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Abstract
Let q be a prime power with gcd(q, 6) = 1. Let R = Fq2 + uFq2 + vFq2 + uvFq2 ,
where u2 = u, v2 = v and uv = vu. In this paper, we give the definition of linear skew
constacyclic codes over Fq2 R. By the decomposition method, we study the structural
properties and determine the generator polynomials and the minimal generating sets
of linear skew constacyclic codes. We define a Gray map from F

α
q2

× Rβ to F
α+4β
q2

preserving the Hermitian orthogonality, where α and β are positive integers. As an
application, byHermitian construction,weobtain somegoodquantumerror-correcting
codes.

Keywords Linear skew constacyclic codes · Gray map · Hermitian orthogonality ·
Hermitian construction · Quantum codes
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1 Introduction

In 2007, Boucher et al. [12] studied skew cyclic codes over finite fields. These codes
were constructed by non-commutative polynomial rings. The authors showed that
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some skew cyclic codes have larger minimum Hamming distances than previously
best-known linear codes of the same lengths and dimensions. Inspired by this work,
there are many papers on skew codes over finite fields. Abualrub et al. [1] studied
skew quasi-cyclic codes over finite fields. Siap et al. [34] studied the structure of skew
cyclic codes of arbitrary length and constructed some good linear codes over finite
fields. Recently, the topic on skew codes has been generalized to finite rings. Boucher
et al. [13] studied some structural properties of skew constacyclic codes over Galois
rings. In [26], Jitman et al. generalized this issue to finite chain rings. Afterwards,
many scholars studied skew cyclic codes and constacyclic codes over finite ring such
as [2,11,14,22,24,36,38,42].

In past years, there are several papers on mixed alphabet codes. In 1973, Delsarte
[17] introduced additive codes which can be viewed as subgroups of the underlying
abelian group of the form Z

α
2 × Z

β
4 . Later, many scholars paid more attention to

additive codes. Abualrub et al. [3] and Borges et al. [10] introduced Z2Z4-additive
cyclic codes. They investigated the generator matrix and the duality of the family
of codes. Aydogdu et al. [6,7] generalized Z2Z4-additive codes to Z2Z2s -additive
codes and ZprZps -additive codes. Afterwards, some papers focused on additive codes
appeared, such as [5,18,33,35].

Quantum error-correcting codes (QECCs) are based on the classical information
theory and quantum mechanics. They play an important role in quantum computa-
tion and quantum secret communications, such as quantum signature schemes [41],
quantum identities authentication schemes [16] and quantum key distribution proto-
col [40]. Recently, it has become a hot topic of constructing quantum error-correcting
codes [8,14,20,30] and quantum error-avoiding codes [39]. The first quantum code
was discovered by Shor [32]. Later, a construction method called CSS construction
of quantum codes from classical error-correcting codes was given by Claderbank et
al. [15]. Afterwards, many good quantum codes have been constructed from classical
error-correcting codes.

The error-correcting codes over finite rings have richer algebraic structures than
those over finite fields. Therefore, the quantum coding theory over the finite rings has
received a lot of attention, recently. Many coding scholars have constructed new quan-
tum codes with Euclidean and Hermitian orthogonality from cyclic and constacyclic
codes over finite rings such as [21,23,29,31]. Recently, the structural properties of
cyclic, constacyclic, skew constacyclic codes over the ring Fq + uFq + vFq + uvFq

have been studied. Ashraf et al. [4] constructed quantum codes over F5 from cyclic
codes over F5 + uF5 + vF5 + uvF5. Yao et al. [42] considered the structural prop-
erties of Euclidean dual codes of skew cyclic codes over Fq + uFq + vFq + uvFq .
Zheng et al. [43] studied some properties of Euclidean dual codes of constacyclic
codes over Fp + uFp + vFp + uvFp. Ma et al. [28] constructed some non-binary
quantum codes from constacyclic codes over Fp[u, v]/〈u2 − 1, v2 − v, uv − vu〉.
Skew constacyclic codes generalize cyclic codes and constacyclic codes and provide
more flexibility in constructing of good quantum codes. In [14], the authors con-
sidered the structure of Euclidean dual codes of skew constacyclic codes over the
ring Fq [u, v]/〈u2 − 1, v2 − 1, uv − vu〉, and some quantum codes were constructed
from this family of codes. In [8], Aydin et al. introduced and studied additive skew
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cyclic codes over the quaternary field F4. They showed that some optimal quan-
tum codes can be obtained from additive skew cyclic codes. Motivated by the above
work, in this paper, we consider structural properties of skew constacyclic codes
with respect to the Hermitian inner product over the mixed alphabet Fq2 R, where
R = Fq2 + uFq2 + vFq2 + uvFq2 with u2 = u, v2 = v and uv = vu. The contribu-
tions of our paper are listed as follows.

1. We discuss structural properties of skew λ-constacyclic codes over R. Moreover,
we consider the dual codes of skew λ-constacyclic codes with respect to the Her-
mitian inner product. A sufficient and necessary condition for the existence of
Hermitian dual-containing skew λ-constacyclic codes over R is given.

2. We study the algebraic structure ofFq2 R-linear skew constacyclic codes and deter-
mine the generators and the minimal spanning sets of this family of codes.

3. We define an Fq2 -linear Gray map from F
α
q2

× Rβ to F
α+4β
q2

. The Gray image of
any Fq2 R-skew constacyclic code is the product of a cyclic code over Fq2 of length
α and four skew constacyclic codes of length β.

4. As an application, by the Hermitian construction, we obtain some new quantum
error-correcting codes. Moreover, our new quantum codes have better parameters
than the ones appeared in previous studies.

This paper is organized as follows. In Sect. 2, we give some basic definitions and
introduce the skew polynomial ring R[x, θ ], where R = Fq2 + uFq2 + vFq2 + uvFq2

with u2 = u, v2 = v and uv = vu. In Sect. 3, we study some structural properties of
skew constacyclic codes over R. In Sect. 4, we introduce the definition and algebraic
structure of Fq2 R-linear skew constacyclic codes and determine their generating sets.

In Sect. 5, we define an Fq2 -linear Gray map from F
α
q2

× Rβ to F
α+4β
q2

. Finally, we
construct some good quantum codes from Fq2 R-linear skew constacyclic codes by
Hermitian construction.

2 Preliminaries

Let Fq2 be a finite field, where q is a prime power such that gcd(q, 6) = 1. Let
R = Fq2 + uFq2 + vFq2 + uvFq2 , where u

2 = u, v2 = v and uv = vu. Clearly, R is
not a finite chain ring. Let e1 = uv, e2 = u−uv, e3 = v−uv, e4 = 1−u−v+uv. It is
easy to show that e2i = ei , ei e j = 0 and

∑4
i=1 ei = 1, where i = 1, 2, 3, 4 and i �= j .

From theChinese remainder theorem,wehave that R = e1Fq2⊕e2Fq2⊕e3Fq2⊕e4Fq2 .
Thus, for any element r ∈ R, r can be expressed uniquely as r = e1s+e2t+e3w+e4z,
where s, t, w, z ∈ Fq2 .

We define the set

Fq2 R = {(x, r)|x ∈ Fq2 , r ∈ R}.

It is a ring but not an R-module under the operation of standard multiplication. For
any r = e1s + e2t + e3w + e4z = z + u(t − z) + v(w − z) + uv(s − t − w + z),
define the following map
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δ : R −→ Fq2

r = e1s + e2t + e3w + e4z �→ z.

Clearly, δ is a well-defined ring homomorphism. For any l ∈ R, we define a multipli-
cation � by l�(x, r) = (δ(l)x, lr). It can be naturally generalized to F

α
q2

× Rβ given
by

l�μ = (δ(l)x0, . . . , δ(l)xα−1|lr ′
0, . . . , lr

′
β−1),

where l ∈ R, μ = (x0, . . . , xα−1|r ′
0, . . . , r

′
β−1) ∈ F

α
q2

× Rβ .
From the above discussion, we have the following result directly.

Lemma 1 The ring Fα
q2

× Rβ is an R-module under the addition in the usual way and
the above multiplication.

In the following, we introduce an automorphism of R. Define

θ : R → R

a + ub + vc + uvd �→ aq + ubq + vcq + uvdq .

In this case, ord〈θ〉 = 2. Clearly, the invariant subring under the automorphism θ is
Fq + uFq + vFq + uvFq .

Definition 1 Let θ be an automorphism of R defined above. The skew polynomial ring
R[x, θ ] is a set of polynomials

R[x, θ ] = {a(x) = a0 + a1x + · · · + at x
t |ai ∈ R, for all i = 0, 1, . . . , t},

where the addition of these polynomials is defined in the usual way, while multiplica-
tion is defined using the distributive law and the rule

(axi ) ∗ (bx j ) = aθ i (b)xi+ j .

The skew polynomial ring R[x, θ ] is a non-commutative ring.
An element g(x) ∈ R[x, θ ] is said to be a right divisor of f (x) if there exists a

polynomial q(x) ∈ R[x, θ ] such that

f (x) = q(x) ∗ g(x).

In this case, f (x) is called a left multiple. Similarly, the left divisor can be given. In
the following paper, we denote g(x) a right divisor of f (x) by g(x)|r f (x). Similar to
the reference [26], we give the right division algorithm in R[x, θ ].
Lemma 2 [26] Let f (x), g(x) ∈ R[x, θ ], where the leading coefficient of g(x) is a
unit. Then, there exist unique polynomials q(x), r(x) ∈ R[x, θ ] such that
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f (x) = q(x) ∗ g(x) + r(x),

where r(x) = 0 or deg(r(x)) < deg(g(x)).

The definition of left divisor algorithm is similar to the right divisor algorithm.
A non-empty subset C of Fα

q2
× Rβ is called an Fq2 R-linear code if it is a left R-

submodule of Fα
q2

× Rβ . Let C be an Fq2 R-linear code and Cα (respectively, Cβ ) be
the canonical projection ofC on the firstα (respectively, on the lastβ) coordinates. The
code C is called separable if C is the direct product of Cα and Cβ , i.e. C = Cα ×Cβ .

Let x = (x0, . . . , xα−1|x ′
0, . . . , x

′
β−1), y = (y0, . . . , yα−1|y′

0, . . . , y
′
β−1) ∈ F

α
q2

×
Rβ , where x ′

j = e1s1, j +e2t1, j +e3w1, j +e4z1, j and y′
j = e1s2, j +e2t2, j +e3w2, j +

e4z2, j , for j = 0, 1, . . . , β − 1. The Hermitian inner product between x and y is
defined by

〈x, y〉H = 1

12
(e1 + e2 + e3)

α−1∑

i=0

xiθ(yi ) +
β−1∑

j=0

x ′
jθ(y′

j ).

For an Fq2 R-linear code C of length α + β, its Hermitian dual code is defined by

C = {y ∈ F
α
q2 × Rβ | < x, y >H= 0, for any x ∈ C}.

A code is called Hermitian dual containing if C⊥H ⊆ C .

3 Skew �-constacyclic codes over R

In this section, we discuss the structural properties of skew λ-constacyclic codes over
R.

For a linear code C of length n over R, define

A1 = {s ∈ F
n
q2 | ∃ t, w, z ∈ F

n
q2 , s.t. e1s + e2t + e3w + e4z ∈ C},

A2 = {t ∈ F
n
q2 | ∃ s, w, z ∈ F

n
q2 , s.t. e1s + e2t + e3w + e4z ∈ C},

A3 = {w ∈ F
n
q2 | ∃ s, t, z ∈ F

n
q2 , s.t. e1s + e2t + e3w + e4z ∈ C},

A4 = {z ∈ F
n
q2 | ∃ s, t, w ∈ F

n
q2 , s.t. e1s + e2t + e3w + e4z ∈ C}.

(1)

Clearly, for any i = 1, 2, 3, 4, Ai is a linear code of length n over Fq2 . Moreover, the
linear code C can be uniquely expressed as C = e1A1 ⊕ e2A2 ⊕ e3A3 ⊕ e4A4. The
generator matrix of C is

G =

⎛

⎜
⎜
⎝

e1G1
e2G2
e3G3
e4G4

⎞

⎟
⎟
⎠ ,

where Gi is the generator matrix of Ai , for i = 1, 2, 3, 4.

123



193 Page 6 of 23 J. Li et al.

It is well known that the skew polynomial ring R[x, θ ] is a non-commutative ring,
then the ideal 〈xn − λ〉 of R[x, θ ] may not be two sided, where λ is a unit in R. It
is easy to show that 〈xn − λ〉 is a two sided ideal if and only if n is an even integer
because of ord〈θ〉 = 2. However, when n is odd, R[x, θ ]/〈xn − λ〉 is a left R[x, θ ]-
module, where the left module multiplication is given by f (x) ∗ (g(x) + 〈xn − λ〉) =
f (x) ∗ g(x) + 〈xn − λ〉, for f (x) and g(x) ∈ R[x, θ ].
Definition 2 Let λ be a unit in R. A linear code of length n over R is called a skew
λ-constacyclic code if

(i) C is a left R-submodule of Rn ;
(ii) C is closed under the ρλ-constacyclic shift, i.e.

ρλ(c) = (λθ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C,

for any codeword c = (c0, c1, . . . , cn−1) ∈ C .

When λ = 1, C is called a skew cyclic code over R. When λ = −1, C is called a
skew negacyclic code over R.

Let Rn = R[x, θ ]/〈xn − λ〉. To associate the vectors of Rn with the polynomials
in Rn , we define an R-module isomorphism from Rn to Rn as

(c0, c1, . . . , cn−1) �→ c0 + c1x + · · · + cn−1x
n−1.

According to the above discussion, we can get the following result directly.

Lemma 3 A linear code C of length n over R is a skew λ-constacyclic code if and
only if C is a left R[x, θ ]-submodule of Rn.

In the following, we will identity the skew λ-constacyclic code of length n over R
with a left R[x, θ ]-submodule of Rn .

In [43], Zheng et al. gave the sufficient and necessary condition for the existence
of units in the ring Fp + uFp + vFp + uvFp. Similarly, we give the following lemma.

Lemma 4 Let λ = a + ub + vc + uvd be an element in R. Then, λ is a unit in R if
and only if λ1, λ2, λ3 and λ4 are units in Fq2 , where λ1 = a + b+ c+ d, λ2 = a + b,
λ3 = a + c, λ4 = a.

Now we give some results about skew λ-constacyclic codes over R. They are
significant to study the generator polynomials of skewλ-constacyclic codes overFq2 R.
For the sake of convenience in writing, we denote by λ and λi the following elements

λ = a + ub + vc + uvd, λ1 = a + b + c + d, λ2 = a + b, λ3 = a + c, λ4 = a.

Theorem 1 Let C = e1A1 ⊕ e2A2 ⊕ e3A3 ⊕ e4A4 be a linear code of length n over
R. Then, C is a skew λ-constacyclic code with respect to the automorphism θ if and
only if Ai is the skew λi -constacyclic code over Fq2 , for i = 1, 2, 3, 4.

123



FqR-linear skew constacyclic codes and their application… Page 7 of 23 193

Proof Let (s0, s1, . . . , sn−1) ∈ A1, (t0, t1, . . . , tn−1) ∈ A2, (w0, w1, . . . , wn−1) ∈
A3 and (z0, z1, . . . , zn−1) ∈ A4. Suppose that ci = e1si + e2ti + e3wi + e4zi , for
i = 0, 1, . . . , n − 1. Then, the vector (c0, c1, . . . , cn−1) ∈ C . Since C is a skew
λ-constacyclic code with respect to the automorphism θ , then we have

(λθ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C .

Note that λ = e1λ1 + e2λ2 + e3λ3 + e4λ4. Thus,

(λθ(cn−1), θ(c0), . . . , θ(cn−2))

= e1(λ1θ(sn−1), θ(s0), . . . , θ(sn−2)) + e2(λ2θ(tn−1), θ(t0), . . . , θ(tn−2))

+ e3(λ3θ(wn−1), θ(w0), . . . , θ(wn−2)) + e4(λ4θ(zn−1), θ(z0), . . . , θ(zn−2)).

Therefore, (λ1θ(sn−1), θ(s0), . . . , θ(sn−2)) ∈ A1, (λ2θ(tn−1), θ(t0), . . . , θ(tn−2)) ∈
A2, (λ3θ(wn−1), θ(w0), . . . , θ(wn−2)) ∈ A3 and (λ4θ(zn−1), θ(z0), . . . , θ(zn−2)) ∈
A4, which implies that Ai is the skew λi -constacyclic code over Fq2 , for i = 1, 2, 3, 4.

On the other hand, assume that (c0, c1, . . . , cn−1) ∈ C , where ci = e1si + e2ti +
e3wi + e4zi , for i = 0, 1, . . . , n − 1. By Eq. (1), we have (s0, s1, . . . , sn−1) ∈ A1,
(t0, t1, . . . , tn−1) ∈ A2, (w0, w1, . . . , wn−1) ∈ A3 and (z0, z1, . . . , zn−1) ∈ A4. For
any i = 1, 2, 3, 4, if Ai is the skew λi -constacyclic code over Fq2 , then

(λθ(cn−1), θ(c0), . . . , θ(cn−2))

= e1(λ1θ(sn−1), θ(s0), . . . , θ(sn−2)) + e2(λ2θ(tn−1), θ(t0), . . . , θ(tn−2))

+ e3(λ3θ(wn−1), θ(w0), . . . , θ(wn−2)) + e4(λ4θ(zn−1), θ(z0), . . . , θ(zn−2))

∈ e1A1 ⊕ e2A2 ⊕ e3A3 ⊕ e4A4.

Therefore, (λθ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C , which implies that C is a skew λ-
constacyclic code over R. ��

In [22], we know that a skew λ-constacyclic code of length n over Fq2 is a left
Fq2 [x, θ ]-submodule of Fq2 [x, θ ]/〈xn − λ〉 generated by a monic polynomial f (x)
with minimal degree in C and f (x)|r (xn − λ). According to the result, we have the
following theorem.

Theorem 2 Let C = e1A1 ⊕ e2A2 ⊕ e3A3 ⊕ e4A4 be a skew λ-constacyclic code of
length n over R. Let Ai = 〈gi (x)〉 be the left Fq2 [x, θ ]-submodule of Fq2 [x, θ ]/〈xn −
λi 〉, for i = 1, 2, 3, 4. Then, C = 〈g(x)〉, where g(x) = e1g1(x)+e2g2(x)+e3g3(x)+
e4g4(x) with g(x)|r (xn − λ).

Proof The proof process is similar to that of Theorem 6 in [22]. ��
Theorem 3 Let C = e1A1 ⊕ e2A2 ⊕ e3A3 ⊕ e4A4 be a skew λ-constacyclic code of
even length over R, where λ is fixed by θ of R. Then, C⊥H = e1A⊥H

1 ⊕ e2A⊥H
2 ⊕

e3A⊥H
3 ⊕ e4A⊥H

4 is a skew λ−1-constacyclic code over R, where A⊥H
i is the skew

λ−1
i -constacyclic code over Fq2 , for i = 1, 2, 3, 4.
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Proof Let x = (x0, x1, . . . , xn−1) ∈ C and y = (y0, y1, . . . , yn−1) ∈ C⊥H . Then,
ρn−1

λ (x) = (λθn−1(x1), λθn−1(x2), . . . , λθn−1(xn−1), θ
n−1(x0)) ∈ C . Note that λ is

fixed by θ and n is even. Thus, we have

0 = 〈ρn−1
λ (x), y〉H

= λθ(x1)θ(y0) + λθ(x2)θ(y1) + · · · + λθ(xn−1)θ(yn−2) + θ(x0)θ(yn−1).
(2)

From Eq. (2), we obtain

0 = θ(〈ρn−1
λ (x), y〉H )

= λ(x1y0 + x2y1 + · · · + xn−1yn−2 + λ−1x0yn−1),

which implies that x1y0 + x2y1 +· · ·+ xn−1yn−2 +λ−1x0yn−1 = 0. Since ρλ−1(y) =
(λ−1θ(yn−1), θ(y0), . . . , θ(yn−2)), then

〈x, ρλ−1(y)〉H = x0θ(λ−1θ(yn−1)) + x1θ(θ(y0)) + · · · + xn−1θ(θ(yn−2))

= λ−1x0yn−1 + x1y0 + · · · + xn−1yn−2

= 0.

Therefore, ρλ−1(y) ∈ C⊥H . Consequently,C⊥H is a skew λ−1-constacyclic code over
R. Similar to the proof of Theorem 1, we can getC⊥H = e1A⊥H

1 ⊕e2A⊥H
2 ⊕e3A⊥H

3 ⊕
e4A⊥H

4 and A⊥H
i is a skew λ−1

i -constacyclic code over Fq2 , where i = 1, 2, 3, 4. ��
Let a(x) = a0 + a1x + · · · + amxm ∈ Fq2 [x, θ ]. Define ϕ(

∑m
i=0 ai x

i ) =
∑m

i=0 x
−i ai and φ(

∑m
i=0 ai x

i ) = ∑m
i=0 θ(ai )xi , which are introduced in [9]. Accord-

ing to [37], we have the following result.

Lemma 5 Let C = 〈g(x)〉 be a skew λ-constacyclic code with respect to the auto-
morphism θ of even length n over Fq2 . Let g(x) = ∑deg(g(x))−1

i=0 gi xi + xdeg(g(x)) and

h(x) = ∑deg(h(x))−1
i=0 hi xi + xdeg(h(x)) such that xn − λ = h(x) ∗ g(x) in Fq2 [x, θ ].

Then,

C⊥H = 〈θdeg(h(x))+1(h−1
0 )φ(xdegh(x)ϕ(h(x)))〉.

From Theorem 3 and Lemma 5, we have the following theorem.

Theorem 4 Let C = 〈e1g1(x) + e2g2(x) + e3g3(x) + e4g4(x)〉 be a skew λ-
constacyclic code with respect to automorphism θ of even length n over R. Let gi (x) =
∑deg(gi (x))−1

j=0 gi, j x j + xdeg(gi (x)) and hi (x) = ∑deg(hi (x))−1
j=0 hi, j x j + xdeg(hi (x)) such

that xn − λi = hi (x) ∗ gi (x) in Fq2 [x, θ ], for i = 1, 2, 3, 4. Then,

C⊥H = 〈e1h†1(x) + e2h
†
2(x) + e3h

†
3(x) + e4h

†
4(x)〉,

where h†i (x) = θdeg(hi (x))+1(h−1
i,0 )φ(xdeghi (x)ϕ(hi (x))) .
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Lemma 6 Let C = 〈g(x)〉 be a skew λ-constacyclic code of even length n with respect
to the automorphism θ over Fq2 . Let λ = ±1 and g(x) = ∑deg(g(x))−1

i=0 gi xi +
xdeg(g(x)), h(x) = ∑deg(h(x))−1

i=0 hi xi + xdeg(h(x)) such that xn − λ = h(x) ∗ g(x) in
Fq2 [x, θ ]. Then, C⊥H ⊆ C if and only if xn − λ|r h†(x) ∗ h(x).

Proof Let λ = ±1. Since n is even and ord〈θ〉 = 2, then xn − λ commutes with any
skew polynomial in Fq2 [x, θ ]. Thus, we have h(x) ∗ (xn − λ) = (xn − λ) ∗ h(x).
Since xn − λ = h(x) ∗ g(x) in Fq2 [x, θ ], then

h(x) ∗ (h(x) ∗ g(x)) = (h(x) ∗ g(x)) ∗ h(x) = h(x) ∗ (g(x) ∗ h(x)).

As the leading coefficient of h(x) is a unit in Fq2 [x, θ ], divide both sides of the above
equation by h(x), then we get h(x) ∗ g(x) = g(x) ∗ h(x). Assume that C⊥H ⊆ C , by
Lemma 5, there exists a polynomial q(x) ∈ Fq2 [x, θ ] such that h†(x) = q(x) ∗ g(x).
Multiplying both sides of it by h(x) on the right, we have h†(x)∗h(x) = q(x)∗g(x)∗
h(x). Thus, h†(x) ∗ h(x) = q(x) ∗ (xn − λ) implying that xn − λ|r h†(x) ∗ h(x).

On the other hand, if xn − λ|r h†(x) ∗ h(x), then there exists a polynomial p(x) ∈
Fq2 [x, θ ] such that h†(x) ∗ h(x) = p(x) ∗ (xn − λ) = p(x) ∗ g(x) ∗ h(x), which
implies that (h†(x) − p(x) ∗ g(x)) ∗ h(x) = 0. Since h(x) is not a zero divisor in
Fq2 [x, θ ], then h†(x) = p(x) ∗ g(x), which implies that C⊥H ⊆ C . ��
Theorem 5 LetC = e1A1⊕e2A2⊕e3A3⊕e4A4 be a skewλ-constacyclic code of even
length β over R, where A1 = 〈g1(x)〉, A2 = 〈g2(x)〉, A3 = 〈g3(x)〉 and A4 = 〈g4(x)〉
with xn − λ1 = h1(x) ∗ g1(x), xn − λ2 = h2(x) ∗ g2(x), xn − λ3 = h3(x) ∗ g3(x)
and xn − λ4 = h4(x) ∗ g4(x). For any i = 1, 2, 3, 4, if λi = ±1, then C⊥H ⊆ C if
and only if

xn − λ1|r h†1(x) ∗ h1(x), xn − λ2|r h†2(x) ∗ h2(x),

xn − λ3|r h†3(x) ∗ h3(x), xn − λ4|r h†4(x) ∗ h4(x).

Proof Suppose that n is even andλi = ±1, for i = 1, 2, 3, 4. If xn−λi |r h†i (x)hi (x), by
Lemma 6, we have A⊥H

i ⊆ Ai , which implies that ei A⊥H
i ⊆ ei Ai , for i = 1, 2, 3, 4.

Thus,

e1A
⊥H
1 ⊕ e2A

⊥H
2 ⊕ e3A

⊥H
3 ⊕ e4A

⊥H
4 ⊆ e1A1 ⊕ e2A2 ⊕ e3A3 ⊕ e4A4.

Hence, C⊥H ⊆ C .
Conversely, if C⊥H ⊆ C , then e1A⊥H

1 ⊕ e2A⊥H
2 ⊕ e3A⊥H

3 ⊕ e4A⊥H
4 ⊆ e1A1 ⊕

e2A2 ⊕ e3A3 ⊕ e4A4. Thus, ei A⊥H
i ⊆ ei Ai , for i = 1, 2, 3, 4. Therefore, A⊥H

i ⊆ Ai ,
where i = 1, 2, 3, 4. By Lemma 6, we have the result. ��

4 Linear skew �-constacyclic codes over Fq2R

In this section, we study linear skew λ-constacyclic codes over Fq2 R. We give the
definition of Fq2 R-linear codes first.
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Let e1 = uv, e2 = u−uv, e3 = v−uv, e4 = 1−u−v+uv. Since e1+e2+e3+e4 =
1, then for any c = (x |y) ∈ F

α
q2

× Rβ , we have c =
(∑4

i=1 ei x |y
)
, where x ∈ F

α
q2

and y = e1s + e2t + e3w + e4z ∈ Rβ . For a linear code C of length α +β over Fq2 R,
define

C1 =
{
(x |s) ∈ F

α
q2 × F

β

q2
|x ∈ F

α
q2 , s ∈ A1

}
,

C2 =
{
(x |t) ∈ F

α
q2 × F

β

q2
|x ∈ F

α
q2 , t ∈ A2

}
,

C3 =
{
(x |w) ∈ F

α
q2 × F

β

q2
|x ∈ F

α
q2 , w ∈ A3

}
,

C4 =
{
(x |z) ∈ F

α
q2 × F

β

q2
|x ∈ F

α
q2 , z ∈ A4

}
,

where Ai is defined as (1), for i = 1, 2, 3, 4. A linear code C of length α + β over
Fq2 R can be expressed as C = e1C1 ⊕ e2C2 ⊕ e3C3 ⊕ e4C4.

Definition 3 Let θ be an automorphisms of R and λ be a unit in R. A code C is called
an Fq2 R-linear skew λ-constacyclic codes of length α + β if

(i) C is a left R-submodule of Fα
q2

× Rβ ;
(ii) C is closed under the Tθ,λ-constacyclic shift, i.e.

Tθ,λ(c) = (cα−1, c0, . . . , cα−2|λθ(c′
β−1), θ(c′

0), . . . , θ(c′
β−2)) ∈ C,

where c = (c0, c1, . . . , cα−1|c′
0, c

′
1, . . . , c

′
β−1) ∈ C with (c0, c1, . . . , cα−1) ∈ F

α
q2

and (c′
0, c

′
1, . . . , c

′
β−1) ∈ Rβ .

Let Rα,β = Fq2 [x]/〈xα − 1〉 × R[x, θ ]/〈xβ − λ〉. To associate the vectors of
F

α
q2

× Rβ with the polynomials in Rα,β , we define an R-module isomorphism from

F
α
q2

× Rβ to Rα,β as

(c0, c1, . . . , cα−1|c′
0, c

′
1, . . . , c

′
β−1)

�→ (c0 + c1x + · · · + cα−1x
α−1|c′

0 + c′
1x + · · · + c′

β−1x
β−1).

Let f (x) = f0 + f1x + · · · + ft x t ∈ R[x, θ ] and (c(x)|c′(x)) ∈ Rα,β . Define the
multiplication operation

f (x)�(c(x)|c′(x)) = (δ( f (x))c(x)| f (x) ∗ c′(x)),

where δ( f (x)) = δ( f0)+δ( f1)x+· · ·+δ( ft )xt and δ( f (x))c(x) ∈ Fq2 [x]/〈xα −1〉,
f (x) ∗ c′(x) ∈ R[x, θ ]/〈xβ − λ〉. From the above discussion, we give the polynomial
definition of Fq2 R-linear skew λ-constacyclic codes as follows.

Definition 4 A code C is called an Fq2 R-linear skew λ-constacyclic code of length
α + β if
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(i) C is a left R-submodule of Rα,β ;
(ii) If (c(x)|c′(x)) ∈ C , then

x�(c(x)|c′(x)) = (xc(x)|x ∗ c′(x))
= (cα−1 + c0x + · · · + cα−2x

α−1|λθ(c′
β−1) + θ(c′

0)x

+ · · · + θ(c′
β−2)x

β−1) ∈ C,

where c(x) = c0 + c1x + · · · + cα−1xα−1 ∈ Fq2 [x]/〈xα − 1〉 and c′(x) =
c′
0 + c′

1x + · · · + c′
β−1x

β−1 ∈ R[x, θ ]/〈xβ − λ〉.
By the above multiplication operation, we have the following result.

Lemma 7 A code C is a linear skew λ-constacyclic code of length α + β over Fq2 R
if and only if C is a left R[x, θ ]-submodule of Rα,β .

Theorem 6 Let C = e1C1 ⊕ e2C2 ⊕ e3C3 ⊕ e4C4 be a linear code of length α + β

over Fq2 R. Then, C is a skew λ-constacyclic code over Fq2 R if and only if Ci is the
skew λi -constacyclic code of length α + β over Fq2 , where i = 1, 2, 3, 4.

Proof Let c = (c0, c1, . . . , cα−1|c′
0, c

′
1, . . . , c

′
β−1) ∈ C , where c′

j = e1s j + e2t j +
e3w j + e4z j , for j = 0, 1, . . . , β − 1. Then, the codeword c can be expressed as
c = e1x1 + e2x2 + e3x3 + e4x4, where

x1 = (c0, c1, . . . , cα−1|s0, s1, . . . , sβ−1) ∈ C1,

x2 = (c0, c1, . . . , cα−1|t0, t1, . . . , tβ−1) ∈ C2,

x3 = (c0, c1, . . . , cα−1|w0, w1, . . . , wβ−1) ∈ C3,

x4 = (c0, c1, . . . , cα−1|z0, z1, . . . , zβ−1) ∈ C4.

(3)

Assume that C is a skew λ-constacyclic code over Fq2 R, then
Tθ,λ(c) = (cα−1, c0, . . . , cα−2|λθ(c′

β−1), θ(c′
0), . . . , θ(c′

β−2)) ∈ C . Note that

λθ(c′
β−1)

= λ(e1θ(sβ−1) + e2θ(tβ−1) + e3θ(wβ−1) + e4θ(zβ−1))

= e1λ1θ(sβ−1) + e2λ2θ(tβ−1) + e3λ3θ(wβ−1) + e4λ4θ(zβ−1).

Then, Tθ,λ(c) = e1y1 + e2y2 + e3y3 + e4y4, where

y1 = (cα−1, c0, . . . , cα−2|λ1θ(sβ−1), θ(s0), . . . , θ(sβ−2)) ∈ C1,

y2 = (cα−1, c0, . . . , cα−2|λ2θ(tβ−1), θ(t0), . . . , θ(tβ−2)) ∈ C2,

y3 = (cα−1, c0, . . . , cα−2|λ3θ(wβ−1), θ(w0), . . . , θ(wβ−2)) ∈ C3,

y4 = (cα−1, c0, . . . , cα−2|λ4θ(zβ−1), θ(z0), . . . , θ(zβ−2)) ∈ C4.

(4)

Combining (3) and (4), we can get Ci is the skew λi -constacyclic code in Fα
q2

× F
β

q2
,

for i = 1, 2, 3, 4.
Conversely, it has the similar proof, so we omit it. ��
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In the following, we consider the generators and the minimal spanning sets of linear
skew λ-constacyclic codes over Fq2 R. The proof process is similar to that of Theorem
4 in [5].

Theorem 7 Let C be a linear skew λ-constacyclic code of length α + β over Fq2 R.
Then,

C = 〈( f (x)|0), (l(x)|g(x))〉,

where f (x), l(x) ∈ Fq2 [x]/〈xα − 1〉, deg(l(x)) < deg( f (x)), f (x)|(xα − 1), g(x) =
e1g1(x)+ e2g2(x)+ e3g3(x)+ e4g4(x), g(x)|r (xβ −λ) and xβ −λi = hi (x)∗ gi (x),
i = 1, 2, 3, 4.

Proof Let C be an Fq2 R-linear skew constacyclic code of length α + β. Define

ψ : C → R[x, θ ]/〈xβ − λ〉
(v(x)|v′(x)) �→ v′(x),

where v(x) ∈ Fq2 [x]/〈xα −1〉 and v′(x) ∈ R[x, θ ]/〈xβ −λ〉. For any p(x) ∈ R[x, θ ],
we have ψ(p(x)�(v(x)|v′(x))) = p(x) ∗ ψ(v(x)|v′(x)). Thus, ψ is a left R[x, θ ]-
module homomorphismwhose image is a left R[x, θ ]-submodule of R[x, θ ]/〈xβ −λ〉.
By Lemma 3 and Theorem 2, we obtain thatψ(C) = 〈g(x)〉, where g(x) = e1g1(x)+
e2g2(x) + e3g3(x) + e4g4(x) with g(x)|r (xβ − λ).

Define the set I to be

I = {
f (x) ∈ Fq2 [x]/〈xα − 1〉|( f (x), 0) ∈ ker(ψ)

}
.

Clearly, I is an ideal of Fq2 [x]/〈xα −1〉. Hence, I is a cyclic code in Fq2 [x]/〈xα −1〉,
which implies that I = 〈 f (x)〉, where f (x) is a divisor of xα −1. For any (v(x), 0) ∈
ker(ψ), we have that v(x) ∈ I = 〈 f (x)〉. Therefore, there exists a polynomial p(x) ∈
R[x, θ ] such that v(x) = δ(p(x)) f (x). Thus, (v(x)|0) = p(x)�( f (x)|0) which
implies that ker(ψ) is a submodule ofC generated byone element of the form ( f (x)|0),
i.e. ker(ψ) = 〈( f (x)|0)〉, where f (x) ∈ Fq2 [x] and f (x)|(xα − 1). By the theorem
of isomorphism, we have

C/ker(ψ) ∼= 〈g(x)〉.

Let (l(x)|g(x)) ∈ C such that ψ(l(x)|g(x)) = g(x). Then, C can be generated as a
left R[x, θ ]-submodule of Rα,β by two elements of the form ( f (x)|0) and (l(x)|g(x)).
Thus, any element in C can be written as

c(x)�( f (x)|0) + d(x)�(l(x)|g(x)),

where c(x), d(x) ∈ R[x, θ ]. Consequently,

C = 〈( f (x)|0), (l(x)|g(x))〉.
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Finally, we show that deg(l(x)) < deg( f (x)). Let C = 〈( f (x)|0), (l(x)|g(x))〉.
Suppose that deg(l(x)) ≥ deg( f (x)) and deg(l(x)) − deg( f (x)) = t . Let D =
〈( f (x)|0), (l(x)|g(x)) + xt�( f (x), 0))〉. Then, it can be regarded as

D = 〈( f (x)|0), (l(x) + xt f (x)|g(x))〉.

Clearly, D ⊆ C . Moreover, (l(x)|g(x)) = (l(x)+xt f (x)|g(x))−xt�( f (x)|0), which
implies that C ⊆ D. Therefore, C = D, which implies a contradiction. ��
Proposition 1 Let the notations be the ones defined in Theorem 7. Then, we have
f (x)|h4(x)l(x) in Fq2 [x]/〈xα − 1〉.
Proof Let xβ − λi = hi (x) ∗ gi (x), for i = 1, 2, 3, 4. Then,

(e1h1(x) + e2h2(x) + e3h3(x) + e4h4(x)) ∗ g(x)

= e1h1(x) ∗ g1(x) + e2h2(x) ∗ g2(x) + e3h3(x) ∗ g3(x) + e4h4(x) ∗ g4(x)

= e1(x
β − λ1) + e2(x

β − λ2) + e3(x
β − λ3) + e4(x

β − λ4)

= (e1 + e2 + e3 + e4)x
β − (e1λ1 + e2λ2 + e3λ3 + e4λ4)

= xβ − λ.

(5)

By Eq. (5), we obtain

(e1h1(x) + e2h2(x) + e3h3(x) + e4h4(x))�(l(x)|g(x))
= (δ(e1h1(x) + e2h2(x) + e3h3(x) + e4h4(x))l(x)|0)
= (h4(x)l(x)|0) ∈ ker(ψ).

From Theorem 7, we have that f (x)|h4(x)l(x) in Fq2 [x]/〈xα − 1〉. ��
Theorem 8 Let C = 〈( f (x)|0), (l(x)|g(x))〉 be a linear skew λ-constacyclic code of
length α + β over Fq2 R, where β is an even integer and g(x) = e1g1(x) + e2g2(x) +
e3g3(x) + e4g4(x), g(x)|r (xβ − λ), xβ − λi = hi (x) ∗ gi (x), i = 1, 2, 3, 4. Suppose
that

S1 =
α−deg( f (x))−1⋃

i=0

{xi�( f (x)|0)},

S2 =
β−deg(h(x))−1⋃

i=0

{xi�(l(x)|g(x))}.

Then,

S = S1 ∪ S2

forms a minimal spanning set for C with |C | = q2(α−deg( f (x)))q4(β−deg(h(x))), where
h(x) = e1h1(x) + e2h2(x) + e3h3(x) + e4h4(x).
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Proof Let c(x) ∈ C = 〈( f (x)|0), (l(x)|g(x))〉. Then, there exist polynomials a(x),
b(x) ∈ R[x, θ ] such that c(x) = a(x)�( f (x)|0) + b(x)�(l(x)|g(x)). If deg(a(x)) ≤
α − deg( f ) − 1, then c(x) = a(x)�( f (x)|0) ∈ Span(S1). Otherwise, by the right
divisor algorithm, there exist polynomials q(x) and r(x) ∈ R[x, θ ] such that

δ(a(x)) = δ(q(x))
xα − 1

f (x)
+ δ(r(x)),

where δ(r(x)) = 0 or deg(δ(r(x))) < deg
(
xα−1
f (x)

)
. Hence,

a(x)�( f (x)|0) = (δ(a(x)) f (x)|0)
=

(

(δ(q(x))
xα − 1

f (x)
+ δ(r(x))) f (x)|0

)

= (δ(r(x)) f (x)|0).

Since deg(δ(r(x))) < deg
(
xα−1
f (x)

)
, then a(x)�( f (x)|0) ∈ Span(S1).

Let b(x) ∈ R[x, θ ]. If deg(b(x)) ≤ β − deg(h(x)) − 1, then b(x)�(l(x)|g(x)) ∈
Span(S2). Otherwise, by the right division algorithm, there exist polynomials q1(x),
r1(x) ∈ R[x, θ ] such that

b(x) = q1(x) ∗ h(x) + r1(x),

where r1(x) = 0 or deg(r1(x)) < deg(h(x)). Note that h(x) ∗ g(x) =
xβ − λ in R[x, θ ]/〈xβ − λ〉. Thus, b(x)�(l(x)|g(x)) = q1(x)�(δ(h(x))l(x)|0) +
r1(x)�(l(x)|g(x)). Since r1(x)�(l(x)|g(x)) ∈ Span(S2), by Proposition 1, we get
q1(x)�(δ(h(x))l(x)|0) = q1(x)�(h4(x)l(x)|0) ∈ Span(S1). Consequently, c(x) =
a(x)�( f (x)|0) + b(x)�(l(x)|g(x)) ∈ Span(S1 ∪ S2) and it is easy to show |C | =
q2(α−deg( f (x)))q4(β−deg(h(x))). ��

5 The Gray images of linear skew �-constacyclic codes over Fq2R

For any r = e1s + e2t + e3w + e4z ∈ R, r can be expressed as r = (s, t, w, z) ∈

F
4
q2
. Let M =

⎡

⎢
⎢
⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤

⎥
⎥
⎦, M� denotes the transpose matrix of M. Firstly,

we need a Gray map from R to F
4
q2

given by Φ(r) = (s, t, w, z)M = rM , where
r = e1s + e2t + e3w + e4z. Here, for the sake of convenience in writing, we use r in
place of vector (s, t, w, z). It can be extended to

Φ : Fα
q2 × Rβ −→ F

α+4β
q2

c = (c0, . . . , cα−1|c′
0, . . . , c

′
β−1) �→ (c0, . . . , cα−1|c′

0M, . . . , c′
β−1M),
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where c′
j = e1s j + e2t j + e3w j + e4z j and c′

j M = (s j , t j , w j , z j )M , for j =
0, 1, . . . , β − 1. The Lee weight of an element c = (c0, . . . , cα−1|c′

0, . . . , c
′
β−1) ∈

F
α
q2

× Rβ is defined as the Hamming weight of the extended Gray image, i.e.

wL(c) =
α−1∑

i=0

wH (ci ) +
β−1∑

j=0

wH (Φ(c′
j )).

The Lee distance between two vectors x and y in F
α
q2

× Rβ is defined as dL(x, y) =
wL(x − y). Based on the above definitions, we have the following result.

Proposition 2 Let Φ be the Gray map defined above.

(i) Φ is anFq2 -linear distance preservingmap fromF
α
q2

×Rβ (Lee distance) toFα+4β
q2

(Hamming distance).
(ii) IfC is an (α+β, M, dL ) linear code overFq2 R, thenΦ(C) is an [α+4β, logM

q2
, dL ]

linear code over Fq2 , where M denotes the number of codewords in C.

Proof Let x = (x0, . . . , xα−1|x ′
0, . . . , x

′
β−1) and y = (y0, . . . , yα−1|y′

0, . . . , y
′
β−1) ∈

F
α
q2

× Rβ , where x ′
j = e1s1, j + e2t1, j + e3w1, j + e4z1, j and y′

j = e1s2, j + e2t2, j +
e3w2, j + e4z2, j , for j = 0, 1, . . . , β − 1. Then, from the definition of the Gray map
Φ, we have

Φ(x + y)

= (x0 + y0, . . . , xα−1 + yα−1|(x ′
0 + y′

0)M, . . . , (x ′
β−1 + y′

β−1)M)

= (x0, . . . , xα−1|x ′
0M, . . . , x ′

β−1M) + (y0, . . . , yα−1|y′
0M, . . . , y′

β−1M)

= Φ(x) + Φ(y).

Moreover, for any a ∈ Fq2 , we have

Φ(ax) = Φ(ax0, . . . , axα−1|ax ′
0, . . . , ax

′
β−1)

= (ax0, . . . , axα−1|ax ′
0M, . . . , ax ′

β−1M)

= aΦ(x).

Therefore, Φ is an Fq2 -linear map. It is easy to show that Φ is an Fq2 -linear distance
preserving map. ��
Proposition 3 Let C be a linear Hermitian self-orthogonal code of length α + β over
Fq2 R. Then, Φ(C) is a linear Hermitian self-orthogonal code of length α + 4β over
Fq2 .

Proof Let x = (x0, . . . , xα−1|x ′
0, . . . , x

′
β−1), y = (y0, . . . , yα−1|y′

0, . . . , y
′
β−1) ∈

F
α
q2

× Rβ , where x ′
j = e1s1, j + e2t1, j + e3w1, j + e4z1, j and y′

j = e1s2, j + e2t2, j +
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e3w2, j + e4z2, j , for j = 0, 1, . . . , β − 1. If C is a linear Hermitian self-orthogonal
code over Fq2 R, then

〈x, y〉H = 1

12
(e1 + e2 + e3)

α−1∑

i=0

xiθ(yi ) +
β−1∑

j=0

x ′
jθ(y′

j ) = 0,

which implies that

1

12

α−1∑

i=0

xiθ(yi ) +
β−1∑

j=0

s1, jθ(s2, j ) = 0,

1

12

α−1∑

i=0

xiθ(yi ) +
β−1∑

j=0

t1, jθ(t2, j ) = 0,

1

12

α−1∑

i=0

xiθ(yi ) +
β−1∑

j=0

w1, jθ(w2, j ) = 0,

β−1∑

j=0

z1, jθ(z2, j ) = 0.

(6)

By Eq. (6), we obtain

β−1∑

j=0

(s1, jθ(s2, j ) + t1, jθ(t2, j ) + w1, jθ(w2, j )) = −1

4

α−1∑

i=0

xiθ(yi ),

β−1∑

j=0

z1, jθ(z2, j ) = 0.

Let θ(M) = (θ(mi, j ))0≤i, j≤3 for M = (mi, j )0≤i, j≤3. Note that

〈Φ(x),Φ(y)〉H

=
α−1∑

i=0

xiθ(yi ) +
β−1∑

j=0

x ′
j Mθ(M)�θ(y′

j )
�

=
α−1∑

i=0

xiθ(yi ) + 4
β−1∑

j=0

(s1, jθ(s2, j ) + t1, jθ(t2, j ) + w1, jθ(w2, j ) + z1, jθ(z2, j ))

= 0.

Therefore,Φ(C) is a linear Hermitian self-orthogonal code of length α+4β over Fq2 .
��

123



FqR-linear skew constacyclic codes and their application… Page 17 of 23 193

6 Quantum codes from linear skew constacyclic codes over Fq2R

Let gcd(n, q) = 1 andm = ordn(q2). Then,Fq2m contains a primitive nth root of unity

η and xn −1 = ∏n−1
i=0 (x −ηi ). Let s be an integer with 0 ≤ s < n. The q2-cyclotomic

coset mod n containing s is defined by Cs = {s, sq2, s(q2)2, . . . , s(q2)r−1}, where r
is the smallest positive integer such that s(q2)r ≡ s(mod n).

LetC = 〈g(x)〉 be a cyclic code of length n over Fq2 , where g(x) = ∏
s
∏

i∈Cs
(x−

ηi ) and s run through some subsets of q2-cyclotomic cosets mod n. Let

Z =
{
i |g(ηi ) = 0, f or 0 ≤ i ≤ n − 1

}
.

The set Z is called the defining set of C . Since C⊥H = (Cq)⊥, then the defining set
of C⊥H is given by Z−q = {−qZ(mod n)|z ∈ Z}.

In [30], Mi et al. gave a sufficient and necessary condition for the existence of
Hermitian dual-containing cyclic codes over Fq2 as follows.

Lemma 8 [30] Let gcd(q, n) = 1. A cyclic code of length n over Fq2 with defining
set Z contains its Hermitian dual code if and only if Z

⋂
Z−q = ∅, where Z−q =

{−qZ(mod n)|z ∈ Z}.
Let Cα be a cyclic code over Fq2 and Cβ be a skew λ-constacyclic code over R,

respectively. If C is separable, then C = Cα × Cβ , i.e. C = 〈( f (x)|0), (0|g(x))〉,
where Cα = 〈 f (x)〉 with f (x)|(xα − 1) and Cβ = 〈g(x)〉 with g(x)|r (xβ − λ).

Lemma 9 Let C = Cα × Cβ be a separable linear code of length α + β over Fq2 R.

Then, C⊥H ⊆ C if and only if C⊥H
α ⊆ Cα and C⊥H

β ⊆ Cβ .

Theorem 9 [27] Let C1 and C2 be [n, k1, d1]q2 and [n, k2, d2]q2 linear codes, respec-
tively, where C⊥H

2 ⊆ C1. Then, there exists a quantum error-correcting code C with
parameters [[n, k1 + k2 −n,≥ min{d1, d2}]]q . In particular, if C⊥H

1 ⊆ C1, then there
exists a quantum error-correcting code with parameters [[n, 2k1 − n,≥ d1]]q .

Assume that gcd(α, n) = 1. Let Cα be a cyclic code of length α over Fq2 with
Cα = 〈gα(x)〉. Let Cβ be a skew λ-constacyclic code with respect to θ of even
length β over R and Cβ = 〈gβ(x)〉, where gβ(x) = e1g1 + e2g2 + e3g3 + e4g4 with
xβ − λi = hi (x) ∗ gi (x), for i = 1, 2, 3, 4 and λi = ±1. By Theorems 5 and 9,
Proposition 3, Lemmas 8 and 9, we can get the following theorem.

Theorem 10 Let C = Cα × Cβ be a (α + β, M, dL) separable linear skew λ-
constacyclic code over Fq2 R, where dL is the minimum Lee distance of C. If

(i) Z
⋂

Z−q = ∅;
(ii)

xβ − λ1|r h†1(x) ∗ h1(x), xβ − λ2|r h†2(x) ∗ h2(x),

xβ − λ3|r h†3(x) ∗ h3(x), xβ − λ4|r h†4(x) ∗ h4(x),
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where Z−q = {−qZ(mod n)|z ∈ Z}. Then, there exists a quantum error-
correcting code C with parameters [[α + 4β, 2k − (α + 4β),≥ dL ]], where k
is the dimension of the code Φ(C) and dL is the minimum Hamming distance of
Φ(C).

Example 1 Let Cα = 〈gα(x)〉 be a cyclic code of length 8 over F25, where F25 =
F5[w] with w2 = w + 3 . Assume that Z = {1, 2} is the defining set of Cα . Then,
gα(x) = x2 + wx + w9. Since Z−5 = {3, 6}, then Z ∩ Z−5 = ∅. By Lemma 8, Cα is
a Hermitian dual-containing code with parameters [8, 6, 3]25.

Let R = F25 + uF25 + vF25 + vF25 + uvF25, where u2 = u, v2 = v, uv = vu and
F25 = F5[w]withw2 = w+3. Let θ be an automorphism of R denoted by θ(a) = a5

for every element a ∈ F25. Let β = 8. Then, we have

x8 − 1 = (x + 1) ∗ (x + 4) ∗ (x + 2) ∗ (x + 3) ∗ (x + w7) ∗ (x + w23) ∗ (x + w9)2,

x8 − 1 = (x + 2) ∗ (x + 3) ∗ (x + w4) ∗ (x + w8) ∗ (x + w9)2 ∗ (x + w3)2,

x8 − 1 = (x + w8) ∗ (x + w4) ∗ (x + w) ∗ (x + w17) ∗ (x + w23) ∗ (x + w7)

∗ (x + w22) ∗ (x + w2),

x8 − 1 = (x + w4) ∗ (x + w8) ∗ (x + w9)2 ∗ (x + w14) ∗ (x + w10) ∗ (x + w15)2.

LetCβ = e1C1⊕e2C2⊕e3C3⊕e4C4 be a skew cyclic code of length 8 over R, where
C1 = 〈g1(x)〉, C2 = 〈g2(x)〉, C3 = 〈g3(x)〉, C4 = 〈g4(x)〉 with g1(x) = x + w9,
g2(x) = x + w3, g3(x) = x + w2 and g4(x) = x + w15. Since

h1(x) = x7 + w9x6 + w6x5 + w15x4 + w12x3 + w21x2 + w18x + w3,

h2(x) = x7 + w3x6 + w18x5 + w21x4 + w12x3 + w15x2 + w6x + w9,

h3(x) = x7 + w22x6 + w12x5 + w10x4 + x3 + w22x2 + w12x + w10,

h4(x) = x7 + w15x6 + w18x5 + w9x4 + w12x3 + w3x2 + w6x + w21.

and

h†1(x) = x7 + w15x6 + w18x5 + w9x4 + w12x3 + w3x2 + w6x + w21,

h†2(x) = x7 + w21x6 + w6x5 + w3x4 + w12x3 + w9x2 + w18x + w15,

h†3(x) = x7 + w2x6 + w12x5 + w14x4 + x3 + w2x2 + w12x + w14,

h†4(x) = x7 + w9x6 + w6x5 + w15x4 + w12x3 + w21x2 + w18x + w3,

then we have x8 − 1|r h†i (x)hi (x) for i = 1, 2, 3, 4. By Theorem 5, Cβ is a Hermitian
dual-containing code with parameters [32, 28, 3]25. Let C = Cα ×Cβ be a separable
skew cyclic code of length 16 over F25R. According to Lemma 9, we get C⊥H ⊆ C .
By Proposition 2, Φ(C) is a linear code over F25 with parameters [40, 34, 3]. By The-
orem 10, we obtain a quantum code with parameters [[40, 28, 3]]5. This quantum code
has the larger dimension comparing with the known quantum code with parameters
[[40, 24, 3]]5 appeared in [28].
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Table 1 New quantum codes [[n, k, d]]q from skew λ = a + ub + vc + uvd constacyclic codes over R

Label n g1 g2 g3 g4 Φ(C) [[n, k, d]]q
1 2 w181 w61 w61 w61 [8, 4, 4]25 [[8, 0, 4]]5
2 4 w151 w91 21 21 [16, 12, 4]25 [[16, 8, 4]]5
3 6 w101 w141 431 w141 [24, 19, 4]25 [[24, 14, 4]]5
4 6 4w51 w101 431 4w171 [24, 17, 5]25 [[24, 10, 5]]5
5 8 w17w81 w31 1w5w2w171 w19w31 [32, 23, 6]25 [[32, 14, 6]]5
6 8 w31 w91 w151 w21 [32, 28, 3]25 [[32, 24, 3]]5
7 10 w41 w44w161 4w81 w20w31 [40, 32, 5]25 [[40, 24, 5]]5
8 10 w41 w81 w101 w20w31 [40, 35, 3]25 [[40, 30, 3]]5
9 12 w71 w1 3w101 w101 [48, 43, 4]25 [[48, 38, 4]]5
10 6 41 w341 w151 w331 [24, 20, 4]49 [[24, 16, 4]]7
11 6 41 w341 651 w20w281 [24, 18, 5]49 [[24, 12, 5]]7
12 6 651 w341 w20w281 w38w201 [24, 17, 6]49 [[24, 10, 6]]7
13 8 w31 w91 w211 6w21 [32, 27, 4]49 [[32, 22, 4]]7
14 4 w391 w91 w271 w301 [16, 12, 4]169 [[16, 8, 4]]13
15 6 31 w101 w501 w901 [24, 20, 4]169 [[24, 16, 4]]13
16 6 w383w1501 w101 w501 w901 [24, 18, 5]169 [[24, 12, 5]]13
17 8 w211 w631 51 w3w31 [32, 27, 4]169 [[32, 22, 4]]13

At the last of this section, we obtain some new quantum error-correcting codes.
Table 1 contains somenewnon-binary quantumcodes fromskewλ-constacyclic codes.
The second column of the table denotes the code length of C over R. The gi (x) are
the generator polynomials of A1, A2, A3 and A4, respectively. The following column
denotes the parameters of the Gray image ofC . The last column denotes the associated
quantum codes. In Table 2, λ is an element of R and λi are units of Fq2 , respectively.
The column five denotes the associated quantum codes, and the last column denotes
the known quantum codes in comparison.

Remark 1 In Table 1, some quantum codes are constructed from skew λ- constacyclic
codes Cβ = 〈e1g1(x) + e2g2(x) + e3g3(x) + e4g4(x)〉 over R, where λ = a + ub +
vc + uvd. Let gi (x) = g0 + g1x + · · · + gt xt . For simplicity, we denote gi (x) by
g0g1 . . . gt .

In Table 2, our quantum codes [[24, 10, 5]]5, [[40, 24, 5]]5, [[40, 30, 3]]5 have
better parameters than the quantum codes [[23, 6, 5]]5, [[40, 24, 3]]5, [[40, 24, 3]]5 in
[28]. Moreover, our obtained quantum codes [[8, 0, 4]]5, [[16, 8, 4]]5, [[24, 16, 4]]7,
[[16, 8, 4]]13 and [[24, 16, 4]]13 are almost quantumMDScodes such that n−k−2d =
2.The rest of quantumcodes [[24, 14, 4]]5 , [[32, 24, 3]]5, [[48, 38, 4]]5, [[24, 12, 5]]7,
[[24, 10, 6]]7, [[32, 22, 4]]7 and [[32, 22, 4]]13 have the parameters satisfying n−k−
2d + 2 = 4.
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Table 2 List of units and parameters used in Table 1

Label n λ (λ1, λ2, λ3, λ4) [[n, k, d]]q [[n′, k′, d ′]]q
1 2 −1 (−1,−1,−1, −1) [[8, 0, 4]]5 2d = n − k

2 4 1 − 2u (−1,−1, 1, 1) [[16, 8, 4]]5 [[18, 4, 4]]5[23]
3 6 −1 (−1,−1,−1, −1) [[24, 14, 4]]5 [[22, 10, 4]]5([23])
4 6 1 − 2u − 2v + 4uv (1,−1, −1, 1) [[24, 10, 5]]5 [[23, 6, 5]]5([19])
5 8 −1 + 2u (1, 1, −1,−1) [[32, 14, 6]]5 –

6 8 1 (1, 1, 1, 1) [[32, 24, 3]]5 [[32, 20, 3]]5([29])
7 10 1 − 2v + 2uv (1, 1, −1, 1) [[40, 24, 5]]5 [[40, 24, 3]]5([28])
8 10 1 − 2v + 2uv (1, 1, −1, 1) [[40, 30, 3]]5 [[40, 24, 3]]5([28])
9 12 1 − 2u − 2v + 2uv (−1,−1,−1, 1) [[48, 38, 4]]5 2d = n − k − 2

10 6 −1 + 2u (1, 1, −1,−1) [[24, 16, 4]]7 [[27, 15, 4]]7([29])
11 6 −1 + 2u + 2v − 2uv (1, 1, 1,−1) [[24, 12, 5]]7 [[26, 12, 5]]7([19])
12 6 −1 + 2u (1, 1, −1,−1) [[24, 10, 6]]7 [[30, 12, 6]]7([19])
13 8 −1 + 2u + 2v − 2uv (1, 1, 1,−1) [[32, 22, 4]]7 2d = n − k − 2

14 4 1 − 2u − 2v + 2uv (−1,−1,−1, 1) [[16, 8, 4]]13 [[16, 8, 2]]13([21])
15 6 −1 + 2uv (1,−1, −1,−1) [[24, 16, 4]]13 [[24, 12, 4]]13([20])
16 6 -1 (−1,−1,−1, −1) [[24, 12, 5]]13 [[24, 8, 5]]13([20])
17 8 −1 + 2u + 2v − 2uv (1, 1, 1,−1) [[32, 22, 4]]13 [[36, 24, 4]]13([20])

Example 2 Let R = F25 + uF25 + vF25 + vF25 + uvF25, where u2 = u, v2 = v,
uv = vu and F25 = F5[w] with w2 = w + 3. Let θ be an automorphism of R
denoted by θ(a) = a5 for any element a ∈ F25. Let f1 = x + w4, f2 = x + w8,
f3 = x2 + w3x + w20, f4 = x3 + w16x2 + 4x + w4, f5 = x2 + w8x + 4 and
f6 = x+w10. It is easy to see that f1|(x10−1), f2|(x10−1), f3|(x10−1), f4|(x10−1),
f5|(x10+1) and f6|(x10+1) inF25[x, θ ]. InTable 3,we list some examples of quantum
codes over F5 obtained by Hermitian dual-containing skew constacyclic codes over
F25 + uF25 + vF25 + uvF25 of length 10.

Remark 2 In Table 3, we construct quantum codes of length 40 with parameters
[[40, 24, 5]]5, [[40, 28, 4]]5, [[40, 30, 3]]5, [[40, 32, 2]]5. Comparing with the well-
knownquantumcodes [[40, 24, 3]]5 appeared in [28], our quantumcodes [[40, 24, 5]]5
and [[40, 30, 3]]5 have the larger minimum distance and the larger dimension. More-
over, our quantum code [[40, 32, 2]]5 has the larger dimension than the well-known
quantum code [[40, 24, 2]]5 in [25]. Therefore, our quantum codes will have better
performances in the quantum channel.

Remark 3 In the last, we introduce our new contribution of this paper over the
existing results in references [26,27,30,43].

In [26], Jitman et al. gave the properties of skew constacyclic codes over finite
chain rings. The generators of Hermitian dual codes of skew constacyclic codes were
determined. However, the authors did not introduce the application of this family of
codes. In our paper, we discussed the properties of skew constacyclic codes over the
finite non-chain ring R = Fq2+uFq2+vFq2+uvFq2 , where u

2 = u, v2 = v, uv = vu.
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Table 3 Quantum codes from
Hermitian dual-containing skew
constacyclic codes

n g1 g2 g3 g4 [[n, k, d]]q
10 f1 f4 f5 f3 [[40, 24, 5]]5
10 f1 f2 f5 f3 [[40, 28, 4]]5
10 f1 f2 f6 f3 [[40, 30, 3]]5
10 f1 f2 f6 f1 [[40, 32, 2]]5

Moreover, we extended this concept to mixed alphabet codes. Similarly, we gave
the algebraic structure of Fq2 R-linear skew constacyclic codes and determined their
generating sets. More importantly, we constructed some good non-binary quantum
codes.

In [27], the authors introduced non-binary stabilizer codes over finite fields. They
established the self-orthogonalitywith respect to a trace-symplectic form. In our paper,
by the theory of Hermitian construction in [27], we used Hermitian dual-containing
skew constacyclic codes over R to construct quantum codes.

In [30], Mi et al. obtained some Hermitian dual-containing cyclic codes based on
a characterization of q-cyclotomic cosets modulo n. But they only obtained quantum
codes with odd length. In our paper, by considering the Hermitian dual-containing
skew constacyclic codes over R, we got quantum codes of length 4n, where n is a
positive integer.

In [43], Zheng et al. only considered some structural properties of constacyclic codes
under Euclidean inner product over Fp + uFp + vFp + uvFp, where u2 = u, v2 = v,
uv = vu. However, in our paper, we considered the structure of skew constacyclic
codes with respect to Hermitian inner product. Moreover, we introduced linear skew
constacyclic codes over Fq2 R and gave their structural properties. As an application,
we constructed some good quantum codes in Tables 1 and 3.

7 Conclusion

In this paper, Fq2 R-linear skew constacyclic codes of length α + β can be viewed
as a left R[x, θ ]-submodules of Fq2 [x]/〈xα − 1〉 × R[x, θ ]/〈xβ − 1〉, where R =
Fq2 + uFq2 + vFq2 + uvFq2 with u2 = u, v2 = v and uv = vu. Firstly, we dis-
cuss the structural properties of skew λ-constacyclic codes over R. Further, we study
the Hermitian dual codes of skew λ-constacyclic codes over R. Secondly, we deter-
mine the generators and the minimal spanning sets of Fq2 R-linear skew constacyclic

codes of length α + β. Finally, we define a Gray map from F
α
q2

× Rβ to F
α+4β
q2

preserving the Hermitian orthogonality. As an application, we obtain some quantum
codes, which have better parameters than the known quantum codes. Quantum codes
with good parameters have practical applications in the construction of secret sharing
schemes in cryptography, improving the reliability of quantum computing and quan-
tum communication. Moreover, they play an important role in quantum confidential
communication. It is an interesting open problem to study how to apply quantum codes
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from codes over rings into amplitude-damping qubit channel, phase-damping channel,
depolarized-damping qubit channel and actual physical background.
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