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Abstract
We present a quantum algorithm for ranking the nodes of a network in their order
of importance. The algorithm is based on a directed discrete-time quantum walk and
works on all directed networks. This algorithm can theoretically be applied to the
entire internet and thus can function as a quantum PageRank algorithm. Our analysis
shows that the hierarchy of quantum ranks matches well with the hierarchy of classical
ranks for directed trees and other acyclic networks. For cyclic networks, however, the
hierarchy of quantum ranks does not exactly match the hierarchy of the classical
ranks. This highlights the role of quantum interference and fluctuations in networks
and the importance of using quantum algorithms to rank nodes in quantum networks.
Another application this algorithm can envision is to model the dynamics on networks
mimicking chemical complexes and rank active centres in the order of reactivities.
Since discrete-time quantum walks are implementable on current quantum processing
systems, this algorithm will also be of practical relevance in the analysis of quantum
architecture.

Keywords Quantum walk · Discrete-time quantum walk · Quantum algorithm ·
Quantum network

1 Introduction

A quantum walk is by and large a quantummechanical analogue of a classical random
walk [1–5] without having the randomness associated with the dynamics. Quantum
walks have served as a basis for development of various quantum algorithms and
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in modelling the dynamics of many quantum systems. They are also becoming an
increasingly relevant topic of interest beyond the conventional quantum informa-
tion and physics community. We have two well-studied versions of quantum walk,
the continuous-time quantum walk (CTQW) and the discrete-time quantum walk
(DTQW). The dynamics of the CTQW are defined only on a position Hilbert space,
whereas an additional coin Hilbert space along with the position Hilbert space is used
to define the dynamics of DTQW. Both the variants have been shown to be effective
at performing various quantum computational tasks [6–13]. Beyond computational
tasks, CTQW has played an important role in modelling the energy transfer in photo-
synthetic material [14]. The additional coin degree of freedom in DTQW serves as an
extra degree of freedom to control the dynamics and model the physical phenomena,
such as topological phases [15–21], and Dirac equation and its associated dynam-
ics [22–32]. Therefore, in terms of utility, a quantum walk is a very powerful scheme
for quantum simulations, in direct analogy to the role of classical randomwalk in clas-
sical simulations over the past few decades. Experimental implementation of quantum
walks in a variety of quantum systems, such as nuclear Magnetic Resonance (NMR)
systems [33], integrated photonics [34–36], ion traps [37,38], and cold atoms [39],
makes it a promising protocol of future quantum technologies.

Complex networks have become a part and parcel of modern life and scientific
research. As a consequence, there has been significant research in the field of network
analysis, which is applied to not only the World Wide Web [40,41], but also to social
and biological systems [42,43]. Problems pertaining to communication, storage and
transport of information have seen significant interest from the scientific community
and have been studied in the form of network analysis. With the recent advances in the
field of quantum information and computation, quantum networks are envisioned to
dominate the architecture of all aspects of quantum information, communication and
computation protocols. Some early versions of these networks have already been cre-
ated and analysed [44–56]. Some of the physical models exhibit interesting properties
such as long-distance entanglement [57–60].

A fundamental problem in a vast network of information therefore becomes one
of classification, search and retrieval. In this respect, for a complex network, ranking
nodes of the network on the basis of relevance of information required becomes a
challenge of some importance. A significant development in this field has been the
introduction of the PageRank algorithm [61–66], which is the heart of Google’s search
engine. An important step in this direction for quantum networks has been the success-
ful attempt [67] to quantize the classical protocol, based on Szegedy’s scheme [68]
for quantization of Markov chains.

It has been proven that the quantum methods for ranking nodes outperform their
classical counterparts [69–72] on different kinds of networks, but the quantum pro-
tocol tested is based on Szegedy’s scheme. Szegedy’s scheme is a variant of a DTQW
that does not require a coin operator, but needs an additional Hilbert space of the same
dimension as its position space. Thus, the additional resource requirement makes
its physical realization an uphill task compared to a standard single-particle DTQW
implementation where the internal degree of freedom of the particle acts as a coin
Hilbert space.
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To overcome the difficulty of using an additional position space in implementing the
existing quantum rank algorithms, we propose a new algorithm based on a directed
DTQW (D-DTQW) which will require only a position and a coin Hilbert space to
implement the algorithm effectively. This algorithm will be relevant beyond ranking
node in networks, to rank active centres on chemical compounds in the order of
reactivities, to model dynamics in complex quantum networks and to analyse the
connectivity of quantum communication networks and other quantum architectures.

In order to rank the nodes of a quantum network, it becomes essential to preserve
some of the quantum properties of the network in an objective, network-independent
manner. In the classical protocol, thiswas visualized by a browser performing a random
walk on the Web, which is what made Google’s algorithm a success. Going by the
same analogy for a quantum network, our quantum algorithm identifies the nodes of
a network as states in a multi-dimensional Hilbert space, and just like its classical
counterpart, it performs a D-DTQW on the network. Since a single-particle DTQW
has been experimentally implemented in various quantum systems, its directed variant
will also be directly implementable on a physical quantum circuit, which makes the
algorithm practically scalable for a network as well.

This paper is organized as follows: in Sect. 2, we present an overview and brief
analysis of our D-DTQW algorithm and how it ranks the nodes on a graph. We also
make some note on physical realization of some operators in our algorithm. Section 3
presents an overview of the classical page ranking algorithm and Szegedy’s walk. It
also highlights key differences betweenour scheme and the schemebased onSzegedy’s
walk. In Sect. 4, we present the results of our simulations and comparisons with
the classical PageRank algorithm on some networks. We collate all our results and
conclude with remarks in Sect. 5.

2 Directed discrete-time quantumwalk algorithm for ranking nodes

2.1 Discrete-time quantumwalk

The DTQW for a single-particle walker on a one-dimensional lattice is defined as an
evolution in the Hilbert spaceH = HC ⊗HP , whereHC andHP are coin and position
Hilbert spaces, respectively. The coin space is taken to have the basis states {|↑〉, |↓〉}
which represents the internal states of the walker. The position space is defined by the
basis states |x〉, where x ∈ Z. The initial state of the walker is a combination of the
coin and position space state of the form,

|ψ〉0 = (α|↑〉 + β|↓〉) ⊗ |x = 0〉 ; |α|2 + |β|2 = 1. (1)

Here, α and β are the amplitudes of the coin states. The evolution operator is defined
by the action of a coin operator on the coin space, followed by the action of a coin
state-dependent position shift operator on the entire system. The coin operator may
be a U(2) matrix, but is mostly used in the single-parameter form,
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Cθ =
[

cos(θ) −i sin(θ)

−i sin(θ) cos(θ)

]
⊗

∑
x

|x〉〈x |. (2)

The shift operator shifts different components of the probability amplitude in different
directions and is given by

Sx =
∑
x∈Z

[|↑〉〈↑| ⊗ |x − 1〉〈x | + |↓〉〈↓| ⊗ |x + 1〉〈x |] . (3)

In general, the state of the walker after n steps of evolution is given as

|ψ〉n = (SxCθ )
n |ψ〉0. (4)

2.2 Directed discrete-time quantumwalk algorithm

In the D-DTQW [72], the shift operator allows shifting in only one direction and can
be written as the S+ or S−, depending on the direction in which evolution is directed
towards. Thus, the D-DTQW shift operator is given by,

S± =
{∑

x |↑〉〈↑| ⊗ |x ± 1〉〈x | + |↓〉〈↓| ⊗ |x〉〈x | or,∑
x |↑〉〈↑| ⊗ |x〉〈x | + |↓〉〈↓| ⊗ |x ± 1〉〈x |. (5)

To construct an algorithm for ranking the nodes on a digraph, the D-DTQW operators
used for defining the standard directed evolution need to be modified. The coin and
position shift operators must be made dependent on the properties of the graph or
network. Therefore, the redefined node-dependent coin operation takes the form,

C =
∑
x

⎡
⎣

√
1

αx+1

√
αx

αx+1√
αx

αx+1 −
√

1
αx+1

⎤
⎦ ⊗ |x〉〈x |. (6)

Here, αx represents the proportion of the incoming weight compared to the total
incoming and outgoing weights at the node represented by |x〉, i.e. αx = di

di+do
, where

di is the indegree and do is the outdegree of node |x〉. It is trivial to verify that C is
unitary. The shift operator takes the form,

S =
∑
x

[
|↑〉〈↑| ⊗ |x〉〈x | +

∑
k

(|↓〉〈↓| ⊗Ukx |k〉〈x |)
]

. (7)

Here, the matrix U is unitary, so that S is also unitary. The algorithm is encoded
directly into the operators as follows: The coin operator is defined at each node and
essentially rotates the state depending on how much proportion of the data throughput
at the particular node is incoming data. The incoming proportion is then ’stored’ in
the |↑〉 coin state, and the outgoing information is sent to all nodes |k〉 to which the
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node |x〉 is connected, in a proportion that is determined by the matrix U , which will
be defined below.

For a directed graph, in general, the adjacencymatrix A is not symmetric. Therefore,
we transform A into a scattering matrix by considering the singular value decompo-
sition of A as,

A = P�Q, (8)

where P and Q are the left and right singular eigenvectors of A. The matrix � is
a diagonal matrix consisting of the singular values of A, which essentially contains
information about how much information goes through each node, and in this sense,
acts like a transfer matrix. The � is Hermitian and is converted into a unitary form
as S = ei�. Since A was a square matrix, P, Q and S are all square matrices of the
order of A. In addition, it may be verified that all the three matrices P, Q and S are
unitary by themselves, and thus, the operator

U = Pei�Q, (9)

will also be unitary. Physically, this makes the walk behave as if the |↓〉 component
of the probability amplitude is being scattered off each node and being redistributed
among the directed edges. The coin operation defined here shifts some of the proba-
bility amplitude between the |↑〉 and |↓〉 states of the coin space. However, the amount
of shift is dependent on the indegree of the particular node. If the relative importance
of the node is high, it will tend to accumulate amplitude, while a node with lesser
importance will tend to lose amplitude over multiple iterations of the walk.

So far, we have not mentioned anything about the weights of the edges connecting
the nodes. In a more general case when the edges are weighted, the adjacency matrix
A takes care of the weights as its definition changes, and so the shift operator is left
unchanged. The coin operator is changed slightly so that the total weights of the incom-
ing and outgoing edges are multiplied to the indegrees and outdegrees of each node,

C =
∑
x

⎡
⎣

√
1

αx+1

√
αx

αx+1√
αx

αx+1 −
√

1
αx+1

⎤
⎦ ⊗ |x〉〈x |

where αx =
∑

j w j ei j∑
j w j ei j + ∑

j w j eo j

.

(10)

Here, ei j represents the j th incoming edge that has the weight w j . Similarly, eo j is
the j th outgoing edge with the corresponding weight w j .

2.3 Summary of algorithm

For any step at each node, the probability amplitude simultaneously evolves through
connecting edges, and hence, the nodes with a higher weight of outgoing edges will
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end up having lower amplitudes on average. A summary of steps involved in our
algorithm for ranking nodes in order of implementation is given below:

1. Initial state preparation: The initial state of the system is set to one of equal super-

position, i.e. |ψ〉0 =
( |↑〉+|↓〉√

2

)
⊗ ∑N

x=1
1√
N

|x〉.
2. Coin operation: The coin operation [Eq. (6)] is performed on the state.
3. Shift operation: The shift operation [Eq. (7)] is performed on the system.
4. Repetition and measurement:

One step is defined as a single application of the coin operator followed by the
shift operator. The system is initially allowed to run for 50 steps independent of
network size so that the convergence of ranks hierarchy is seen. See appendix for
our analysis on convergence of the quantum ranks. It is then probed for proba-
bility values after each step, reset, and run again for a higher number of steps.
The normalized average of the probability values of each node gives its relative
importance, considered to be the ’quantum rank’ of that node.

2.4 Physical realization

The mathematical framework of the unitary operator which describes the algorithm
opens up questions on its physical realization. A given physical system may not allow
a direct realization of all parts of unitary operators in the algorithm. However, physical
realization of the unitary operators of the DTQW in the form of Hamiltonians has been
explored in [73]. It requires us to find eigenvalues and eigenvectors of a large matrix
which is an open problem at the moment. A hybrid quantum-classical approach has
been suggested and demonstrated in [74]. Since the adjacency matrix of the network
to be simulated is known a priori, its spectral decomposition can be obtained before
creating the Hamiltonian for the physical system.

Unlike the standard DTQW implementation, the coin operator in this algorithm
changes depending upon how the entire network is physically modelled. For example,
in an implementation involving a system of photons travelling through waveguides,
if the coin space is represented by the polarization (L. circular or R. circular) of the
photons, the coin operator for eachnodemaybe realizedbymodifying thepolarizations
appropriately at each node of the network.

Before proceeding with the results of testing our algorithm on various networks,
for the purpose of comparison we present below classical page rank algorithm and
rank algorithm using Szegedy’s quantum walk.

3 Discussion and comparison with other algorithms

3.1 Classical page ranking algorithm

The classical PageRank is calculated by a powermethod. Consider a digraph�(V , E),
with nodes described by the set V and edges by the set E . The adjacency matrix of
� is denoted as A. We assume that the digraph � has N nodes, and thus, A is of size
N × N .
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The list of ranks of nodes is prepared in an initial state V given by

V = 1

N

⎡
⎢⎢⎢⎣
1
1
...

1

⎤
⎥⎥⎥⎦ . (11)

The Google matrix is defined as the column stochastic matrix G such that

G = (1 − p)A + p

N
B, (12)

where B is a square matrix of size N such that all its elements are 1 and p is a real
number lying in [0, 1]. In this case, we have chosen p = 0.85.

The classical algorithm iteratively computes V ∗ = GkV with k = 1, 2, 3, .... This
may be expressed algorithmically as

1. Compute V ∗ = Gk V ,
2. Assign V = V ∗,
3. Go to 1.

At the point when the value of V ∗ is the same for k = k′ and k = k′ + 1, the program
stops. At this point, the vector represented by V ∗ is an eigenvector of G, and the
elements of V ∗ give the classical ranks for the nodes of the network.

An interesting way to look at this algorithm is its formulation as a random walk.
We assign the importance of a node by the fraction of time a walker spends at that
node while diffusing on a graph. Thus, if Ti is defined as the amount of time spent by
the walker at a node, then

Ti =
∑
j

Gi j Tj . (13)

In terms of a Markov chain formalism, this enables us to recast the Google matrix
as representing the conditional probability linking one time step to another. Consider
a sequence of random variables X (i), where i = 1, 2, 3, ..., one for each time step.
Each random variable can take a value in the set of nodes {ni } in the network. Thus,
mathematically,

P
(
ni = X (n+1)

)
=

∑
j

Gi j P
(
n j = X (n)

)
,

�⇒ Gi j = P
(
ni = X (n+1)|n j = X (n)

)
.

(14)

3.2 Algorithm based on Szegedy’s walk

Consider a Hilbert space that is defined as the span of all vectors that correspond to
N × N edges of a digraph �, which has N nodes. Thus, the Hilbert space may be
represented as,
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H = span
{|x〉1|y〉2, x, y ∈ N × N

} = C
N ⊗ C

N . (15)

Now, define the vectors |ψ j 〉 inH as,

|ψ j 〉 := | j〉1 ⊗
N∑

k=1

√
G jk |k〉2. (16)

where the subindices 1 and 2 represent the subspace ofH to which the vector belongs.
Eq. (16) represents a superposition of vectors representing outgoing edges from the
node j .

It is easily verifiable that since G is stochastic, |ψ〉 j are normalized. Thus, the

operator� = ∑N
j=1 |ψ〉 j 〈ψ | j represents a projection onto the subspace generated by

the vectors |ψ〉 j . A single step of Szegedy walk is then defined to be

U = S(2� − 1), (17)

where S is the swap operator, that is,

S =
N∑

j,k=1

| j, k〉〈k, j |. (18)

Each time a swap occurs, the edges are swapped, and hence, to maintain the direct-
edness of the graph after each step, only an even number of steps must be taken. A
simple approach to take care of this is to define a single step to be the application of
the operator U 2. A detailed description of the algorithm and the steps involved may
be found in [69].

3.3 Comparison with our scheme

The classical algorithm is simply an eigenvalue-finding problem, and does not account
for quantum interference at all. It is thus expected to give the incorrect results upon
being used for quantum networks.

The key difference between our scheme and the one based on Szegedy’s walk is
space complexity. Our scheme is based on a D-DTQW, which uses a Hilbert space of
dimension 2N , as there is a N -node position space and a coin space of two dimensions
at each node. The Szegedywalk requires aHilbert space of dimension N 2, as it requires
two copies of the N -node position space and does not require a coin space. This
additional resource requirement of a second position space makes physical realization
unwieldy. In case of a D-DTQW, however, an internal degree of freedom of the walker
can be used to model the coin Hilbert space.
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Fig. 1 The seven-node random network used for testing the algorithm. This network is identical to the one
used for presenting quantum PageRank in [67]

Table 1 Results of our scheme
on the network shown in Fig. 1

Node Classical Rank DTQW Rank (variance)

1 0.05101861 0.08380093 (0.00185733)

2 0.06186007 0.19844160 (0.00658283)

3 0.07792397 0.15287456 (0.00444598)

4 0.02894015 0.07958649 (0.00251329)

5 0.36238838 0.19032214 (0.00723016)

6 0.04798132 0.10345481 (0.00323991)

7 0.36988750 0.19672791 (0.00791763)

4 Ranking nodes on various networks using D-DTQW

In this section, we present the results of testing our algorithm on various networks. We
have compared the quantum ranks using D-DTQW with the classical ranks obtained
by applying the Google PageRank algorithm [61–66] on different networks.

In Fig. 1, we have shown a cyclic digraph network with seven nodes. This network
is identical to the one used for presenting quantum PageRank algorithm based on
quantization of Markov chains in [67]. In Table 1, the results obtained using classical
ranking algorithm and D-DTQW algorithm after 500 steps are shown. Plot with the
values at each node for the network is shown in Fig. 2. Though the corresponding
values at each node are different for classical and quantum algorithms, the returned
ranks are identical.
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Fig. 2 Quantum Ranks of a random seven-node network shown in Fig. 1 as calculated by the D-DTQW
algorithm after 500 steps. As can be seen, the algorithm can identify various levels of the ranks. The order
of the nodes within the levels may, however, be different, as visible here. For the case of this graph, the
node with least classical importance is also the node with the least quantum rank

Fig. 3 The five-level binary tree network used for testing our algorithm
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Table 2 Results of our scheme
on the network shown in Fig. 3

Tree Level Classical Rank DTQW Rank (variance)

1 0.14205971 0.1794099 (0.008976)

2 0.08103215 0.0878046 (0.002109)

3 0.04513478 0.0432301 (0.000561)

4 0.02402133 0.0214871 (0.000134)

5 0.01160276 0.0106261 (0.000003)

Table 3 Results of our scheme
on a 5-level tree of branching
ratio 3

Tree Level Classical Rank DTQW Rank (variance)

1 0.12407655 0.178774 (0.012538)

2 0.04836995 0.057356 (0.000920)

3 0.01868464 0.018113 (0.000009)

4 0.00705091 0.005964 (0.000001)

5 0.00459601 0.004013 (0.000001)

Fig. 4 Quantum rank at each node on a five-level binary tree network. Quantum rank is consistent with the
classical ranking and it efficiently identifies each level of the tree. As expected, the quantum ranks of the
nodes in the same level are all equal

We have simulated our algorithm on a tree network of different levels. An example
of five-level binary tree network with 63 nodes is shown in Fig. 3. This algorithm
gives very accurate results on this type of network model and demonstrates a very
nice scalability as it identifies the levels extremely well. The quantum and classical
ranks of the different levels are shown in Tables 2 and 3, and corresponding plots are
shown in Figs. 4, and 5.

The scheme also gives reasonable output for scale-free networks. Testing was done
on a 32-node network shown in Fig. 6, and the results are shown in Table 4 and Fig. 7.
Even though the quantum ranks do not match the classical ones as exactly as in the
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Fig. 5 Quantum ranks for a five-level tree with branching ratio 3. As with the binary tree, our algorithm is
able to successfully discern different levels of this tree. The nodes on the same level have the same ranks,
as expected

Fig. 6 The 32-node scale-free
network used for testing
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Fig. 7 Quantum ranks obtained by our algorithm on a 32-node scale-free network, plotted against the
classical rankings. The network we have tested it on is shown in Fig. 6. While the highest ranked node in
the quantum protocol is also the highest classically ranked node, the ranks of the intermediate nodes violate
the classical orderings

case of directed tree networks, they still are able to correctly find the most important
node, which, in this case, is node 3.

The algorithm is also able to successfully identify the classical nodes with rela-
tively smaller importances, namely nodes 1, 2, 22, 5, 9 and 11. The quantum ranks of
these nodes are different from their classical counterparts, and the classically expected
hierarchy is also violated in this case due to quantum fluctuations.

To demonstrate scalability on a scale-free network, we have tested our algorithm on
a 64-node scale-free network as shown in Fig. 8, and again, as for the 32-node network
case, it violated the classical hierarchy to some extend as Fig. 9, but it identified the
most important node to be the same as the classical case, i.e. node 3. It may be
observed that at places where the classical ranks show only a very minuscule change,
the quantum ranks have a more exaggerated result, highlighting the importance of the
node. This can also be seen from Table 5.

The algorithm also performs well on other types of digraphs, such as growing
networks with copying [75]. Figure 10 presents one such example. The results are
shown in Fig. 11. Again, the most important nodes are the same as identified in the
classical case, but the hierarchy is violated for other nodes of intermediate and low
importances. The classical and quantum ranks for the top-ranked nodes are shown in
Table 6. It can be seen that the order in this case was not violated for very important
nodes.

In our results, for all the networks we have chosen, we have run this algorithm for
500 iterations. However, we have found that the order of the nodes does not change
after about 200 steps. Any number of steps done post this point only serves to reduce
the standard deviation of the quantum rank of the node (See “Appendix”).
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Fig. 8 The 64-node scale-free network used for testing

5 Conclusions

In this work, we have presented a new algorithm to generate a ranking of the nodes
of a network by using a D-DTQW on a network. We use a scattering form of the
shift operator, which is derived from the Google matrix used for the PageRank algo-
rithm [40,41,61–66]. The Google matrix is derived from the adjacency matrix of the
graph and therefore contains information inherent to the structure of the networkwithin
itself. We have shown the results obtained after iterating our algorithm on different
networks, and the conclusions that we draw from them are as follows:
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Fig. 9 Quantum ranks of a 64-node scale-free network. The network is shown in Fig. 8. As with the 32-node
case, the classically highest ranked node is also the highest ranked node in the quantum protocol, but the
milder fluctuations in classical ranks are enhanced in the quantum case, and the intermediate-ranked nodes
again violate the classically determined hierarchy

Fig. 10 The 50-node GNC
network used for testing
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Fig. 11 Plot of the quantum and classical ranks of nodes in a 50-node GNC network, shown in Fig. 10. The
quantum ranks in this case follow the classical ranks fairly closely and identify the highest ranked node
very quickly. The quantum ranks of nodes of nearly similar importances show a violation of the classically
determined order

Table 4 Results of our scheme
on the network shown in Fig. 6

Node Classical Rank DTQW Rank (variance)

3 0.42131700 0.07093110 (0.00166186)

1 0.11467604 0.04520861 (0.00100160)

2 0.09082545 0.04662555 (0.00107079)

22 0.08001230 0.06313678 (0.00185716)

5 0.03241485 0.03785673 (0.00092886)

9 0.01981836 0.04244159 (0.00104070)

11 0.01696630 0.03394764 (0.00059992)

1. Directed tree networks :
The D-DTQW algorithm is instantaneously able to figure out the root node; how-
ever, the instantaneous values of the quantum ranks for the nodes on larger network
violate the expected classical hierarchy (fromGoogle’s PageRank algorithm). This
is expected as the violation arises as a consequence of quantum fluctuations in the
system. Also, since quantumwalks do not have steady-state solutions, the instanta-
neous ranks will never converge. The mean values of the quantum ranks, however,
obey the classically expected hierarchy (See Appendix). The hierarchy within a
particular level is not violated for this case. However, for networks used for quan-
tum communication and quantum processing the hierarchy of nodes returned by
the D-DTQW algorithm will be more relevant over the classical hierarchy. The D-
DTQW dynamics takes into account all the quantum interference and fluctuations
from the quantum dynamics in network.

2. Other random networks:
Our quantum algorithm also works well for scale-free networks, GNC networks
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Table 5 Results of our scheme
on the network shown in Fig. 8

Node Classical Rank DTQW Rank (variance)

3 0.31100452 0.03272801 (0.00036173)

2 0.15862896 0.02166889 (0.00021582)

1 0.11133144 0.02141180 (0.00022876)

4 0.04330243 0.01518750 (0.00010749)

10 0.04044220 0.02338800 (0.00027185)

6 0.02104263 0.01867057 (0.00018800)

9 0.01804840 0.02568506 (0.00038090)

Table 6 Some of the ranks
obtained from applying our
scheme on the network shown in
Fig.10

Node Classical Rank DTQW Rank (variance)

1 0.32015058 0.2012710 (0.0088581)

2 0.07881006 0.0343706 (0.0005040)

3 0.06664595 0.0547777 (0.0013040)

20 0.03386290 0.0372421 (0.0006670)

5 0.03284027 0.0361666 (0.0005380)

and other random networks (the results are shown only for the scale-free and GNC
digraphs in this work) identifies the well-connected (i.e. most important) nodes
very quickly. The internal order of the hubs and the other nodes on the network
may differ from what is classically expected, but the algorithm can separate the
two types of nodes. As with the case of the trees, the instantaneous quantum ranks
do not converge; however, the averaged values of these instantaneous ranks do.
There are nodes, however, for which the averaged quantum ranks also violate the
classically expected hierarchy. This deviation is due to quantum interference and
fluctuations at the nodes of the network. Such kind of interference is not seen
in acyclic networks and seems to only occur when some part of a probability is
caught in a loop in the network.

From the results listed above, it is clear that our algorithm shows some non-trivial
features that are also found in the classical PageRank algorithm. For non-trivial net-
works, some deviations of quantum rank from the classical rank highlight the role of
quantum interference and quantum fluctuations. From this, we can say that the ranking
of nodes for network with quantum and classical processing of information may not
be identical and quantum scheme is very much required for analysis of architecture
and network for quantum processes.

The quantum scheme, however, can be mapped to a dynamics on quantum systems,
and the computation can be experimentally performed on it. This quantum algorithm
can inspire applications in data sciences and other areas where there exists a need to
generate a ranking of nodes and analyse the networks.
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Appendix

We demonstrate here the convergence of the quantum ranks for the networks listed
above. It is seen that for the case of the random network, the algorithm takes roughly
200 steps to get the correct order of nodes. For the case of the tree networks (and in
general with acyclic networks), the algorithm starts giving the correct ranking from
step 1 itself. For all other networks (scale-free andGNCnetworks), the order converges
to the final output order after roughly 50 steps, independent of the size of the network.
We have run the algorithm on each graph for 500 iterations to make the errors small.

Plots of quantum ranks with time to prove convergence. For plots where the curves
are not visible (e.g. in plot (c)), they are all coinciding with each other as they have
tiny values that are very close to each other.
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