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Abstract
Entanglement-assisted quantum maximum distance separable (MDS) codes form a
significant class of quantum codes. By using generalized Reed–Solomon (GRS) codes
and extended GRS codes, we construct some new classes of q-ary entanglement-
assisted quantum error-correcting MDS codes. Most of these codes are new in the
sense that their parameters are not covered by the codes available in the literature.
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1 Introduction

Quantum error-correcting codes (QECCs) are one of the necessary guarantees for
the realization of quantum communication and quantum computer. The connections
between quantum codes and classical codes were established by Calderbank et al. [1].
The establishment showed that QECCs can be constructed from self-orthogonal (or
dual-containing) classical codes [2]. Since then, many classes of quantum codes have
been constructed by using classical error-correcting codes. There are two main ways
to construct quantum MDS codes, namely using constacyclic codes (see [3,4]) and
generalized Reed–Solomon codes (see [5–8]). However, the self-orthogonal condition
forms a barrier in the development of quantum coding theory. To break through the
barrier, Brun et al. proposed the entanglement-assisted (EA) stabilizer formalism in [9].
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By using preshared entanglement between the sender and the receiver, they proved that
arbitrary classical linear error-correcting codes can be used to construct entanglement-
assisted quantum error-correcting codes (EAQECCs). Since then, many scholars have
been interested in EAQECCs and have made good progress.

Let q be a prime power. A q-ary EAQECC can be denoted as [[n, k, d; c]]q , which
encodes k logical qubits into n physical qubits with help of c pairs of maximally
entangled states, where d is the minimum distance of the code. In particular, if c = 0,
the code is a QECC. It is similar to the classical error-correcting codes, a quantum
code with minimum distance d can detect up to d−1 quantum errors and correct up to
� d−1

2 � quantum errors. The singleton bound for an EAQECC is given in the following
proposition:

Proposition 1 [10] An[[n, k, d; c]]q EAQECC satisfies n + c − k ≥ 2(d − 1), where
0 ≤ c ≤ n − 1 and d ≤ n+2

2 .

AnEAQECCattaining the singleton bound is called an entanglement-assisted quan-
tumMDS (EAQMDS for short) code. By usingReed–Solomon codes and constacyclic
codes, Fan et al. [11] constructed five classes of EAQMDS codes with the help of a
few shared entanglement states. Chen et al. obtained four classes of EAQMDS codes
from negacyclic codes with the help of 4 or 5 shared entanglement states [12]. In [13],
Chen et al. obtained four classes of EAQMDS codes from constacyclic codes of length

n = q2+1
5 . Subsequently, many researchers constructed many classes of EAQMDS

codes with constacyclic codes [14–19]. In [20], Guenda et al. have shown that the
number of shared pairs required to construct an EAQECC is related to the dimension
of the hull of classical linear codes. Then, Luo et al. presented several infinite families
of MDS codes with hulls of arbitrary dimensions by GRS codes and constructed sev-
eral new infinite families of EAQMDS codes with flexible parameters [21]. Since then,
many people have constructed many quantum codes by using GRS codes [22–24].

In this paper, we construct some classes of q-ary EAQMDS codes with parameters
[[n, n−2k+c, k+1; c]]q andEAQECCswith parameters [[n, c, n−k+1; n−2k+c]]q
from GRS codes. The specific values of n, k and c can be found in Theorems 1, 2,
3, 4 and 5. Moreover, we also construct some classes of q-ary EAQMDS codes with
parameters [[n + 1, n − 2k + c + 2, k + 1; c + 1]]q and EAQECCs with parameters
[[n + 1, c + 1, n − k + 2; n − 2k + c + 2]]q from extended GRS codes. The specific
values of n, k and c can be found in Theorems 6, 7, 8, 9 and 10.

The paper is organized as follows. In Sect. 2, we recall the basic knowledge of
linear codes, EAQECCs, GRS codes. In Sects. 3 and 4, we construct some classes
of EAQMDS codes and EAQECCs from GRS codes. In Sect. 5, some classes of
EAQMDS codes are constructed from extended GRS codes. Section 6 concludes this
paper.

2 Preliminaries

Let GF(q2) be a finite fieldwith q2 elements. Let GF(q2)n be the n-dimensional vector
space over GF(q), where n is a positive integer. The Hamming weight of x ∈ GF(q2)n

is the number of nonzero coordinates of x and is denoted by wt(x). The Hamming
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distance of two vectors x and y is the Hamming weight of the x − y, denoted by
dist(x, y).

A q2-ary code C of length n is a subset of GF(q2)n . The minimum distance of C ,
denoted by d(C), is defined by d(C) = min{dist(x, y)|x �= y ∈ C}. The code C is
called a q2-ary linear code of length n, if C is a subspace of GF(q2)n . Clearly, the
minimum Hamming distance of linear code C is equal to the minimum nonzero Ham-
ming weight of all codewords in C . A q2-ary linear code [n, k, d] is a k-dimensional
subspace of GF(q2)n and minimum distance d.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors in GF(q2)n , the
Euclidean inner product is defined as (x, y)E = ∑n

i=1 xi yi , and the Hermitian inner
product is defined as (x, y)H = ∑n

i=1 xi y
q
i . For a q

2-ary linear code C of length n,
the Euclidean dual of C , denoted by C⊥E , is defined by

C⊥E = {x ∈ GF(q2)n|(x, y)E = 0, for all y ∈ C}.

If C ⊆ C⊥E , C is referred to as a Euclidean self-orthogonal code. Similarly, the
Hermitian dual of C , denoted by C⊥H , is defined by

C⊥H = {x ∈ GF(q2)n|(x, y)H = 0, for all y ∈ C}.

If C ⊆ C⊥H , C is referred to as a Hermitian self-orthogonal code.
For a vector x = (x1, x2, . . . , xn) in GF(q2)n , define xq = (xq1 , xq2 , . . . , xqn ). For

a subset T of GF(q2)n , define the set T q = {xq |x ∈ T }. It is easy to check that
C⊥H = (Cq)⊥E for a q2-ary linear code C of length n.

For a linear code C over Fq2 , denoted by Hullh(C) the Hermitian hull C
⋂

C⊥h

of C . Here are two propositions about Hermitian hull:

Proposition 2 [20] Let C be a classical [n, k, d]q2 code with parity check matrix H
and generator matrix G. Then, rank(HH†) and rank(GG†) are independent of H
and G so that rank(HH†) = n−k−dim(Hullh(C)) = n−k−dim(Hullh(C⊥h )),
and rank(GG†) = k − dim(Hullh(C)) = k − dim(Hullh(C⊥h )).

Proposition 3 [20] Let C be a classical [n, k, d]q2 code and let C⊥h be its Hermitian
dual with parameters [n, n − k, d⊥h]q . Then, there exist [[n, k − dim(Hullh(C)), d;
n−k−dim(Hullh(C))]]q2 and [[n, n−k−dim(Hullh(C)), d⊥; k−dim(Hullh(C))]]q
EAQECCs. If C is MDS, then one of the two EAQECCs must be MDS.

Let k, n be positive integers, and GF(q2)[x]k be the set of polynomials whose
degree is less than k over GF(q2). Select n distinct elements a1, a2, · · · , an of GF(q2)
and n nonzero elements v1, v2, · · · , vn of GF(q2). Let a = (a1, a2, . . . , an) and
v = (v1, v2, . . . , vn), then

GRSk(a, v) := {(v1 f (a1), . . . , vn f (an))| f (x) ∈ GF(q2)[x]k}
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is called a GRS code. Clearly,

Gk(a, v) =

⎛

⎜
⎜
⎜
⎝

v1a01 v2a02 · · · vna0n
v1a11 v2a12 · · · vna1n

...
... · · · ...

v1a
k−1
1 v2a

k−1
2 · · · vnak−1

n

⎞

⎟
⎟
⎟
⎠

is a generator matrix of GRSk(a, v). It is well known that GRSk(a, v) is a q2-ary
[n, k, n − k + 1] MDS code.

Moreover, any GRS code of length n can be extended to a code of length n+ 1 and
such code is called an extended GRS code. The definition of extended GRS code of
length n can be given by

GRSk(a, v,∞) := {(v1 f (a1), . . . , vn f (an), fk−1)| f (x) ∈ GF(q2)[x]k}

where fk−1 is the coefficient of xk−1 in f (x) and k ≤ n + 1 ≤ q2 + 1. It is known
that GRSk(a, v,∞) has parameters [n + 1, k, n + 2 − k]q2 and a generator matrix
[Gk(a, v)|uT ], where u = (0, 0, . . . , 0, 1).

When all of the ai , i = 1, 2, · · · , n, are nonzero, let Ck,k1 be a q
2-ary linear code

of length n with generator matrix

Gk,k1(a, v) =

⎛

⎜
⎜
⎜
⎜
⎝

v1a
k1
1 v2a

k1
2 · · · vna

k1
n

v1a
k1+1
1 v2a

k1+1
2 · · · vna

k1+1
n

...
... · · · ...

v1a
k1+k−1
1 v2a

k1+k−1
2 · · · vna

k1+k−1
n

⎞

⎟
⎟
⎟
⎟
⎠

.

As a1, a2, . . . , an are n distinct nonzero elements of GF(q2), put v′
i = vi a

k1
i , i =

1, 2, . . . , n, then Ck,k1(a, v) = GRSk(a, v′). Hence, Ck,k1 is an MDS code with
parameters [n, k, n − k + 1].

Similarly, when all of the ai , i = 1, 2, . . . , n, are nonzero, let Ck,k1,∞ be a q2-ary
linear code of length n with generator matrix [Gk,k1(a, v)|uT ].

In the end of this section,wewill give a useful lemma for the following construction.

Lemma 1 Let C be a GRS code GRSk(a, v) with generator matrix Gk(a, v) =
(g0, g1, . . . , gk−1)

T and Ĉ be an extended GRS code GRSk(a, v,∞) with gener-
ator matrix Ĝk(a, v) = [Gk(a, v)|uT ], where Gk(a, v) and u are defined as above.
Then dim(HullhĈ) = dim(HullhC) − 1 if (gi , gk−1)H = 0, where i = 0, . . . , k − 1.
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Proof From Proposition 2, we know dim(Hullh(C) = k − rank(GG†)).

Since Gk(a, v)Gk(a, v)† =

⎛

⎜
⎜
⎜
⎜
⎝

g0g
†
0 g0g

†
1 · · · g0g

†
k−1

g1g
†
0 g1g

†
1 · · · g1g

†
k−1

...
... · · · ...

gk−1g
†
0 gk−1g

†
1 · · · gk−1g

†
k−1

⎞

⎟
⎟
⎟
⎟
⎠

,

Ĝk(a, v)Ĝk(a, v)† =

⎛

⎜
⎜
⎜
⎜
⎝

g0g
†
0 g0g

†
1 · · · g0g

†
k−1

g1g
†
0 g1g

†
1 · · · g1g

†
k−1

...
... · · · ...

gk−1g
†
0 gk−1g

†
1 · · · gk−1g

†
k−1 + 1

⎞

⎟
⎟
⎟
⎟
⎠

.

It is easy to prove that rank(Ĝk(a, v)Ĝk(a, v)†) = Gk(a, v)Gk(a, v)† + 1. Then
dim(HullhĈ) = dim(HullhC) − 1. �


3 The first construction

Throughout this section, let ω be a primitive element of GF(q2) and γ = ωh , where

h is an even integer such that 2(q−1)
h = 2τ + 1 for some τ ≥ 1. Let n′ = q2−1

h , then
γ is a primitive n′-th root of unity.

For our construction, we need the following lemmas.

Lemma 2 Let q, h, τ and n′ be defined as above. Suppose that 0 ≤ j, l ≤ q − 2,
then jq + l + q + 1 ≡ 0 (mod n′) if and only if j, l satisfy one of the following
three conditions: j = l = s(q−1)

h − 1, where s is even and 2 ≤ s ≤ h; j =
(s−1)(q−1)

h + τ − 1, l = (s−1)(q−1)
h + τ + q−1

2 where s is odd and 1 ≤ s ≤ h
2 − 1; or

j = (s−1)(q−1)
h + τ, l = (s−1)(q−1)

h + τ − q+1
2 where s is odd and h

2 + 1 ≤ s ≤ h − 1.

Proof Suppose that jq + l +q +1 ≡ 0 (mod n′). Note that 0 ≤ j, l < q −2, we have
q + 1 ≤ jq + l + q + 1 < (q − 1)(q + 1), then there exists an integer s such that

jq + l = sn′ − q − 1,

where 1 ≤ s ≤ h. If s is odd, then

jq + l =
[
(s − 1)(q − 1)

h
− 1

]

q + (s − 1)(q − 1)

h
+ q2 − 1

h
− 1

=
[
(s − 1)(q − 1)

h
− 1

]

q + (s − 1)(q − 1)

h
+ 2(q − 1)

h
· q + 1

2
− 1

=
[
(s − 1)(q − 1)

h
+ τ − 1

]

q + (s − 1)(q − 1)

h
+ q − 1

2
+ τ.

There are two cases.
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Case 1 If 1 ≤ s ≤ h
2 − 1, then

q + 1

2
+ τ − 1 ≤ (s − 1)(q − 1)

h
+ q − 1

2
+ τ

≤ q − 2 − τ.

It follows that j = (s−1)(q−1)
h + τ − 1 and l = (s−1)(q−1)

h + τ + q−1
2 .

Case 2 If h
2 + 1 ≤ s ≤ h − 1, then

q + τ − 1 ≤ (s − 1)(q − 1)

h
+ q − 1

2
+ τ

≤ q + q − 1

2
− τ − 2 < 2q.

It follows that j = (s−1)(q−1)
h + τ and l = (s−1)(q−1)

h + τ − q+1
2 .

If s is even, then

jq + l =
[
s(q − 1)

h
− 1

]

q +
[
s(q − 1)

h
− 1

]

.

Notice that 2 ≤ s ≤ h, then we have

j = l = s(q − 1)

h
− 1.

�

By using Lemma 2, we can obtain the GRS codes with the following parameters.

Lemma 3 Let q, h, τ, n′ be defined as above, and n = n′( h4 + t), (1 ≤ t ≤ h
4 ). Then,

there exist some GRS codes with following parameters:

(1) Let t0, k be integers, where 0 ≤ t0 ≤ t − 2(t ≥ 2) and q−1
2 + τ + 2t0(q−1)

h ≤
k ≤ q−1

2 + τ + 2(t0+1)(q−1)
h − 1, the code C has parameters [n, k, n − k + 1] and

Hullh(C) has dimension k − 2t0 − 2.
(2) Let t0, k be integers, where 0 ≤ t0 ≤ h

4 − t and q−1
2 + τ + 2(t+t0−1)(q−1)

h ≤ k ≤
q−1
2 + 2τ + 2(t0+t−1)(q−1)

h − 1, the code C has parameters [n, k, n − k + 1] and
Hullh(C) has dimension k − 2t − 3t0.

(3) Let t0, k be integers, where 0 ≤ t0 ≤ h
4 − t − 1 and q−1

2 + 2τ + 2(t+t0−1)(q−1)
h ≤

k ≤ q−1
2 + τ + 2(t0+t)(q−1)

h − 1, the code C has parameters [n, k, n − k + 1] and
Hullh(C) has dimension k − 2t − 3t0 − 1.

Proof Let γ, ω be defined as above. Set

a = (1, γ, . . . , γ n′−1, ω, ωγ, . . . , ωγ n′−1, . . . , ω
h
4+t , ω

h
4+tγ, . . . , ω

h
4+tγ n′−1),

v = (u0, u0γ, . . . , u0γ
n′−1, u1, u1γ, . . . , u1γ

n′−1, . . . , u h
4+t , u h

4+tγ,

. . . , u h
4+tγ

n′−1),
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where u0, u1, . . . , u h
4+t−1 are

h
4 + t nonzero elements in GF(q2).

We will prove that there exist h
4 + t nonzero elements u0, u1, · · · , u h

4+t in GF(q2)

such that GRSk(a, v) has parameters above. In fact,

(aq j+l , vq+1)E =
h
4+t−1∑

i=0

ωi(q j+l)uq+1
i

n′−1∑

r=0

γ r(q j+l+q+1).

Noticing that the order of γ is n′, then

n′−1∑

r=0

γ r� =
{
0 if n′ � �,

n′ if n′ | �.

It follows that (aq j+l , vq+1)E = 0 except for n′ | (q j + l + q + 1). Now we assume
that 0 ≤ j, l ≤ k − 1 such that n′ | (q j + l + q + 1). From Lemma 2, if s is even
and 2 ≤ s ≤ h, then j = l = s(q−1)

h − 1; if s is odd and 1 ≤ s ≤ h
2 − 1, then

j = (s−1)(q−1)
h + τ − 1, l = (s−1)(q−1)

h + τ + q−1
2 ; if s is odd and h

2 + 1 ≤ s ≤ h − 1,

then j = (s−1)(q−1)
h + τ, l = (s−1)(q−1)

h + τ − q+1
2 .

Then, we will prove that (aq j+l , vq+1)E = 0 for j = l = s(q−1)
h − 1, where s is

even and 1 ≤ s
2 ≤ h

4 + t − 1. Then

(aq j+l , vq+1)E = n′
h
4+t−1∑

i=0

ωi(q+1)[ s2 · 2(q−1)
h −1]uq+1

i .

It suffices to prove that the system of h
4 +t−1 equations

∑ h
4+t−1
i=0 ω2imn−i(q+1)uq+1

i =
0 for 1 ≤ m ≤ h

4 + t − 1 has a solution in (GF(q2)∗) h
4+1. Take yi = (ω−i ui )(q+1)

for 0 ≤ i ≤ h
4 + t − 1, then yi ∈ GF(q)∗. It suffices to prove that the system of the

equations

⎛

⎜
⎜
⎜
⎜
⎝

1 β · · · β
h
4+t−1

1 β2 · · · β2· h4+t−1

...
... · · · ...

1 β
h
4+t−1 · · · β( h4+t−1)·( h4+t−1)

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

y0
y1
...

y h
4+t−1

⎞

⎟
⎟
⎟
⎠

= 0

has a solution in (GF(q)∗) h
4+t , where β = ω2n′

.
Because of ord(β) = h

2 , ord(β) divides q − 1. Hence, β ∈ GF(q)∗. Put f (x) =
∏ h

4+t−1
s=1 (x − βs), then f (x) ∈ GF(q)[x] and f (x) | (x

h
2 − 1). Considering a q-

ary cyclic code C of length h
2 with generator polynomial f (x), it is easy for us to

check that C is a [ h2 , h
4 − t + 1, h

4 + t] MDS code. Hence, all coefficients of f (x) =

123
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x
h
4+t−1 + a h

4+t−2x
h
4+t−2 + · · · + a0 are all nonzero. That means that the last system

has a solution

(y0, . . . , y h
4+t−2, y h

4+t−1) = (a0, . . . , a h
4+t−2, 1) ∈ (GF(q)∗)n .

For each 0 ≤ i ≤ h
4 + t − 2, since ai ∈ GF(q)∗, there exists bi ∈ GF(q2)∗ such

that ai = bq+1
i . Take

u = (u0, u1, . . . , u h
4+t−1) = (b0, ωb1, . . . , ω

h
4+t−2b h

4+t−2, ω
h
4+t−1),

then (aq j+l , vq+1)E = 0 for j = l = s(q−1)
h − 1, where s is even and 0 < s

2 < h
4 + t .

Let G = Gk(a, v) =

⎛

⎜
⎜
⎜
⎝

g0
g1
...

gk−1

⎞

⎟
⎟
⎟
⎠
. Then GG† =

⎛

⎜
⎜
⎜
⎜
⎝

g0g
†
0 g0g

†
1 · · · g0g

†
k−1

g1g
†
0 g1g

†
1 · · · g1g

†
k−1

...
... · · · ...

gk−1g
†
0 gk−1g

†
1 · · · gk−1g

†
k−1

⎞

⎟
⎟
⎟
⎟
⎠
.

In the first case: 0 ≤ t0 ≤ t − 2(t ≥ 2) and q−1
2 + τ + 2t0(q−1)

h ≤ k ≤ q−1
2 +

τ + 2(t0+1)(q−1)
h − 1. It is easy to prove that (aq j+l , vq+1)E �= 0 if and only if

j = (s−1)(q−1)
h +τ−1, l = (s−1)(q−1)

h +τ+ q−1
2 where s is odd and 1 ≤ s ≤ 2t0+1; or

j = (s−1)(q−1)
h +τ, l = (s−1)(q−1)

h +τ− q+1
2 where s is odd and h

2+1 ≤ s ≤ h
2+2t0+1.

There are 2t0 + 2 pairs ( j, l) such that (aq j+l , vq+1)E �= 0.
By g j g

†
l = (aq j+l , vq+1)E , dim(Hullh(C)) = k − rank(GG†) = k − 2t0 − 2.

In the second case: 0 ≤ t0 ≤ h
4 − t and q−1

2 + τ + 2(t+t0−1)(q−1)
h ≤ k ≤ q−1

2 +
2τ + 2(t0+t−1)(q−1)

h − 1. It is easy to prove that (aq j+l , vq+1)E �= 0 if and only

if j = l = s(q−1)
h − 1, where s is even and h

2 + 2t < s ≤ h
2 + 2t + 2t0; j =

(s−1)(q−1)
h +τ −1, l = (s−1)(q−1)

h +τ + q−1
2 where s is odd and 1 ≤ s ≤ 2t0+2t −1;

or j = (s−1)(q−1)
h + τ, l = (s−1)(q−1)

h + τ − q+1
2 where s is odd and h

2 + 1 ≤ s ≤
h
2 + 2t0 + 2t − 1. There are 3t0 + 2t pairs ( j, l) such that (aq j+l , vq+1)E �= 0.

By g j g
†
l = (aq j+l , vq+1)E , dim(Hullh(C)) = k − rank(GG†) = k − 3t0 − 2t .

In the last case: 0 ≤ t0 ≤ h
4 − t − 1 and q−1

2 + 2τ + 2(t+t0−1)(q−1)
h ≤ k ≤

q−1
2 + τ + 2(t0+t)(q−1)

h − 1. It is easy to prove that (aq j+l , vq+1)E �= 0 if and only

if j = l = s(q−1)
h − 1, where s is even and h

2 + 2t ≤ s ≤ h
2 + 2t + 2t0; j =

(s−1)(q−1)
h +τ −1, l = (s−1)(q−1)

h +τ + q−1
2 where s is odd and 1 ≤ s ≤ 2t0+2t −1;

or j = (s−1)(q−1)
h + τ, l = (s−1)(q−1)

h + τ − q+1
2 where s is odd and h

2 + 1 ≤ s ≤
h
2 + 2t0 + 2t − 1. There are 3t0 + 2t + 1 pairs ( j, l) such that (aq j+l , vq+1)E �= 0.

By g j g
†
l = (aq j+l , vq+1)E , dim(Hullh(C)) = k− rank(GG†) = k−3t0 −2t −1.

�

Similar to (2) and (3) of Lemma 3, when n = n′( h4 − t), (0 ≤ t ≤ h

4 − 1), we can
get the following lemma.
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Lemma 4 Let q, h, τ, n′ be defined as above, and n = n′( h4 − t), (0 ≤ t ≤ h
4 − 1).

Then, there exist some GRS codes with following parameters:

(1) Let t0, k be integers, where 0 ≤ t0 ≤ h
4 − 1 and q−1

2 + τ + 2t0(q−1)
h ≤ k ≤

q−1
2 + 2τ + 2(t0+1)(q−1)

h − 1, the code C has parameters [n, k, n − k + 1], and
Hullh(C) has dimension k − t − 3t0 − 3.

(2) Let t0, k be integers, where 0 ≤ t0 ≤ h
4 − 2 and q−1

2 + 2τ + 2t0(q−1)
h ≤ k ≤

q−1
2 + τ + 2(t0+1)(q−1)

h − 1, the code C has parameters [n, k, n − k + 1], and
Hullh(C) has dimension k − t − 3t0 − 4.

From Lemmas 3, 4 and Proposition 3, we can get the following theorem.

Theorem 1 Let q, n′, h, τ be defined as above and k be an integer. Then, there exist
[[n, n − 2k + c, k + 1; c]]q EAQMDS codes and [[n, c, n − k + 1; n − 2k + c]]q
EAQECCs, if one of the following conditions holds:

(1) n = n′( h4+t), c = 2t0+2,and q−1
2 +τ+ 2t0(q−1)

h ≤ k ≤ q−1
2 +τ+ 2(t0+1)(q−1)

h −1,
where 2 ≤ t ≤ h

4 and 0 ≤ t0 ≤ t − 2.

(2) n = n′( h4 + t), c = 2t + 3t0, and
q−1
2 + τ + 2(t+t0−1)(q−1)

h ≤ k ≤ q−1
2 + 2τ +

2(t0+t−1)(q−1)
h − 1, where 1 ≤ t ≤ h

4 and 0 ≤ t0 ≤ h
4 − t .

(3) n = n′( h4 + t), c = 2t + 3t0 + 1, q−1
2 + 2τ + 2(t+t0−1)(q−1)

h ≤ k ≤ q−1
2 + τ +

2(t0+t)(q−1)
h − 1, where 1 ≤ t ≤ h

4 and 0 ≤ t0 ≤ h
4 − t − 1.

(4) n = n′( h4 − t), c = t + 3t0 + 3, and q−1
2 + τ + 2t0(q−1)

h ≤ k ≤ q−1
2 + 2τ +

2(t0+1)(q−1)
h − 1, where 0 ≤ t ≤ h

4 − 1 and 0 ≤ t0 ≤ h
4 − 1.

(5) n = n′( h4 − t), c = t + 3t0 + 4 and q−1
2 + 2τ + 2t0(q−1)

h ≤ k ≤ q−1
2 + τ +

2(t0+1)(q−1)
h − 1, where 0 ≤ t ≤ h

4 − 1 and 0 ≤ t0 ≤ h
4 − 2.

Remark 1 In Theorem 11 of [24], Fang et al. constructed a class of EAQMDS codes
with parameters [[n, k − l, n − k + 1; n − k − l]]q and [[n, n − k − l, k + 1; k − l]]q ,
where n′|(q2 − 1), n = tn′, n1 = n′

gcd(n′,q+1) , 1 ≤ t ≤ q−1
n1

, 1 ≤ k ≤ � n+q
q+1 � and

0 ≤ l ≤ k − 1. Compared with Theorem 1, we find that the range of k is disjoint for
the same length. It means that the EAQMDS codes constructed by Theorem 1 are new.

Example 1 Let q = 29, h = 8, and then τ = 3. Then, there exist [[n, n − 2k + c, k +
1; c]]q EAQMDS codes and [[n, c, n − k + 1; n − 2k + c]]q EAQECCs, where the
values of n, k, c can be found in Table 1.

4 The second construction

Throughout this section, let ω be a primitive element of GF(q2) and γ = ωh , where

h > 4 is an even integer such that 2(q+1)
h = 2τ + 1 for some τ ≥ 1. Let n′ = q2−1

h ,
then γ is a primitive n′-th root of unity.

For our construction, we need the following lemmas.
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Table 1 The values of n, k, c in
Example 1

n k c n k c

420 17 ≤ k ≤ 23 2 210 17 ≤ k ≤ 19 3

420 24 ≤ k ≤ 26 4 210 20 ≤ k ≤ 23 4

315 17 ≤ k ≤ 19 2 210 17 ≤ k ≤ 19 3

315 20 ≤ k ≤ 23 3 210 20 ≤ k ≤ 23 4

315 24 ≤ k ≤ 26 5 210 24 ≤ k ≤ 26 6

Lemma 5 Let q, h, τ and n′ be defined as above. Suppose that 0 ≤ j, l ≤ q − 2,
then jq + l + q + 1 ≡ 0 (mod n′) if and only if j, l satisfy one of the following
three conditions: j = s(q+1)

h − 2 and l = q − s(q+1)
h − 1 where s is even and

2 ≤ s ≤ h; j = (s−1)(q+1)
h + τ − 1 and l = q−3

2 − (s−1)(q+1)
h − τ where s is odd and

1 ≤ s ≤ h
2 − 1; or j = (s−1)(q+1)

h + τ − 2 and l = 3q−3
2 − (s−1)(q+1)

h − τ where s is

odd and h
2 + 1 ≤ s ≤ h − 1.

Proof Suppose that jq + l +q +1 ≡ 0 (mod n′). Note that 0 ≤ j, l < q −2, we have
q + 1 ≤ jq + l + q + 1 < (q − 1)(q + 1), then there exists an integer s such that

jq + l = sn′ − q − 1,

where 1 ≤ s ≤ h. If s is odd, then

jq + l =
[
(s − 1)(q + 1)

h
− 1

]

q − (s − 1)(q + 1)

h
+ q2 − 1

h
− 1

=
[
(s − 1)(q + 1)

h
− 1

]

q − (s − 1)(q + 1)

h
+ 2(q + 1)

h
· q − 1

2
− 1

=
[
(s − 1)(q + 1)

h
+ τ − 1

]

q +
[
q − 3

2
− (s − 1)(q + 1)

h
− τ

]

.

There are two cases.

Case 1 If 1 ≤ s ≤ h
2 − 1, then

0 < τ − 1 ≤ q − 3

2
− (s − 1)(q + 1)

h
− τ ≤ q − 3 − τ < q.

It follows that j = (s−1)(q+1)
h + τ − 1 and l = q−3

2 − (s−1)(q+1)
h − τ .

Case 2 If h
2 + 1 ≤ s ≤ h − 1, then

−q < τ − q − 3

2
≤ q − 3 − τ ≤ −τ − 2 < 0.

It follows that j = (s−1)(q+1)
h + τ − 2 and l = 3q−3

2 − (s−1)(q+1)
h − τ .
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If s is even, then

jq + l =
[
s(q + 1)

h
− 2

]

q +
[

q − s(q + 1)

h
− 1

]

.

Notice that 2 ≤ s ≤ h, then we have

j = s(q + 1)

h
− 2, l = q − s(q + 1)

h
− 1.

�


4.1 The case q ≡ 3 (mod 4)

By using Lemma 5, we can obtain the GRS codes with the following parameters.
Firstly, we consider the case that q ≡ 3 (mod 4).

Lemma 6 Let q ≡ 3 (mod 4) and h, τ, n′ be defined as above, and n = n′( h4 +2t +2)
for 0 ≤ t ≤ h

8 − 1. Then, there exist some GRS codes with following parameters:

(1) Let t1, t2, k be integers, where 0 ≤ t1 ≤ t2 ≤ t and q+3
2 + τ + 2(t1+t2)(q+1)

h ≤
k ≤ q−3

2 + τ + 2(t1+t2+1)(q+1)
h , the code C has parameters [n, k, n − k + 1], and

Hullh(C) has dimension k − 2t1 − 2t2 − 2.
(2) Let t1, t2, k be integers, where 0 ≤ t1 ≤ t2 ≤ h

8 − 1 − t and q+3
2 + τ +

2(2t+t1+t2)(q+1)
h ≤ k ≤ q−3

2 + τ + 2(2t+t1+t2+1)(q+1)
h , the code C has parame-

ters [n, k, n − k + 1], and Hullh(C) has dimension k − 4t − 4t1 − 2t2 − 2.

Proof If q ≡ 3 (mod 4), then 8|h. Let γ, ω be defined as above. Set

a = (1, γ, . . . , γ n′−1, ω, . . . , ωγ n′−1, . . . , ω
h
4+2t+1, . . . , ω

h
4+2t+1γ n′−1),

v = (u0, u0γ, . . . , u0γ
n′−1, u1, . . . , u1γ

n′−1, . . . , u h
4+2t+1, . . . , u h

4+2t+1γ
n′−1),

where u0, u1, . . . , u h
4+2t+1 are

h
4 + 2t + 2 nonzero elements in GF(q2).

We will prove that there exist h
4 + 2t + 2 nonzero elements u0, u1, . . . , u h

4+2t+1 in

GF(q2) such that G = Gk,k1(a, v) has parameters above. In fact,

(aq j+l , vq+1)E =
h
4+2t+1∑

i=0

ωi(q j+l)uq+1
i

n′−1∑

r=0

γ r(q j+l+q+1).

Notice that the order of γ is n′, then

n′−1∑

r=0

γ r� =
{
0 if n′ � �,

n′ if n′ | �.
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It follows that (aq j+l , vq+1)E = 0 except for n′ | (q j + l + q + 1). Now assume that
0 ≤ j, l ≤ k − 1 such that n′ | (q j + l + q + 1). From Lemma 5, if s is even and
2 ≤ s ≤ h , then j = s(q+1)

h −2, l = q− s(q+1)
h −1; if s is odd and 1 ≤ s ≤ h

2 −1 ,then

j = (s−1)(q+1)
h + τ − 1, l = q−3

2 − (s−1)(q+1)
h − τ ; if s is odd and h

2 + 1 ≤ s ≤ h − 1,

then j = (s−1)(q+1)
h + τ − 2, l = 3q−3

2 − (s−1)(q+1)
h − τ .

Hence, we will prove that (aq j+l , vq+1)E = 0 for j = s(q+1)
h − 2 and l = q −

s(q+1)
h −1, where s is even and h

4 −2t ≤ s ≤ 3h
4 +2t , whichmeans h

8 −t ≤ s
2 ≤ 3h

8 +t
and

(aq j+l , vq+1)E = n′
h
4+2t+1∑

i=0

ωi[ s(q2−1)
h −q−1)]uq+1

i .

Let m = s
2 − h

2 , It suffices to prove that the system of h
4 + 2t + 1 equations

∑ h
4+2t+1
i=0 ω2i(m+ h

2 )n′−i(q+1)uq+1
i = ∑ h

4+2t+1
i=0 (ω2n′

)im(ωi(q−2)ui )q+1 = 0 for − h
8 −

t ≤ m ≤ h
8 + t has a solution in (GF(q2)∗) h

4+2t+2. Take yi = (ωi(q−2)ui )(q+1) for
0 ≤ i ≤ h

4 + 2t + 1, then yi ∈ GF(q)∗. That is to say, it suffices to prove that the
system of the equations

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 β− h
8−t · · · β(− h

8−t)·( h4+2t+1)

...
... · · · ...

1 1 · · · 1
...

... · · · ...

1 β
h
8+t · · · β( h8+t)·( h4+2t+1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

y0
y1
...

y h
4+2t+1

⎞

⎟
⎟
⎟
⎠

= 0

has a solution in (GF(q)∗) h
4+2t+2, where β = ω2n′

.
Notice that ord(β) = h

2 , then ord(β) divides q + 1. Hence, βq+1 = βqβ = 1,

then β−1 = βq and β−1 + β ∈ GF(q)∗. Put f (x) = ∏ h
8+t

m=− h
8−t

(x − βm), then

f (x) ∈ GF(q)[x] and f (x) | (x
h
2 − 1). Consider a q-ary cyclic code C of length h

2
with generator polynomial f (x). It is easy to check that C is a [ h2 , h

4 −2t−1, h
4 +2t+2]

MDS code. Hence, all coefficients of f (x) = x
h
4+2t+1 + a h

4+2t x
h
4+2t + · · · + a0 are

all nonzero. That is, the last system has a solution

(y0, . . . , y h
4+2t , y h

4+2t+1) = (a0, . . . , a h
4+2t , 1) ∈ (GF(q)∗)

h
4+2t+2.

For each 0 ≤ i ≤ h
4 + 2t + 1, since ai ∈ GF(q)∗, there exists bi ∈ GF(q2)∗ such

that ai = b(q+1)
i . Therefore, taking

u = (u0, u1, . . . , u h
4+2t+1) = (b0, ωb1, . . . , ω

h
4+2t+1b h

4+2t+1, ω
h
4+2t+1),
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we have (aq j+l , vq+1)E = 0 for j = s(q+1)
h − 2 and l = q − s(q+1)

h − 1, where s is
even and h

4 − 2t ≤ s ≤ 3h
4 + 2t .

Let G = Gk,k1(a, v) =

⎛

⎜
⎜
⎜
⎝

gk1
gk1+1

...

gk1+k−1

⎞

⎟
⎟
⎟
⎠
.

Then, GG† =

⎛

⎜
⎜
⎜
⎜
⎝

gk1 g
†
k1

gk1 g
†
k1+1 · · · gk1 g

†
k1+k−1

gk1+1g
†
k1

gk1+1g
†
k1+1 · · · gk1+1g

†
k1+k−1

...
... · · · ...

gk1+k−1g
†
k1

gk1+k−1g
†
k1+1 · · · gk1+k−1g

†
k1+k−1

⎞

⎟
⎟
⎟
⎟
⎠
.

In the first case: 0 ≤ t1 ≤ t2 ≤ t , let q−3
4 − τ − 2t1(q+1)

h ≤ k1 ≤ q+1
4 −2− 2t1(q+1)

h

and 3q−1
4 + τ − 1 + 2t2(q+1)

h ≤ k1 + k − 1 ≤ 3q−1
4 − 3 + 2(t2+1)(q+1)

h . Then the

range of k satisfies q+3
2 + τ + 2(t1+t2)(q+1)

h ≤ k ≤ q−3
2 + τ + 2(t1+t2+1)(q+1)

h . It is

easy to prove that (aq j+l , vq+1)E �= 0 if and only if j = (s−1)(q+1)
h + τ − 1 and

l = q−3
2 − (s−1)(q+1)

h − τ , where s is odd and h
4 + 1 − 2t1 ≤ s ≤ h

4 − 1 + 2t1; or

j = (s−1)(q+1)
h +τ −2, l = 3q−3

2 − (s−1)(q+1)
h −τ , where s is odd and 3h

4 −2t2 −1 ≤
s ≤ 3h

4 + 2t2 + 1. There are 2t1 + 2t2 + 2 pairs ( j, l) such that (aq j+l , vq+1)E �= 0.

Since g j g
†
l = (aq j+l , vq+1)E , then dim(Hullh(C)) = k−rank(GG†) = k−2t1−

2t2 − 2.
In the second case: 0 ≤ t1 ≤ t2 ≤ h

8 − 1 − t , let q−3
4 − τ − 2(t+t1)(q+1)

h ≤
k1 ≤ q+1

4 − 2 − 2(t+t1)(q+1)
h and 3q−1

4 + τ − 1 + 2(t+t2)(q+1)
h ≤ k1 + k − 1 ≤

3q−1
4 − 3+ 2(t+t2+1)(q+1)

h . Then the range of k satisfies q+3
2 + τ + 2(2t+t1+t2)(q+1)

h ≤
k ≤ q−3

2 + τ + 2(2t+t1+t2+1)(q+1)
h . It is easy to prove that (aq j+l , vq+1)E �= 0 if

and only if j = (s−1)(q+1)
h + τ − 1 and l = q−3

2 − (s−1)(q+1)
h − τ , where s is odd

and h
4 + 1 − 2t − 2t1 ≤ s ≤ h

4 − 1 + 2t + 2t1; j = (s−1)(q+1)
h + τ − 2, l =

3q−3
2 − (s−1)(q+1)

h − τ , where s is odd and 3h
4 −2t −2t2 −1 ≤ s ≤ 3h

4 +2t +2t2 +1.

or j = s(q+1)
h −2, l = q− s(q+1)

h −1, where s is even and 0 < |s− h
2 |− h

4 −2t ≤ 2t1;
There are 4t + 4t1 + 2t2 + 2 pairs ( j, l) such that (aq j+l , vq+1)E �= 0.

By g j g
†
l = (aq j+l , vq+1)E , then dim(Hullh(C)) = k − rank(GG†) = k − 4t −

4t1 − 2t2 − 2. �


Similar to (2) of Lemma 6, when n = n′( h4 − 2t), (0 ≤ t ≤ h
4 − 1), we can get the

following lemma.

Lemma 7 Let q ≡ 3 (mod 4) and h, τ, n′ be defined as above, and n = n′( h4 − 2t),
for 0 ≤ t ≤ h

8 − 1. Then there exist some GRS codes with following parameters:

Let t1, t2, k be integers, where 0 ≤ t1 ≤ t2 ≤ h
8 − 1 and q+3

2 + τ + 2(t1+t2)(q+1)
h ≤

k ≤ q−3
2 + τ + 2(t1+t2+1)(q+1)

h , the code C has parameters [n, k, n − k + 1], and
Hullh(C) has dimension k − 2t − 2t1 − 2t2 − 4.
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Table 2 The values of n, k, c in Example 2

n k c n k c n k c

290 33 ≤ k ≤ 35 8 290 38 ≤ k ≤ 40 10 290 43 ≤ k ≤ 45 12

290 43 ≤ k ≤ 45 14 290 48 ≤ k ≤ 50 16 290 53 ≤ k ≤ 55 20

580 33 ≤ k ≤ 35 6 580 38 ≤ k ≤ 40 8 580 43 ≤ k ≤ 45 10

580 43 ≤ k ≤ 45 12 580 48 ≤ k ≤ 50 14 580 53 ≤ k ≤ 55 18

870 33 ≤ k ≤ 35 4 870 38 ≤ k ≤ 40 6 870 43 ≤ k ≤ 45 8

870 43 ≤ k ≤ 45 10 870 48 ≤ k ≤ 50 12 870 53 ≤ k ≤ 55 16

1160 33 ≤ k ≤ 35 2 1160 38 ≤ k ≤ 40 4 1160 43 ≤ k ≤ 45 8

1160 48 ≤ k ≤ 50 10 1160 53 ≤ k ≤ 55 14 1450 33 ≤ k ≤ 35 2

1450 38 ≤ k ≤ 40 4 1450 43 ≤ k ≤ 45 6 1450 48 ≤ k ≤ 50 8

1450 53 ≤ k ≤ 55 12 1740 33 ≤ k ≤ 35 2 1740 38 ≤ k ≤ 40 4

1740 43 ≤ k ≤ 45 6 1740 48 ≤ k ≤ 50 8 1740 53 ≤ k ≤ 55 10

From Lemmas 6, 7 and Proposition 3, we can get the following theorem.

Theorem 2 Let q, n′, h, τ be defined as above and t, t1, t2, k be integers. Then, there
exist [[n, n − 2k + c, k + 1; c]]q EAQMDS codes and [[n, c, n − k + 1; n − 2k + c]]q
EAQECCs, if one of the following holds:

(1) n = n′( h4 + 2t + 2), c = 2t1 + 2t2 + 2, q+3
2 + τ + 2(t1+t2)(q+1)

h ≤ k ≤ q−3
2 + τ +

2(t1+t2+1)(q+1)
h , where 0 ≤ t1 ≤ t2 ≤ t ≤ h

8 − 1.

(2) n = n′( h4 + 2t + 2), c = 4t + 4t1 + 2t2 + 2, q+3
2 + τ + 2(2t+t1+t2)(q+1)

h ≤ k ≤
q−3
2 + τ + 2(2t+t1+t2+1)(q+1)

h , where 0 ≤ t1 ≤ t2 ≤ h
8 − 1 − t .

(3) n = n′( h4 − 2t), c = 2t + 4t1 + 2t2 + 4, and q+3
2 + τ + 2(t1+t2)(q+1)

h ≤ k ≤
q−3
2 + τ + 2(t1+t2+1)(q+1)

h , where 0 ≤ t ≤ h
8 − 1 and 0 ≤ t1 ≤ t2 ≤ h

8 − 1.

Remark 2 Comparing Theorem 2 with Theorem 11 in [24], we find that most of the
length is different and the range of k is disjoint for the same length. Comparing
Theorem 2 with Corollary 3.4 of [22], we can conclude although some codes have
the same parameters, there are still many codes with different parameters. Here is an
example.

Example 2 Let q = 59 and h = 24, then τ = 2. By Theorem 2, there exist [[n, n −
2k + c, k + 1; c]]q EAQMDS codes and [[n, c, n − k + 1; n − 2k + c]]q EAQECCs,
where the values of n, k, c can be found in Table 2.

After removing the same parameters as in Reference [22], we can get the codes in
Table 3.

In Theorem 2, the length of those codes is even times of n′. And then we move on
to the case where length is positive integer multiples of n′.

Lemma 8 Let q ≡ 3 (mod 4) and h, τ, n′ be defined as above, and n = tn′, for
1 ≤ t ≤ h. Then, there exist some GRS codes with following parameters:
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Table 3 The values of n, k, c in Example 2 after deleting the same parameters

n k c n k c n k c

290 34 ≤ k ≤ 35 8 290 38 ≤ k ≤ 40 10 290 43 ≤ k ≤ 45 12

290 43 ≤ k ≤ 45 14 290 48 ≤ k ≤ 50 16 290 53 ≤ k ≤ 55 20

580 38 ≤ k ≤ 40 8 580 43 ≤ k ≤ 45 10 580 43 ≤ k ≤ 45 12

580 48 ≤ k ≤ 50 14 580 53 ≤ k ≤ 55 18 870 43 ≤ k ≤ 45 10

870 48 ≤ k ≤ 50 12 870 53 ≤ k ≤ 55 16 1160 40 4

1160 48 ≤ k ≤ 50 10 1160 53 ≤ k ≤ 55 14 1450 35 2

1450 40 4 1450 45 6 1450 50 8

1450 53 ≤ k ≤ 55 12 1740 40 4 1740 45 6

1740 50 8 1740 54 ≤ k ≤ 55 10

Let t1, t2, k be integers, where 0 ≤ t1 ≤ t2 ≤ h
8 − 1 and q+3

2 + τ + 2(t1+t2)(q+1)
h ≤

k ≤ q−3
2 + τ + 2(t1+t2+1)(q+1)

h , the code C has parameters [n, k, n − k + 1], and
Hullh(C) has dimension k − h

4 − 4t1 − 2t2 − 3.

Proof If q ≡ 3 (mod 4), then 8|h. Let γ, ω be defined as above. Set

a = (1, γ, . . . , γ n′−1, ω, . . . , ωγ n′−1, . . . , ωt−1, . . . , ωt−1γ n′−1),

v = (u0, u0γ, . . . , u0γ
n′−1, u1, . . . , u1γ

n′−1, . . . , ut−1, . . . , ut−1γ
n′−1).

And then, we have

(aq j+l , vq+1)E =
t−1∑

i=0

ωi(q j+l)uq+1
i

n′−1∑

r=0

γ r(q j+l+q+1).

where u0, u1, . . . , ut are t nonzero elements in GF(q2) such that

t−1∑

i=0

ωi(q j+l)uq+1
i �= 0.

Notice that the order of γ is n′, then

n′−1∑

r=0

γ r� =
{
0 ifn′ � �,

n′ ifn′ | �.

It follows that (aq j+l , vq+1)E = 0 except for n′ | (q j + l + q + 1). Now assume that
0 ≤ j, l ≤ k − 1 such that n′ | (q j + l + q + 1). From Lemma 5, if s is even and
2 ≤ s ≤ h , then j = s(q+1)

h −2, l = q− s(q+1)
h −1; if s is odd and 1 ≤ s ≤ h

2 −1 ,then

j = (s−1)(q+1)
h + τ − 1, l = q−3

2 − (s−1)(q+1)
h − τ ; if s is odd and h

2 + 1 ≤ s ≤ h − 1,

then j = (s−1)(q+1)
h + τ − 2, l = 3q−3

2 − (s−1)(q+1)
h − τ .
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Table 4 The values of n, k, c in
Example 3

n k c n k c

145t 33 ≤ k ≤ 35 9 145t 38 ≤ k ≤ 40 11

145t 43 ≤ k ≤ 45 13 145t 43 ≤ k ≤ 45 15

145t 48 ≤ k ≤ 50 17 145t 53 ≤ k ≤ 55 21

Let 0 ≤ t1 ≤ t2 ≤ h
8 − 1, q−3

4 − τ − 2t1(q+1)
h ≤ k1 ≤ q+1

4 − 2 − 2t1(q+1)
h and

3q−1
4 + τ − 1+ 2t2(q+1)

h ≤ k1 + k − 1 ≤ 3q−1
4 − 3+ 2(t2+1)(q+1)

h . Then the range of k

satisfies q+3
2 +τ+ 2(t1+t2)(q+1)

h ≤ k ≤ q−3
2 +τ+ 2(t1+t2+1)(q+1)

h . It is easy to prove that

(aq j+l , vq+1)E �= 0 if and only if j = (s−1)(q+1)
h +τ −1 and l = q−3

2 − (s−1)(q+1)
h −τ ,

where s is odd and h
4 + 1 − 2t1 ≤ s ≤ h

4 − 1 + 2t1; j = (s−1)(q+1)
h + τ − 2, l =

3q−3
2 − (s−1)(q+1)

h − τ , where s is odd and 3h
4 − 2t2 − 1 ≤ s ≤ 3h

4 + 2t2 + 1; or

j = s(q+1)
h − 2, l = q − s(q+1)

h − 1, where s is even and h
4 − 2t1 ≤ s ≤ 3h

4 + 2t1;
There are h

4 + 4t1 + 2t2 + 3 pairs ( j, l) such that (aq j+l , vq+1)E �= 0.

Let G = Gk,k1(a, v) =

⎛

⎜
⎜
⎜
⎝

gk1
gk1+1

...

gk1+k−1

⎞

⎟
⎟
⎟
⎠
.

By g j g
†
l = (aq j+l , vq+1)E , then dim(Hullh(C)) = k − rank(GG†) = k − h

4 −
4t1 − 2t2 − 3. �


From Lemmas 8 and Proposition 3, we can get the following theorem.

Theorem 3 Let q, n′, h, τ be defined as above and t1, t2, k be integers. Then, there
exist [[n, n − 2k + c, k + 1; c]]q EAQMDS codes and [[n, c, n − k + 1; n − 2k + c]]q
EAQECCs, where n = tn′, c = h

4 + 4t1 + 2t2 + 3, and q+3
2 + τ + 2(t1+t2)(q+1)

h ≤ k ≤
q−3
2 + τ + 2(t1+t2+1)(q+1)

h , 1 ≤ t ≤ h, and 0 ≤ t1 ≤ t2 ≤ h
8 − 1.

Remark 3 Comparing Theorem 3 with Theorem 11 in [24], we find that most of the
length is different and the range of k is disjoint for the same length. Comparing
Theorem 3 with Corollary 3.4 of [22], we can conclude if t is odd, the length are
different. This means that the EAQMDS codes constructed in Theorem 3 are new
when t is odd.

Example 3 Let q = 59 and h = 24, then n′ = 145, 1 ≤ t ≤ 24, and τ = 2. By
Theorem 3, there exist [[n, n − 2k + c, k + 1; c]]q EAQMDS codes and [[n, c, n −
k + 1; n − 2k + c]]q EAQECCs, where the values of n, k, c can be found in Table 4.

4.2 The case q ≡ 1 (mod 4)

In this subsection, we consider the case that q ≡ 1 (mod 4). Similarly, using Lemma
5, we can obtain the GRS codes with the following parameters.
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Lemma 9 Let q ≡ 1 (mod 4) and h, τ, n′ be defined as above, and n = n′( h4 + 2t +
1), (0 ≤ t ≤ h−4

8 ). Then, there exist some GRS codes with following parameters:

(1) Let t1, t2, k be integers, where 0 ≤ t1 ≤ t2 ≤ t − 1 and q+1
2 + 2(t1+t2)(q+1)

h ≤ k ≤
q−3
2 + 2(t1+t2+2)(q+1)

h , the code C has parameters [n, k, n−k+1], and Hullh(C)

has dimension k − 2t1 − 2t2 − 2.
(2) Let t1, t2, k be integers, where 0 ≤ t1 ≤ t2 ≤ h−4

8 − t and q+1
2 + 2(2t+t1+t2)(q+1)

h ≤
k ≤ q+1

2 − 3 + 2(2t+t1+t2+1)(q+1)
h , the code C has parameters [n, k, n − k + 1],

and Hullh(C) has dimension k − 4t − 4t1 − 2t2 − 2.

Proof If q ≡ 1 (mod 4), then 8|(h − 4). Let γ, ω be defined as above. Set

a = (1, γ, . . . , γ n′−1, ω, . . . , ωγ n′−1, . . . , ω
h
4+2t+1, . . . , ω

h
4+2t+1γ n′−1),

v = (u0, u0γ, . . . , u0γ
n′−1, u1, . . . , u1γ

n′−1, . . . , u h
4+2t+1, . . . , u h

4+2t+1γ
n′−1),

where u0, u1, . . . , u h
4+2t+1 are

h
4 + 2t + 2 nonzero elements in GF(q2).

FromLemma5,we have (aq j+l , vq+1)E = 0 if and only if ( j, l) takes the following
values:

If s is even and 2 ≤ s ≤ h, then j = s(q+1)
h − 2, l = q − s(q+1)

h − 1; if s is odd

and 1 ≤ s ≤ h
2 − 1, then j = (s−1)(q+1)

h + τ − 1, l = q−3
2 − (s−1)(q+1)

h − τ ; if s is

odd and h
2 + 1 ≤ s ≤ h − 1, then j = (s−1)(q+1)

h + τ − 2, l = 3q−3
2 − (s−1)(q+1)

h − τ .
Similar to Lemma 6, we can find h

4 +2t +1 nonzero elements u0, u1, . . . , u h
4+2t+1

in GF(q2) such that (aq j+l , vq+1)E = 0 for j = s(q+1)
h − 2 and l = q − s(q+1)

h − 1,
where s is even and h

4 + 1 − 2t ≤ s ≤ 3h
4 − 1 + 2t .

Let G = Gk,k1(a, v) =

⎛

⎜
⎜
⎜
⎝

gk1
gk1+1

...

gk1+k−1

⎞

⎟
⎟
⎟
⎠
.

In the first case: 0 ≤ t1 ≤ t2 ≤ t − 1, let (h−4)(q+1)
4h − τ − 1 − 2t1(q+1)

h ≤ k1 ≤
(h−4)(q+1)

4h + τ − 1 − 2t1(q+1)
h and (3h−4)(q+1)

4h + τ − 2 + 2t2(q+1)
h ≤ k1 + k − 1 ≤

(3h−4)(q+1)
4h + τ −3+ 2(t2+1)(q+1)

h . Then the range of k satisfies q+1
2 + 2(t1+t2)(q+1)

h ≤
k ≤ q−3

2 + 2(t1+t2+2)(q+1)
h . It is easy to prove that (aq j+l , vq+1)E �= 0 if and only

if j = (s−1)(q+1)
h + τ − 1 and l = q−3

2 − (s−1)(q+1)
h − τ , where s is odd and

h
4 − 2t1 ≤ s ≤ h

4 + 2t1; or j = (s−1)(q+1)
h + τ − 2, l = 3q−3

2 − (s−1)(q+1)
h − τ , where

s is odd and 3h
4 − 2t2 ≤ s ≤ 3h

4 + 2t1. There are 2t1 + 2t2 + 2 pairs ( j, l) such that
(aq j+l , vq+1)E �= 0.

By g j g
†
l = (aq j+l , vq+1)E , then dim(Hullh(C)) = k − rank(GG†) = k − 2t1 −

2t2 − 2.
In the second case: 0 ≤ t1 ≤ t2 ≤ h−4

8 − t , let (h−4)(q+1)
4h − 2(t+t1)(q+1)

h ≤ k1 ≤
(h−4)(q+1)

4h +τ −1− 2(t+t1)(q+1)
h and (3h−4)(q+1)

4h +τ −2+ 2(t+t2)(q+1)
h ≤ k1+k−1 ≤

(3h−4)(q+1)
4h −4+ 2(t+t2+1)(q+1)

h . Then the range of k satisfies q+1
2 + 2(2t+t1+t2)(q+1)

h ≤
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k ≤ q+1
2 − 3 + 2(2t+t1+t2+1)(q+1)

h . It is easy to prove that (aq j+l , vq+1)E �= 0 if and

only if j = (s−1)(q+1)
h + τ − 1 and l = q−3

2 − (s−1)(q+1)
h − τ , where s is odd and

h
4 − 2t − 2t1 ≤ s ≤ h

4 + 2t + 2t1; j = (s−1)(q+1)
h + τ − 2, l = 3q−3

2 − (s−1)(q+1)
h − τ ,

where s is odd and 3h
4 − 2t − 2t2 ≤ s ≤ 3h

4 + 2t + 2t2; or j = s(q+1)
h − 2, l =

q − s(q+1)
h − 1, where s is even and 0 < |s − h

2 | + 1 − h
4 − 2t ≤ 2t1; There are

4t + 4t1 + 2t2 + 2 pairs ( j, l) such that (aq j+l , vq+1)E �= 0.
By g j g

†
l = (aq j+l , vq+1)E , then dim(Hullh(C)) = k − rank(GG†) = k − 4t −

4t1 − 2t2 − 2. �

Similar to (2) of Lemma 9, when n = n′( h4 − 2t), (0 ≤ t ≤ h

4 − 1), we can get the
following lemma.

Lemma 10 Let q ≡ 1 (mod 4) and h, τ, n′ be defined as above, and n = n′( h4 − 2t −
1), (0 ≤ t ≤ h−4

8 − 1). Then there exist some GRS codes with following parameters:

Let t1, t2, k be integers, where 0 ≤ t1 ≤ t2 ≤ h−4
8 and q+1

2 + 2(t1+t2)(q+1)
h ≤ k ≤

q+1
2 −3+ 2(t1+t2+1)(q+1)

h , the code C has parameters [n, k, n−k+1], and Hullh(C)

has dimension k − 4t − 4t1 − 2t2 − 4.

From Lemmas 9, 10 and Proposition 3, we can get the following theorem.

Theorem 4 Let q, n′, h, τ be defined as above and t1, t2, k be an integer. Then, there
exist [[n, n − 2k + c, k + 1; c]]q EAQMDS codes and [[n, c, n − k + 1; n − 2k + c]]q
EAQECCs, if one of the following holds:

(1) n = n′( h4 + 2t + 1), c = 2t1 + 2t2 + 2, q+1
2 + 2(t1+t2)(q+1)

h ≤ k ≤ q−3
2 +

2(t1+t2+2)(q+1)
h , where 0 ≤ t1 ≤ t2 ≤ t − 1 ≤ h−4

8 − 1.

(2) n = n′( h4 + 2t + 1), c = 4t + 4t1 + 2t2 + 2, q+1
2 + 2(2t+t1+t2)(q+1)

h ≤ k ≤
q+1
2 − 3 + 2(2t+t1+t2+1)(q+1)

h , where 0 ≤ t ≤ h−4
8 and 0 ≤ t1 ≤ t2 ≤ h−4

8 − t .

(3) n = n′( h4 − 2t − 1), c = 2t + 4t1 + 2t2 + 4, and q+1
2 + 2(t1+t2)(q+1)

h ≤ k ≤
q+1
2 − 3 + 2(t1+t2+1)(q+1)

h , where 0 ≤ t ≤ h−4
8 − 1 and 0 ≤ t1 ≤ t2 ≤ h−4

8 .

Remark 4 Comparing Theorem 4 with Theorem 11 of [24], we find that most of the
length is different and the range of k is disjoint for the same length. Comparing
Theorem 4 with Corollary 3.4 of [22], we can conclude although some codes have
the same parameters, there are still many codes with different parameters. Here is an
example.

Example 4 Let q = 49 and h = 20, then τ = 2. By Theorem 4, there exist [[n, n −
2k + c, k + 1; c]]q EAQMDS codes and [[n, c, n − k + 1; n − 2k + c]]q EAQECCs,
where the values of n, k, c can be found in Table 5.

After removing the same parameters as in Reference [22], we can get the codes in
Table 6.

Lemma 11 Let q ≡ 1 (mod 4) and h, τ, n′ be defined as above, and n = tn′, (1 ≤
t ≤ h). Then, there exist some GRS codes with following parameters:
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Table 5 The values of n, k, c in Example 4

n k c n k c n k c

240 25 ≤ k ≤ 27 6 240 30 ≤ k ≤ 32 8 240 35 ≤ k ≤ 37 10

240 35 ≤ k ≤ 37 12 240 40 ≤ k ≤ 42 14 240 45 ≤ k ≤ 47 18

480 25 ≤ k ≤ 27 4 480 30 ≤ k ≤ 32 6 480 35 ≤ k ≤ 37 8

480 35 ≤ k ≤ 37 10 480 40 ≤ k ≤ 42 12 480 45 ≤ k ≤ 47 16

720 25 ≤ k ≤ 27 2 720 30 ≤ k ≤ 32 4 720 35 ≤ k ≤ 37 6

720 35 ≤ k ≤ 37 8 720 40 ≤ k ≤ 42 10 720 45 ≤ k ≤ 47 14

960 25 ≤ k ≤ 33 2 960 35 ≤ k ≤ 37 6 960 40 ≤ k ≤ 42 8

960 45 ≤ k ≤ 47 12 1200 25 ≤ k ≤ 33 2 1200 30 ≤ k ≤ 38 4

1200 35 ≤ k ≤ 43 8 1200 45 ≤ k ≤ 47 10

Table 6 The values of n, k, c in Example 4 after deleting the same parameters

n k c n k c n k c

240 30 ≤ k ≤ 32 8 240 35 ≤ k ≤ 37 10 240 35 ≤ k ≤ 37 12

240 40 ≤ k ≤ 42 14 240 45 ≤ k ≤ 47 18 480 35 ≤ k ≤ 37 8

480 35 ≤ k ≤ 37 10 480 40 ≤ k ≤ 42 12 480 45 ≤ k ≤ 47 16

720 35 ≤ k ≤ 37 8 720 40 ≤ k ≤ 42 10 720 45 ≤ k ≤ 47 14

960 30 ≤ k ≤ 33 2 960 40 8 960 45 ≤ k ≤ 47 12

1200 30 ≤ k ≤ 33 2 1200 35 ≤ k ≤ 38 4 1200 35 ≤ k ≤ 40 8

1200 45 ≤ k ≤ 47 10

Let t1, t2, k be integers, where 0 ≤ t1 ≤ t2 ≤ h−4
8 and q+1

2 + 2(t1+t2)(q+1)
h ≤ k ≤

q+1
2 −3+ 2(t1+t2+1)(q+1)

h , the code C has parameters [n, k, n−k+1], and Hullh(C)

has dimension k − h
4 − 4t1 − 2t2 − 2.

Proof If q ≡ 1 (mod 4), then 8|(h − 4). Let γ, ω be defined as above. Set

a = (1, γ, . . . , γ n′−1, ω, . . . , ωγ n′−1, . . . , ωt−1, . . . , ωt−1γ n′−1),

v = (u0, u0γ, . . . , u0γ
n′−1, u1, . . . , u1γ

n′−1, . . . , ut−1, . . . , ut−1γ
n′−1),

And then, we have

(aq j+l , vq+1)E =
t−1∑

i=0

ωi(q j+l)uq+1
i

n′−1∑

r=0

γ r(q j+l+q+1).

where u0, u1, . . . , ut−1 are t nonzero elements in GF(q2) such that

t−1∑

i=0

ωi(q j+l)uq+1
i �= 0.
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FromLemma5,we have (aq j+l , vq+1)E = 0 if and only if ( j, l) takes the following
values:

If s is even and 2 ≤ s ≤ h, then j = s(q+1)
h − 2, l = q − s(q+1)

h − 1; If s is odd

and 1 ≤ s ≤ h
2 − 1, then j = (s−1)(q+1)

h + τ − 1, l = q−3
2 − (s−1)(q+1)

h − τ ; If s is

odd and h
2 + 1 ≤ s ≤ h − 1, then j = (s−1)(q+1)

h + τ − 2, l = 3q−3
2 − (s−1)(q+1)

h − τ .

Let G = Gk,k1(a, v) =

⎛

⎜
⎜
⎜
⎝

gk1
gk1+1

...

gk1+k−1

⎞

⎟
⎟
⎟
⎠
.

Let 0 ≤ t1 ≤ t2 ≤ h−4
8 , (h−4)(q+1)

4h − 2t1(q+1)
h ≤ k1 ≤ (h−4)(q+1)

4h +τ −1− 2t1(q+1)
h

and (3h−4)(q+1)
4h + τ − 2 + 2t2(q+1)

h ≤ k1 + k − 1 ≤ (3h−4)(q+1)
4h − 4 + 2(t2+1)(q+1)

h .

Then the range of k satisfies q+1
2 + 2(t1+t2)(q+1)

h ≤ k ≤ q+1
2 − 3 + 2(t1+t2+1)(q+1)

h . It

is easy to prove that (aq j+l , vq+1)E �= 0 if and only if j = (s−1)(q+1)
h + τ − 1 and

l = q−3
2 − (s−1)(q+1)

h −τ , where s is odd and h
4 −2t1 ≤ s ≤ h

4 +2t1; j = (s−1)(q+1)
h +

τ − 2, l = 3q−3
2 − (s−1)(q+1)

h − τ , where s is odd and 3h
4 − 2t2 ≤ s ≤ 3h

4 + 2t2; or

j = s(q+1)
h − 2, l = q − s(q+1)

h − 1, where s is even and h
4 − 2t1 ≤ s ≤ 3h

4 + 2t1;
There are h

4 + 4t1 + 2t2 + 2 pairs ( j, l) such that (aq j+l , vq+1)E �= 0.

By g j g
†
l = (aq j+l , vq+1)E , then dim(Hullh(C)) = k − rank(GG†) = k − h

4 −
4t1 − 2t2 − 2.

�

From Lemmas 11 and Proposition 3, we can get the following theorem.

Theorem 5 Let q, n′, h, τ be defined as above and t1, t2, k be integers. Then, there
exist [[n, n − 2k + c, k + 1; c]]q EAQMDS codes and [[n, c, n − k + 1; n − 2k + c]]q
EAQECCs, where n = tn′, c = h

4 + 4t1 + 2t2 + 2, and q+1
2 + 2(t1+t2)(q+1)

h ≤ k ≤
q+1
2 − 3 + 2(t1+t2+1)(q+1)

h , 1 ≤ t ≤ h, and 0 ≤ t1 ≤ t2 ≤ h−4
8 .

Remark 5 Comparing Theorem 5 with Theorem 11 in [24], we find that most of the
length is different and the range of k is disjoint for the same length. Comparing
Theorem 5 with Corollary 3.4 of [22], we can conclude if t is odd, the length is
different. That means that the EAQMDS codes constructed in Theorem 5 are new
when t is odd.

Example 5 Let q = 29 and h = 12, then n′ = 70, 1 ≤ t ≤ 12, and τ = 2. By Theorem
5, there exist [[n, n − 2k + c, k + 1; c]]q EAQMDS codes and [[n, c, n − k + 1; n −
2k + c]]q EAQECCs, where the values of n, k, c can be found in Table 7.

5 The third construction

In this section, similar to the previous two sections, we will construct some new
EAQECCs by extended GRS codes.
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Table 7 The values of n, k, c in
Example 5

n k c

70t 15 ≤ k ≤ 17 5

70t 20 ≤ k ≤ 22 7

70t 25 ≤ k ≤ 27 11

In the proofs of Lemmas 3, 4, 6, 7, 8, 9, 10 and 11, if the generator matrices of GRS
code satisfy the condition in Lemma 1, we can construct the following extended GRS
codes:

Lemma 12 Let q, h, τ, n′ be defined as in Sect. 3, and n = n′( h4 + t), (1 ≤ t ≤ h
4 ).

Then, there exist some extended GRS codes with following parameters:

(1) Let t0, k be integers, where 0 ≤ t0 ≤ t − 2(t ≥ 2) and q−1
2 + τ + 2t0(q−1)

h < k ≤
q−1
2 + τ + 2(t0+1)(q−1)

h − 1, the code C has parameters [n + 1, k, n − k + 2], and
Hullh(C) has dimension k − 2t0 − 3.

(2) Let t0, k be integers, where 0 ≤ t0 ≤ h
4 − t and q−1

2 + τ + 2(t+t0−1)(q−1)
h < k ≤

q−1
2 + 2τ + 2(t0+t−1)(q−1)

h − 1, the code C has parameters [n + 1, k, n − k + 2],
and Hullh(C) has dimension k − 2t − 3t0 − 1.

(3) Let t0, k be integers, where 0 ≤ t0 ≤ h
4 − t − 1 and q−1

2 + 2τ + 2(t+t0−1)(q−1)
h <

k ≤ q−1
2 + τ + 2(t0+t)(q−1)

h − 1, the code C has parameters [n + 1, k, n − k + 2],
and Hullh(C) has dimension k − 2t − 3t0 − 2.

Lemma 13 Let q, h, τ, n′ be defined as in Sect. 3, and n = n′( h4 − t), (0 ≤ t ≤ h
4 −1).

Then, there exist some extended GRS codes with following parameters:

(1) Let t0, k be integers, where 0 ≤ t0 ≤ h
4 − 1 and q−1

2 + τ + 2t0(q−1)
h < k ≤

q−1
2 + 2τ + 2(t0+1)(q−1)

h − 1, the code C has parameters [n + 1, k, n − k + 2],
and Hullh(C) has dimension k − t − 3t0 − 4.

(2) Let t0, k be integers, where 0 ≤ t0 ≤ h
4 − 2 and q−1

2 + 2τ + 2t0(q−1)
h < k ≤

q−1
2 + τ + 2(t0+1)(q−1)

h − 1, the code C has parameters [n + 1, k, n − k + 2], and
Hullh(C) has dimension k − t − 3t0 − 5.

Lemma 14 Let q ≡ 3 (mod 4) and h, τ, n′ be defined as in Sect. 4.1, and n =
n′( h4 + 2t + 2), (0 ≤ t ≤ h

8 − 1). Then, there exist some extended GRS codes with
following parameters:

(1) Let t1, t2, k be integers, where 0 ≤ t1 ≤ t2 ≤ t and q+3
2 + τ + 2(t1+t2)(q+1)

h < k ≤
q−3
2 + τ + 2(t1+t2+1)(q+1)

h , the code C has parameters [n + 1, k, n − k + 2], and
Hullh(C) has dimension k − 2t1 − 2t2 − 3.

(2) Let t1, t2, k be integers, where 0 ≤ t1 ≤ t2 ≤ h
8 − 1 − t and q+3

2 + τ +
2(2t+t1+t2)(q+1)

h < k ≤ q−3
2 + τ + 2(2t+t1+t2+1)(q+1)

h , the code C has parame-
ters [n + 1, k, n − k + 2], and Hullh(C) has dimension k − 4t − 4t1 − 2t2 − 3.

Lemma 15 Let q ≡ 3 (mod 4) and h, τ, n′ be defined as in Sect. 4.1, and n =
n′( h4 − 2t), (0 ≤ t ≤ h

8 − 1). Then, there exist some extended GRS codes with
following parameters:
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Let t1, t2, k be integers, where 0 ≤ t1 ≤ t2 ≤ h
8 − 1 and q+3

2 + τ + 2(t1+t2)(q+1)
h <

k ≤ q−3
2 + τ + 2(t1+t2+1)(q+1)

h , the code C has parameters [n + 1, k, n − k + 2], and
Hullh(C) has dimension k − 2t − 2t1 − 2t2 − 5.

Lemma 16 Let q ≡ 3 (mod 4) and h, τ, n′ be defined as in Sect. 4.1, and n = tn′, for
1 ≤ t ≤ h. Then, there exist some extended GRS codes with following parameters:

Let t1, t2, k be integers, where 0 ≤ t1 ≤ t2 ≤ h
8 − 1 and q+3

2 + τ + 2(t1+t2)(q+1)
h <

k ≤ q−3
2 + τ + 2(t1+t2+1)(q+1)

h , the code C has parameters [n, k, n − k + 1], and
Hullh(C) has dimension k − h

4 − 4t1 − 2t2 − 4.

Lemma 17 Let q ≡ 1 (mod 4) and h, τ, n′ be defined as in Sect. 4.2, and n =
n′( h4 + 2t + 1), (0 ≤ t ≤ h−4

8 ). Then, there exist some extended GRS codes with
following parameters:

(1) Let t1, t2, k be integers, where 0 ≤ t1 ≤ t2 ≤ t − 1 and q+1
2 + 2(t1+t2)(q+1)

h <

k ≤ q−3
2 + 2(t1+t2+2)(q+1)

h , the code C has parameters [n + 1, k, n − k + 2], and
Hullh(C) has dimension k − 2t1 − 2t2 − 3.

(2) Let t1, t2, k be integers, where 0 ≤ t1 ≤ t2 ≤ h−4
8 − t and q+1

2 + 2(2t+t1+t2)(q+1)
h <

k ≤ q+1
2 −3+ 2(2t+t1+t2+1)(q+1)

h , the code C has parameters [n+1, k, n−k+2],
and Hullh(C) has dimension k − 4t − 4t1 − 2t2 − 3.

Lemma 18 Let q ≡ 1 (mod 4) and h, τ, n′ be defined as in Sect. 4.2, and n =
n′( h4 − 2t − 1), (0 ≤ t ≤ h−4

8 ). Then, there exist some extended GRS codes with
following parameters:

Let t1, t2, k be integers, where 0 ≤ t1 ≤ t2 ≤ h−4
8 and q+1

2 + 2(t1+t2)(q+1)
h < k ≤

q+1
2 + 2(t1+t2+1)(q+1)

h , the code C has parameters [n+1, k, n−k+2], and Hullh(C)

has dimension k − 4t − 4t1 − 2t2 − 5.

Lemma 19 Let q ≡ 1(mod 4) and h, τ, n′ be defined as in Sect. 4.2, and n = tn′, (1 ≤
t ≤ h). Then, there exist some extended GRS codes with following parameters:

Let t1, t2, k be integers, where 0 ≤ t1 ≤ t2 ≤ h−4
8 and q+1

2 + 2(t1+t2)(q+1)
h < k ≤

q+1
2 −3+ 2(t1+t2+1)(q+1)

h , the code C has parameters [n, k, n−k+1], and Hullh(C)

has dimension k − h
4 − 4t1 − 2t2 − 3.

From Lemmas 12, 13, 14, 15, 16, 17, 18, 19 and Proposition 3, we can get the
following theorems.

Theorem 6 Let q, n′, h, τ be defined as in Sect. 3 and k be an integer. Then, there exist
[[n + 1, n − 2k + c + 2, k + 1; c + 1]]q EAQMDS codes and [[n + 1, c + 1, n − k +
2; n − 2k + c + 2]]q EAQECCs, if one of the following holds:

(1) n = n′( h4+t), c = 2t0+2,and q−1
2 +τ+ 2t0(q−1)

h < k ≤ q−1
2 +τ+ 2(t0+1)(q−1)

h −1,
where 2 ≤ t ≤ h

4 and 0 ≤ t0 ≤ t − 2.

(2) n = n′( h4 + t), c = 2t + 3t0, and
q−1
2 + τ + 2(t+t0−1)(q−1)

h < k ≤ q−1
2 + 2τ +

2(t0+t−1)(q−1)
h − 1, where 1 ≤ t ≤ h

4 and 0 ≤ t0 ≤ h
4 − t .

(3) n = n′( h4 + t), c = 2t + 3t0 + 1, q−1
2 + 2τ + 2(t+t0−1)(q−1)

h < k ≤ q−1
2 + τ +

2(t0+t)(q−1)
h − 1, where 1 ≤ t ≤ h

4 and 0 ≤ t0 ≤ h
4 − t − 1.
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(4) n = n′( h4 − t), c = t + 3t0 + 3, and q−1
2 + τ + 2t0(q−1)

h < k ≤ q−1
2 + 2τ +

2(t0+1)(q−1)
h − 1, where 0 ≤ t ≤ h

4 − 1 and 0 ≤ t0 ≤ h
4 − 1.

(5) n = n′( h4 − t), c = t + 3t0 + 4 and q−1
2 + 2τ + 2t0(q−1)

h < k ≤ q−1
2 + τ +

2(t0+1)(q−1)
h − 1, where 0 ≤ t ≤ h

4 − 1 and 0 ≤ t0 ≤ h
4 − 2.

Theorem 7 Let q, n′, h, τ be defined as in Sect. 4.1 and t1, t2, k be an integer. Then,
there exist [[n + 1, n − 2k + c + 2, k + 1; c + 1]]q EAQMDS codes and [[n + 1, c +
1, n − k + 2; n − 2k + c + 2]]q EAQECCs, if one of the following holds:

(1) n = n′( h4 + 2t + 2), c = 2t1 + 2t2 + 2, q+3
2 + τ + 2(t1+t2)(q+1)

h < k ≤ q−3
2 + τ +

2(t1+t2+1)(q+1)
h , where 0 ≤ t1 ≤ t2 ≤ t ≤ h

8 − 1.

(2) n = n′( h4 + 2t + 2), c = 4t + 4t1 + 2t2 + 2, q+3
2 + τ + 2(2t+t1+t2)(q+1)

h < k ≤
q−3
2 + τ + 2(2t+t1+t2+1)(q+1)

h , where 0 ≤ t1 ≤ t2 ≤ h
8 − 1 − t .

(3) n = n′( h4 − 2t), c = 2t + 4t1 + 2t2 + 4, and q+3
2 + τ + 2(t1+t2)(q+1)

h < k ≤
q−3
2 + τ + 2(t1+t2+1)(q+1)

h , where 0 ≤ t ≤ h
8 − 1 and 0 ≤ t1 ≤ t2 ≤ h

8 − 1.

Theorem 8 Let q, n′, h, τ be defined as in Sect. 4.1 and t1, t2, k be integers. Then,
there exist [[n + 1, n − 2k + c + 2, k + 1; c + 1]]q EAQMDS codes and [[n + 1, c +
1, n − k + 2; n − 2k + c + 2]]q EAQECCs, where n = tn′, c = h

4 + 4t1 + 2t2 + 3,

and q+3
2 + τ + 2(t1+t2)(q+1)

h < k ≤ q−3
2 + τ + 2(t1+t2+1)(q+1)

h , 1 ≤ t ≤ h, and

0 ≤ t1 ≤ t2 ≤ h
8 − 1.

Theorem 9 Let q, n′, h, τ be defined as in Sect. 4.2 and t1, t2, k be an integer. Then,
there exist [[n + 1, n − 2k + c + 2, k + 1; c + 1]]q EAQMDS codes and [[n + 1, c +
1, n − k + 2; n − 2k + c + 2]]q EAQECCs, if one of the following holds:

(1) n = n′( h4 + 2t + 1), c = 2t1 + 2t2 + 2, q+1
2 + 2(t1+t2)(q+1)

h < k ≤ q−3
2 +

2(t1+t2+1)(q+1)
h , where 0 ≤ t1 ≤ t2 ≤ t ≤ h−4

8 .

(2) n = n′( h4 + 2t + 1), c = 4t + 4t1 + 2t2 + 2, q+1
2 + 2(2t+t1+t2)(q+1)

h < k ≤
q+1
2 − 3 + 2(2t+t1+t2+1)(q+1)

h , where 0 ≤ t1 ≤ t2 ≤ h−4
8 − t .

(3) n = n′( h4 − 2t − 1), c = 2t + 4t1 + 2t2 + 4, q+1
2 + 2(t1+t2)(q+1)

h < k ≤
q+1
2 − 3 + 2(t1+t2+1)(q+1)

h , where 0 ≤ t ≤ h−4
8 and 0 ≤ t1 ≤ t2 ≤ h−4

8 .

Theorem 10 Let q, n′, h, τ be defined as in Sect. 4.2 and t1, t2, k be integers. Then,
there exist [[n + 1, n − 2k + c + 2, k + 1; c + 1]]q EAQMDS codes and [[n + 1, c +
1, n − k + 2; n − 2k + c + 2]]q EAQECCs, where n = tn′, c = h

4 + 4t1 + 2t2 + 2,

and q+1
2 + 2(t1+t2)(q+1)

h < k ≤ q+1
2 − 3 + 2(t1+t2+1)(q+1)

h , 1 ≤ t ≤ h, and 0 ≤ t1 ≤
t2 ≤ h−4

8 .

Remark 6 Similar to Remark 1, 2, 3, 4 and 5, we can see that most of EAQMDS codes
constructed in Theorem 6, 7, 8, 9 and 10 are new.
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6 Conclusions

In this paper, we constructed some classes of EAQMDScodes andEAQECCs and eval-
uated the dimensions of their Hermitian hulls. According to the entanglement-assisted
quantum singleton bound, the resulting EAQMDS codes are optimal. In Table 8 we

summarize the parameters of all precious quantum MDS codes with length a(q2−1)
b

and a(q2−1)
b + 1 (where b|(q2 − 1) and a is a positive integer). From the tables, we

can easily see most of these q-ary EAQMDS codes are new in the sense that their
parameters are not covered by the codes available in the literature. GRS code is a
powerful tool for constructing EAQMDS codes. In the future work, we look forward
to getting more EAQMDS codes with large minimum distance from GRS codes.
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19. Sarı, M., Kolotoğlu, E.: An application of constacyclic codes to entanglement-assisted quantum MDS
codes. Comput. Appl. Math. 38, 75 (2019)

20. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error
correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018)

21. Luo, G., Cao, X., Chen, X.: MDS codes with hulls of arbitrary dimensions and their quantum error
correction. IEEE Trans. Inf. Theory 65(5), 2944–2952 (2018)

22. Li, L., Zhu, S., Liu, L., Kai, X.: Entanglement-assisted quantum MDS codes from generalized Reed–
Solomon codes. Quantum Inf. Process. 18(5), 153 (2019)

23. Luo, G., Cao, X.: Two new families of entanglement-assisted quantum MDS codes from generalized
Reed–Solomon codes. Quantum Inf. Process. 18(3), 89 (2019)

24. Fang, W., Fu, F., Li, L., Zhu, S.: Euclidean and Hermitian hulls of MDS codes and their applications
to EAQECCs. IEEE Trans. Inf. Theory (Early Access) (2019)

25. Lu, L.,Ma,W., Guo, L.: Two families of Entanglement-assisted quantumMDScodes from constacyclic
codes. Int. J. Theor. Phys. (2020). https://doi.org/10.1007/s10773-020-04433-0

26. Wang, J., Li, R., Lv, J., Song, H.: Entanglement-assisted quantum codes from cyclic codes and nega-
cyclic codes. Quantum Inf. Process. 19, 138 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s10773-020-04433-0

	Some new entanglement-assisted quantum error-correcting MDS codes from generalized Reed–Solomon codes
	Abstract
	1 Introduction
	2 Preliminaries
	3 The first construction
	4 The second construction
	4.1 The case qequiv3(mod4)
	4.2 The case qequiv1(mod4)

	5 The third construction
	6 Conclusions
	References




