T2m =
⋃δ

i=0 Cq2m [ n−1
2 − i, n], where 0 ≤ δ ≤ Δ1, then LA(C) ⊆ LA(C)⊥H .

Proof We prove that, for any a, b ∈ T2m , Cq2 [a, n] 
= −qCq2 [b, n]. Suppose that

there exist a = n−1
2 − j and b = n−1

2 − k with j, k ∈ {0, 1, . . . , Δ1} such that
aq2�+1 + b ≡ 0(mod n) for 0 ≤ � ≤ 2m − 1. That is, for 0 ≤ � ≤ 2m − 1,

(1 + 2 j)q2�+1 + (1 + 2k) ≡ 0(mod n). (5)

Observe that (1 + 2 j) + (1 + 2k)q2(2m−�−1)+1 ≡ 0(mod n), so we can assume that
0 ≤ � ≤ m − 1. We only seek a contradiction for the case that m is even. The case
that m is odd is very similar and omitted.
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If 0 ≤ � ≤ m−2
2 , then 1 + q ≤ (1 + 2 j)q2�+1 + (1 + 2k) < n. This gives a

contradiction.
If m

2 ≤ � ≤ m − 1, from (5) we get that (1 + 2k)q2(m−�)−1 ≡ 1 + 2 j(mod n).

Note that q ≤ (1 + 2k)q2(m−�)−1 < n and 1 ≤ 1 + 2 j ≤ qm+1 − q2 − 1. It must be
(1+ 2k)q2(m−�)−1 = 1+ 2 j . This is impossible since (1+ 2k)q2(m−�)−1 is even and
1 + 2 j is odd.

Hence, for any a, b ∈ T2m , Cq2 [a, n] 
= −qCq2 [b, n]. By Theorem 3.5, we have
the desired result. ��

Based on q2m-ary cyclic codes, we now construct q-ary quantum codes by using
the Hermitian construction.

Theorem 4.2 Let n = q2m + 1, where q is an even prime power and m ≥ 2 is a
positive integer. Then there exists a q-ary quantum code with parameters [[mn,mn −
4m(δ + 1),≥ 2δ + 3]], where 0 ≤ δ ≤ Δ1.

Proof Let C be the q2m-ary cyclic code of length n with nonzero set

T2m =
δ⋃

i=0

Cq2m [(n − 1)/2 − i, n],

where 0 ≤ δ ≤ Δ1. By Lemma 4.1, LA(C) ⊆ LA(C)⊥H . Note that C has zero set

S2m = Cq2m [0, n]
⋃⋃(n−3)/2

i=δ+1
Cq2m [(n − 1)/2 − i, n].

Since S2m consists of (n − 2δ − 2) consecutive integers

{

0, 1,−1, . . . ,
n − 1

2
− δ − 1,−

(
n − 1

2
− δ − 1

)}

,

it follows that C is an [n, 2δ+2, n−2δ−1]MDS code over Fq2m . Hence, C⊥H is MDS
and has minimum distance 2δ+3. By Lemma 3.1,LA(C)⊥H ≥ 2δ+3. Hence,LA(C)

has dimension 2m(δ + 1) and dual distance d⊥ ≥ 2δ + 3. Applying the Hermitian
construction to the code LA(C) can yield the desired q-ary quantum code. ��
Example 4.3 Let q = 2 and m = 2. Then n = 17. Applying Theorem 4.2, we obtain
binary quantum codes with parameters [[34, 26,≥ 3]] and [[34, 18,≥ 5]]. They have
the same parameters as the best known binary quantum codes in the Database [14].

Example 4.4 Let q = 2 and m = 3. Then n = 65. Applying Theorem 4.2, we can get
4 binary quantum codes of length 195. On this length, the resulting quantum codes
have larger code rate than the quantum twisted codes shown in [11]. We list them in
Table 1.
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Table 1 Code comparison New quantum codes Quantum twisted codes in [11]

[[195, 183,≥ 3]]2 [[195, 183, 3]]2
[[195, 171,≥ 5]]2 [[195, 163, 5]]2
[[195, 159,≥ 7]]2 [[195, 135, 7]]2
[[195, 147,≥ 9]]2 [[195, 123, 9]]2

Case 2: q is odd
Let η = ωq−1, where ω is a primitive element of Fq2 . Let C be an η-constacyclic code
over Fq2m of length n = q2m + 1, where m ≥ 2 is a positive integer. All the q2m-
cyclotomic cosets modulo (q + 1)n containing the elements in Ω = {1 + (q + 1) j |
0 ≤ j ≤ n − 1} are given as follows [18].

(1) Cq2m [ n2 , (q + 1)n] = { n2 } and Cq2m [ n(q+2)
2 , (q + 1)n] =

{
n(q+2)

2

}
.

(2) Cq2m [ n2 − (q + 1) j, (q + 1)n] = { n
2 − (q + 1) j, n

2 + (q + 1) j
}
for 1 ≤ j ≤

n−2
2(q+1) , and Cq2m [ n(q+2)

2 − (q + 1) j, (q + 1)n] =
{
n(q+2)

2 − (q + 1) j, n(q+2)
2 +

(q + 1) j} for 1 ≤ j ≤ q(n−2)
2(q+1) .

Constacyclic BCH codes in Fq2 [x]/〈xn − η〉 with length n = q2m + 1 have been
studied in [26], where maximum designed distances such that these codes are Hermi-
tian dual-containing codes are given. Now, we use the maximum designed distances
for constructing quantum codes. Define

Δ2 =

⎧
⎪⎨

⎪⎩

q3−q2+q−1
2 , if m = 2;

qm+1−q2

2 , if m = 2ν ≥ 4;
qm−1

2 , if m = 2ν + 1 ≥ 3.

(6)

Lemma 4.5 Let η = ωq−1, where ω is a primitive element of Fq2 . Let n = q2m + 1,
where q is an odd prime power andm ≥ 2 is a positive integer. If C is the η-constacyclic
code of length n over Fq2m with nonzero set T2m =⋃δ

i=0 Cq2m [ n2 −(q+1)i, (q+1)n],
where 0 ≤ δ ≤ Δ2, then LA(C) ⊆ LA(C)⊥H .

Proof By Corollary 3.4 in [26], we have −qT2
⋂

T2 = ∅, which means that
Cq2 [a, n] 
= −qCq2 [b, n] for any a, b ∈ T2m . Hence, LA(C) ⊆ LA(C)⊥H . ��
Theorem 4.6 Let n = q2m +1, where q is an odd prime power and m ≥ 2 is a positive
integer. Then there exists a q-ary quantum code with parameters [[mn,mn−2m(2δ+
1),≥ 2δ + 2]], where 0 ≤ δ ≤ Δ2.

Proof Let C be the η-constacyclic code of length n over Fq2m with nonzero set T2m =
⋃δ

i=0 Cq2m [ n2 −(q+1)i, n], where 0 ≤ δ ≤ Δ2. Then the zero set of C is S = Ω\T2m ,
which contains (n − 2δ − 1) integers at intervals of q + 1. It then follows that C is
an [n, 2δ + 1, n − 2δ] MDS code over Fq2m . Hence, C⊥H is MDS and has minimum
distance 2δ + 2. By Lemma 3.1, the minimum distance of LA(C)⊥H is at least 2δ + 2.
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Table 2 Code comparison

New quantum codes Punctured codes Quantum twisted codes in [11]

[[164, 128,≥ 10]]3 [[161, 128,≥ 7]]3 [[161, 127, 7]]3
[[164, 120, ≥ 12]]3 [[161, 120,≥ 9]]3 [[161, 115, 9]]3
[[164, 112, ≥ 14]]3 [[161, 112, ≥ 11]]3 [[161, 111, 11]]3
[[164, 104,≥ 16]]3 [[161, 104,≥ 13]]3 [[161, 99, 13]]3
[[164, 96, ≥ 18]]3 [[161, 96,≥ 15]]3 [[161, 87, 15]]3
[[164, 88, ≥ 20]]3 [[161, 88,≥ 17]]3 [[161, 75, 17]]3

Also,LA(C)has dimensionm(2δ+1). By theHermitian construction, aq-ary quantum
code with parameters [[mn,mn − 2m(2δ + 1),≥ 2δ + 2]] is obtained. ��
Example 4.7 Let q = 3 and m = 2. Then n = 82. Using Theorem 4.6, we obtain 11
new ternary quantum codes of length 164. Further, we can obtain 10 ternary quantum
codes of length 161 by using a propagation rule [12]. Six codes of them have larger
code rate than the quantum twisted codes with the same length. We list these codes in
Table 2.

4.2 Construction II

Now, let us consider cyclic codes over Fq2m of length n = q2m+1
q2+1

, where q is an even

prime power and m ≥ 3 is odd. It is easy to obtain that, for 1 ≤ i ≤ n−1
2 , all the q2m-

cyclotomic cosetsmodulo n are given byCq2m [0, n] = {0} andCq2m [i, n] = {i, n−i}.
Define

Δ3 =
⎧
⎨

⎩

qm+1+qm−3q2−q−2
2(q2+1)

, if m ≡ 1(mod 4);
qm+1+qm−3q2+q−4

2(q2+1)
, if m ≡ 3(mod 4).

(7)

Lemma 4.8 Let n = q2m+1
q2+1

, where q is an even prime power and m ≥ 3 is odd. If C is

the cyclic code of length n over Fq2m with nonzero set T2m =⋃δ
i=0 Cq2m [(n − 1)/2−

i, n], where 0 ≤ δ ≤ Δ3, then LA(C) ⊆ LA(C)⊥H .

Proof We only prove the case that m ≡ 1(mod 4), and the other case is similar.
By Theorem 3.5, we only need to prove that, for any a, b ∈ T2m , Cq2 [a, n] 
=
−qCq2 [b, n]. Suppose that there exist a = n−1

2 − j and b = n−1
2 − k with

j, k ∈ {0, 1, . . . , Δ3} such that aq2�+1 + b ≡ 0(mod n) for 0 ≤ � ≤ 2m − 1.
This means that, for 0 ≤ � ≤ 2m − 1,

(q2 + 1)
[
(1 + 2 j)q2�+1 + (1 + 2k)

]
≡ 0(mod q2m + 1). (8)

Note that q4m ≡ 1(mod q2m + 1), so we can assume that 0 ≤ � ≤ m − 1.
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If 0 ≤ � ≤ m−3
2 , then it is easy to verify that the left-hand side of (8) is between

(q + 1)(q2 + 1) − 1 and q2m + 1. This gives a contradiction.
If � = m−1

2 , then (8) becomes

(q2 + 1)
[
(1 + 2 j)qm + (1 + 2k)

] ≡ 0(mod q2m + 1).

Then

(q2 + 1)
[
(1 + 2 j)qm + (1 + 2k)

] = λ(q2m + 1), (9)

for some odd integer λ. Since (q2 +1)(qm +1) ≤ (q2 +1)[(1+2 j)qm + (1+2k)] <

(q + 1)(q2m + 1) holds, it follows that 1 ≤ λ ≤ q − 1. By taking (9) modulo qm , we
obtain (q2 + 1)(1 + 2k) − λ ≡ 0(mod qm). Let

(q2 + 1)(1 + 2k) − λ = μqm, (10)

for some integer μ. Since

q2 − q + 2 ≤ (q2 + 1)(1 + 2k) − λ ≤ qm+1 + qm − 2q2 − q − 2

holds, we have 1 ≤ μ ≤ q. Taking (10) modulo q2+1 can getμq+λ ≡ 0(mod q2+
1). Thenμq+λ = q2+1,which implies thatμ = q andλ = 1.Byputting them into (9)
and (10), it can be obtained from the obtained equations that (q2+1)(1+2 j) = qm−q.
But, (q2 + 1)(1 + 2 j) is odd and qm − q is even, which is a contradiction.

If m+1
2 ≤ � ≤ m − 1, then it follows from (8) that (q2 + 1)(1 + 2k)q2(m−�)−1 ≡

(q2 +1)(1+2 j)(mod q2m +1). Note that two sides are both between 1 and q2m +1.
Hence, (1+ 2k)q2(m−�)−1 = 1+ 2 j . This is a contradiction since (1+ 2k)q2(m−�)−1

is even and 1 + 2k is odd. ��
According to Lemma 4.8, similar to Theorem 4.2, we easily obtain the following

result.

Theorem 4.9 Let n = q2m+1
q2+1

, where q is an even prime power and m ≥ 3 is odd. Then
there exists a q-ary quantum code with parameters [[mn,mn−4m(δ+1),≥ 2δ+3]],
where 0 ≤ δ ≤ Δ3.

Example 4.10 Let q = 4 andm = 3. Then n = 241. By using Theorem 4.9, we can get
9 quaternary quantum codes of length 723. The resulting quantum codes have larger
minimum distance than the quantum twisted codes with the same dimension shown
in [11]. These codes are listed in Table 3.

5 Conclusion

In this paper, we gave a sufficient condition for the images of η-constacyclic codes over
Fq2m to be Hermitian self-orthogonal codes over Fq2 , where η is a nonzero element of
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Table 3 Code comparison New quantum codes Quantum twisted codes in [11]

[[723, 711,≥ 3]]4 [[723, 709, 3]]4
[[723, 687,≥ 7]]4 [[723, 687, 5]]4
[[723, 675,≥ 9]]4 [[723, 675, 6]]4
[[723, 663,≥ 11]]4 [[723, 663, 7]]4
[[723, 651,≥ 13]]4 [[723, 651, 8]]4
[[723, 639,≥ 15]]4 [[723, 639, 9]]4
[[723, 627,≥ 17]]4 [[723, 627, 11]]4
[[723, 615,≥ 19]]4 [[723, 615, 12]]4

Fq2 . Then, by choosing constacyclic MDS codes over Fq2m , we obtained Hermitian
self-orthogonal codes over Fq2 . Further, we constructed quantum codes with good
parameters. The resulting quantum codes are actually concatenated codes, and hence
they can be encoded and decoded by using the spectral techniques (see [16]). Based
on the twisted discrete Fourier transform over finite fields, we can copy the syndrome
of an error vector to auxiliary qubits using the controlled NOT (CNOT) gate. Through
measuring the syndromes of bit-flip and phase-flip errors, the most likely positions of
errors are determined. A further work is to provide an efficient encoding and decoding
algorithm for this class of concatenated quantum codes.
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