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Abstract
The first generation of small noisy quantum processors have recently become available
to non-specialistswho are not required to understand specifics of the physical platforms
and, in particular, the types and sources of noise. As such, it is useful to benchmark
the performance of such computers against specific tasks that may be of interest to
users, ideally keeping both the circuit depth and width as free parameters. Here, we
benchmark the IBM quantum experience using the deterministic quantum computing
with 1 qubit (DQC1) algorithm originally proposed by Knill and Laflamme in the
context of liquid-state NMR. In the first set of experiments, we use DQC1 as a trace
estimation algorithm to benchmark performance with respect to circuit depth. In the
second set, we use this trace estimation algorithm to distinguish between knots, a
classically difficult task which is known to be complete for DQC1. Our results indicate
that the main limiting factor is the depth of the circuit and that both random and
systematic errors become an issue when the gate count increases. Surprisingly, we find
that at the samegate countwider circuits performbetter, probably due to randomization
of coherent errors.
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1 Introduction

Small noisy quantum processors can now be implemented in various platforms and
architectures including superconducting circuits [1–4], trapped ions [5], optics [6]
and NMR [7]. These and other near-future processors are not expected to be universal
for quantum computation [8] and need to be benchmarked in tasks that are suitable
for noisy processors with little or no error correction. The deterministic quantum
computing with one-qubit (DQC1) algorithm, which was originally developed for
noisy NMR quantum processors, offers a good way to benchmark these processors.
In this work, we benchmark two IBM quantum processors: first using simple DQC1
circuits to calculate the trace of a unitary and then, in a specific task, using DQC1 to
distinguish between knots.

The experiments used between 3 and 8 qubits andwere initially run on the IBMQ16
Rüschlikon [9] and later on the IBMQ 14Melbourne [10]. The first set of experiments
(Sect. 4) involved the estimation of the normalized trace of 1 and 3 qubit unitaries.
The results allow us to make some general statements about the noise in the circuit, in
particular depolarizing noise and systematic (coherent) errors. Somewhat surprisingly,
the performance of the 3 qubit algorithms as a function of the number of gates was
better than the 1 qubit algorithms, most likely due to the reduction in correlated noise
when the gates act on different qubits. In the second set of experiments, we used the
DQC1 algorithm to evaluate various Jones polynomials (Sect. 5). The results show
that while the evaluated Jones polynomials tend to be far from theoretical values, the
errors are consistent for the different circuits. This implies that the processors can be
used to distinguish between various knots made by closing a braid of up to 3 strands,
as long as the evaluations are run at approximately the same time (i.e., not hours apart)
using the same subset of qubits, such that systematic errors in gate operations remain
approximately the same from run to run.

2 DQC1

TheDQC1modelwas originally proposed byKnill andLaflamme [11] in the context of
room-temperature, liquid-state NMR quantum computing where the initial (thermal)
state ρi is very noisy. As a consequence of the noise, the signal-to-noise ratios in the
readout are small and the computation is done on an ensemble with ensemble readout,
i.e., the result is an estimate of the expectation value of some observable. The model
is further restricted by only allowing Pauli measurements on one of the qubits. Knill
and Laflamme noted that in an N + 1-qubit NMR processor, it is possible to prepare
an initial state of the type ρi = [α |0〉 〈0| + (1−α)I1]⊗ IN (where In = 1

2n In is the n
qubit maximally mixed state) efficiently.1 Under the assumption that the evolution is
given by a unitary operator V , the expectation of the final readout on the first qubit will
be Tr(Vρi V †σ

(1)
k ) = α Tr(V (|0〉 〈0| ⊗ IN ) V †σ

(1)
k ) where σ

(1)
k is a Pauli operator on

the first qubit and k ∈ {x, y, z}. Noting that the polarization parameter α is simply used

1 The initialization procedureworks for somefixedα � 1 that depends on the parameters of the experiment,
and does not scale badly with N .
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to rescale the expectation value, it is often convenient to assume α = 1, as we will do
throughout this work. Under this assumption, the first qubit is initially pure, or “clean,”
while the other qubits are completely mixed. This model is therefore sometimes called
the “one clean qubit” model [12].

In the DQC1 model, the classical input describes the unitary operator V which is
assumed to have an efficient description, i.e., it can be decomposed into a (polynomial
in N ) sequence of one and two qubit gates. It is common to further restrict V to a
Hadamard operator on the first qubit, followed by a controlled unitary from the first
qubit, U , targeting all other qubits, i.e., V = (|0〉 〈0| IN + |1〉 〈1|U ) H (1). Here, U is
an N qubit unitarywith an efficient classical description, and H (1) is a Hadamard oper-
ator on the first qubit. (This is sometimes called cDQC1 [13].) In this restricted model,
the state of the first qubit at the end of the computation (before readout) is given by

ρ
(1)
f = 1

2

(
I1 + TrU

2N
|1〉〈0| + TrU †

2N
|0〉〈1|

)
(1)

so that 1
2N

TrU = 〈ρ(1)
f (σx + iσy)〉. That is, the model can be used to estimate the

normalized trace of the unitary U . A number of results suggest that the trace esti-
mation algorithm cannot be simulated efficiently by a classical computer, with some
recent results including the use of DQC1 for parity learning [14], a sampling version
[15] which follows the standard definition above, but allows single shot readout and
a method for verifying the computation [16].

Shor and Jordan [12] used the DQC1 model to define a computational complexity
class. They then showed that the trace estimation algorithm is computationally equiv-
alent to the full DQC1 model and furthermore showed that adding a small (at most
logarithmic in N ) number of pure qubits does not change the computational power of
the model. They also showed that the estimation of the Jones polynomial for the trace
closure of a braid at the fifth root of unity (a problem in knot theory, see Sect. 5) is
DQC1 complete.

2.1 Noise in DQC1

The DQC1 model is designed to handle noisy initial states, but, to the best of our
knowledge, its performance under noisy dynamics has not been analyzed. An N qubit
unitary V can generally be decomposed into a sequence of fundamental unitaries {Wk}
such that V = ∏

k Wk . Ideally, these fundamental unitaries correspond to gates that
are physically implementable on the processor. But in practice, the gates are imperfect
and errors that are often difficult to characterize degrade the computation [17,18].

One fairly simple model is to assume depolarizing noise, where each gate is a
probabilistic mixture of the desired unitaryWk and a completely depolarizing channel.
The ideal transformation ρ → WkρW

†
k of the state is replaced by ρ → αkWkρW

†
k +

(1−αk)I where αk is the purity of the channel. All subsequent unitary operations and
depolarizing channels leave the identity unchanged, so the state after the full sequence
will be αVρi V † + (1 − α)I with α = ∏

k αk .
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The fact that the purity falls exponentially with the number of gates does not bode
well for the computation. Standard quantum error correction methods rely on a supply
of pure qubits so they are not suitable for DQC1. However, for our purposes, focusing
on small or intermediate size processors, the issue of exponential noise might not be
debilitating. Moreover, in a real situation, it is also possible to deviate slightly from
the model and use some clean physical qubits and single shot measurements to combat
errors.

The relatively simple behavior of the DQC1 algorithm in the presence of depolar-
izing noise makes it a good tool for benchmarking against a depolarizing noise model.
In our results below, we used the R2 of a fit to the depolarizing noise model as a bench-
mark. The behavior of the circuits as a function of the number of gates provided evi-
dence that themost significant source of errorwas a systematic error in theCNOTgates.

3 Implementation of the algorithm

We implemented DQC1 on IBM superconducting qubit quantum processing units
(QPU) via a Web-based application programming interface (API). The code is avail-
able online [19], and a technical descriptions of the processors can be found in Ref.
[2]. All results described in the present work are limited to data obtained via the Web
API, and not direct physical access to IBM hardware. Basic tests to benchmark DQC1
performance on gate-based machines, described in Sect. 4, were executed on the 16-
qubit “Rüschlikon” QPU. Application of DQC1 to a useful task (evaluation of Jones
polynomials), described in Sect. 5, was executed on the 14-qubit “Melbourne” QPU.

A single qubit (shown in red in Fig. 1) was designated the “clean” qubit, whereas
another disjoint subset of qubits (shown in blue in Fig. 1) was chosen to be “noisy.” A
gate-basedQPU, however, is usually designed to operate with pure states under unitary
evolution asmuch as possible. To prepare these “noisy” qubits in the (I/2)⊗N state, we
used two techniques. In the first set of experiments, we first entangled each qubit with
an adjacent qubit to produce the (pure) Bell state

∣∣Φ+〉 = (|00〉 + |11〉)/√2 and then
ignored (or traced away) that adjacent qubit. This approach introduces a 2X overhead
in the number of qubits required for state preparation of these “noisy” qubits. For the
estimation of the Jones polynomial, we used random bit flips on the “noisy” qubit for
half the experiments and averaged over the results. This method can be modified for
a multiple qubit scenario by randomly flipping all “noisy” qubits and averaging over
the results. Note that preparing the input state with random bit-flips is operationally
identical to tracing out one qubit of |Φ+〉, per above, over a finite number of shots.

4 Trace estimation on the quantum processor

We implemented the N = 1 version of the trace estimation algorithm (Fig. 2) with

U (l)
N=1(θ) = U1(θ)(U1(θ)†U1(θ))l−1,
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q0 Q15 Q14 Q13 Q12 Q11 Q10 Q9

Q0 Q1 Q2 Q3 Q4 Q5 Q6

Q13 Q12 Q11 Q10 Q9 Q8 Q7

IBM Q 16 Rüschlikon

IBM Q 14 Melbourne

Mixed AuxiliaryClean

(a)

(b)

Fig. 1 a Qubits used on the IBM Q 16 Rüschlikon chip. Qubit 6 (red) was the clean qubit. Qubits 5, 7, and
11 (blue) were the mixed qubits. Mixed states were generated by first performing an entangling operation
with auxiliary qubits 4, 8, and 10 (green), respectively. Black arrows show the control-target relationship
for coupled qubits. b The IBM Q 14 Melbourne was used for the knot experiments. Qubits 1 and 0 were
used for the pure and mixed states, respectively, in the first set of knot experiments. Subsequent experiments
used all 18 pairs of connections between qubits (Color figure online)

U

|0 H

IN

Fig. 2 A DQC1 circuit for estimating the trace of a unitary U with the first qubit initialized in a pure state.
The same computation is run a large number of times with the final measurement cycled between σx and
σy to get an estimate of the real and imaginary parts, respectively (Color figure online)

where l ≥ 1 is the number of repetitions andU1(θ) = e−iθ/2 |0〉〈0|+ eiθ/2 |1〉〈1| (see
inset in top row of Fig. 3). We also implemented the N = 3 version, replacingU (l)

1 (θ)

with U (l)
3 (θ) = U (l)

1 (θ)⊗3 so

U (l)
N=3(θ) = U3(θ)(U3(θ)†U3(θ))l−1

(see inset in bottom row of Fig. 3).
The circuit was chosen to maximize contrast with respect to θ (i.e., Tr[U (l)

1 (0)] = 1

and Tr[U (l)
1 (π)] = −1) for any value of l. Increasing l merely introduces repetition

of a gate sequence that should, logically, be equivalent to the identity. In practice,
however, gate errors and noise means increasing l yields noisier outputs. Results for
a final measurement of σx , σy and σz are shown in Fig. 3.

As expected, the results deviate further from the ideal aswe go to higher gate counts.
The reduction of the absolute values in the σx plots can be attributed to depolarizing
noise; however, the fact that the shape changes in all three plots (and in particular the
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Fig. 3 Expectation values 〈σx 〉,
〈
σy

〉
and 〈σz〉 when applying the c−U (θ) from the control qubit to one

mixed qubit (Q7, top row), and three mixed qubits (Q5, Q7, Q11, bottom row). Colored curves represent
applying the c−U (θ)multiple times. (The data for 0 CNOTsmean no operation applied at all.) As expected,
the deviations from the theoretical curve get larger as the number of gates increases; however, the gate errors
are not random and the contribution of non-depolarizing noise is significant. This is especially apparent
in the σy plot which is expected to be near 0 at all times. Note that for large numbers of CNOT gates the
deviation from 0 is far above the statistical uncertainty which is upper bounded by 1/27.5 < 0.01. The
coherent errors are partially suppressed in the 1 + 3 qubit circuit, probably due to coherent errors being
averaged out over the different qubits (Color figure online)

deviations from 0 in σy), indicates a coherent error, probably as a result of a systematic
error in the CNOT gates. For a quantitative indication of the coherent errors (more
precisely the deviation from depolarizing noise), we defined the visibility

Vis = max
θ

〈σx 〉 .

This function decays exponentially with the number of gates when imperfections are
due to depolarizing noise. A plot of visibility as a function of the number of gates
(Fig. 4) shows that this is clearly not the case for qubit 11 (paired with 5) where there
is a spike in visibility around 20 CNOT gates. The other couplings show the expected
qualitative behavior, but a fit to a depolarizing noise model shows some deviations
(see Table 1).

Generally, it is possible to convert biasednoise channels into a depolarizing channels
by adding some randomness and averaging. This is apparent when comparing the 1+1
and 1 + 3 qubit results. In Table 1, we see that fit for the 1 + 3 qubit result is better
than each of the individual results. This is most likely a result of averaging over
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Fig. 4 Visibility in 〈σx 〉 as a
function of circuit depth. Decay
in visibility is indicative of noise
in the system. Assuming purely
depolarizing noise decay is
exponential. Gray dashed lines
are fits of f (x) = ae−x/τ to the
1 + 1 (Q7) and 1 + 3 (Q5, Q7,
Q11) data
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Table 1 Assuming only
depolarizing noise, we fit a
decay model f (x) = ae−x/τ to
the data in Fig. 4 (linear fit to the
logarithm of the data)

Qubits τ R2 = 1 −
∑

i (yi− fi )
2∑

i (yi−ȳ)2

Q5 24.50 0.933

Q7 25.81 0.995

Q11 28.91 0.695

Q5, Q7, Q11 30.75 0.997

Fig. 5 σy expectation value of
1 + 1 data (qubit 7) taken on
different dates, 5 days apart. The
variation between results at
different times is far greater than
the statistical uncertainty which
is upper bounded by
1/27.5 < 0.01 and an indication
that systematic calibration errors
change significantly over time

0 0.25 0.5 0.75 1

θ/2π

−0.4

−0.2

0.0

0.2

0.4 1 + 1 (Q7)

2018-06-11
2018-06-16

6 CNOTs
42 CNOTs

σ
y

different coherent errors for the 3 different pairs of interacting qubits. We note that in
general this is not an indication of better performance overall. Though the exponential
depolarizing rate appears slower in the 1 + 3 qubit case, the circuit will have to be 3
times longer to perform a similar task.

Running the experiment at different times produced different results; in particular,
the systematic (coherent) errors were not consistent over long periods of time. Results
for the expectation value of σy taken on the same pair of qubits 5 days apart are plotted
in Fig. 5. Since the theoretical expectation value should be constant (〈σy〉 = 0), the
plots are a good indication of coherent errors which, even at a circuit depth of 6 CNOT
gates, produce a visibly different plot.
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σ23

(a)

(c)

1 2 3

σ12

(b) 1 2 3

σ3
12

Trace 
Closure

Fig. 6 Visualization of σ12 (a) and σ23 (b) crossing operations on three strands. c The braid word σ 3
12,

three consecutive σ12 crossings. By taking the trace closure, connecting the bottom of a strand to its top,
the first two strands form the trefoil knot, while the third strand forms the unknot. The braid closures of a
and b are topologically equivalent, but the different braid words lead to different circuit implementations
in the experiment

5 Distinguishing knots with Jones polynomials

The task of identifying whether two knots (smooth closed curves in R
3) are topo-

logically equivalent has implications beyond mathematics, reaching into statistical
mechanics, quantum field theory and quantum gravity [20,21]. Knots can be faithfully
represented in two-dimensional pictures, and so the task can be recast as determining
whether two pictures of knots can be made equal using transformations called Reide-
meister moves. This task is computationally intensive, and even in the simplest case,
identifying a knot as the unknot, there is no known efficient solution [22]. Here, we
consider a particular type of knot, the trace closure of a 3-strand braid, which can be
represented by drawing a two-dimensional braid and closing each end at the bottom
with the associated strand at the top (right-most to right-most etc., see Fig. 6c). Another
type of knot, the plat closure, is constructed by connecting adjacent strand ends at the
top and at the bottom.

The Jones polynomial is a complex function invariant for oriented knots [23,24],
which allows one to distinguish one knot from another. However, constructing the
polynomial for a given two-dimensional picture of a knot is not trivial. The number of
terms in the polynomial (before simplification) scales exponentially with the number
of strand crossings. Evaluating the Jones polynomial at a single point would give
sufficient information to tell if two knots are different. Equivalent knots must have the
same Jones polynomial value at any given point, whereas knots that are not the same
might not. Approximating the value of the Jones polynomial at e2π i/5 is a particularly
interesting task for quantum computers. If one takes the plat closure of a braid, rather
than the trace closure, the task is known to be BQP-complete [25].

Shor and Jordan [12] showed that approximating the polynomial at e2π i/5 for the
trace closure of a braid is a complete task for DQC1. Passante et al. [26] demonstrated
this task in a four-qubit liquid-state NMR processor, studying knots with four strands
and multiple crossings. Here, we use DQC1 to approximate the Jones polynomial for
knots of three strands for the purpose of benchmarking the IBMQ14Melbourne quan-
tum processor. We consider knots which are constructed by taking the trace closure
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Fig. 7 Circuits for the controlled σ
(u)
12 , σ (u)

23 , σ (l)
12 and σ

(l)
23 unitaries. Here, Ry (θ) =

(
cos θ sin θ

− sin θ cos θ

)
, and

Rz (θ) =
(
1 0
0 eiθ

)

of braid words up to 9 crossings (see Fig. 6). We study the same knots constructed by
multiple iterations of either the σ12 crossing (first strand over the second), or the σ23
crossing (second over the third). Since approximating the values of Jones polynomials
with a noisy machine is difficult, we are content with the ability to classify knots as
different when they are indeed different. As in the previous sections, we do not per-
form any type of error mitigation during the computation or in post-processing, apart
from simplifying the circuit to require fewer gates.

Following the treatment in Ref. [26], the unitary used in the DQC1 protocol is
related to the braid through the Fibonacci representation. For a three-strand braid, the
σ12 and σ23 unitaries are given by

σ12 =

⎛
⎜⎜⎝
a 0 0 0
0 b 0 0
0 0 a 0
0 0 0 1

⎞
⎟⎟⎠ , σ23 =

⎛
⎜⎜⎝
e d 0 0
d c 0 0
0 0 a 0
0 0 0 1

⎞
⎟⎟⎠ , (2)

where a = e3π i/5, b = e−4π i/5, c = b
φ2 + a

φ
, d = b−a

φ3/2 , e = b
φ

+ a
φ2 , and φ =

(1 + √
5)/2. For braids with n strands, we require m × m sized unitaries where m is

the nth number in the Fibonacci sequence. For 3 strands, the unitaries map between
3 states, requiring 2 qubits (Fig. 7). This results in an unused portion of the Hilbert
space—the |11〉 state is not used for the approximation and adds a constant term to
the trace which is straightforwardly dealt with.

To implement DQC1, we must construct controlled versions of the braid word uni-
taries. However, a single controlled-σ23 operation requires approximately 50 CNOT
gates, meaning any braid word would be prohibitively long on current quantum pro-
cessors. Indeed, Sect. 4 shows that 〈σx 〉 and

〈
σy

〉
on the clean qubit would decay
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substantially after just one controlled-σ23 gate. To simplify the problem, we use the
fact that both σ12 and σ23 are block diagonal, and so any braid word will also be. We
perform a controlled version of each block of a braid word in separate experiments,
measure their traces via the clean qubit and combine them afterward. The controlled
implementations of the blocks require substantially fewer CNOT gates: σ

(u)
12 , σ

(u)
23

and σ
(l)
12 = σ

(l)
23 , where u (l) refers to the upper (lower) block of the unitary, can be

performed with 2, 5 and 2 CNOT gates, respectively. The braid word for the trefoil
knot outlined in Fig. 6, σ 3

12, requires 6 CNOT gates for each of the upper and lower
blocks. Performing the braid word σ 3

23, which gives the same knot upon taking the
trace closure, requires 15 CNOT gates for the upper block and 6 for the lower.

Having used the DQC1 protocol to measure the trace of each block of a braid word
unitary,we then estimate the value of Jones polynomial at the fifth root of unity for each
knot. To do this, we combine the measurements on each block of the unitary, e.g.,U =
σ 3
12, to find the weighted trace of the braid word. First, we subtract off the contribution

to the trace of the lower block, U (l), from the |11〉 state. We then add the traces of the
two blocks together while weighting the upper block by a factor of φ [26,27]:

WTrU = φ × TrU (u) + TrU (l) − 1 (3)

= φ × (〈σx 〉(u) + i
〈
σy

〉(u)
)

+〈σx 〉(l) + i
〈
σy

〉(l) − 1.

We then calculate the Jones polynomial value as

VU (t = e2π i/5) = (−(e2π i/5)4)3w × 1

φ
WTrU , (4)

where w is the writhe of the knot, defined as the difference between left-over-right
crossings (σ12 and σ23) and right-over-left crossings (σ †

12 and σ
†
23). In this work, we

only consider knots with w > 0.
In Fig. 8, we plot one set of results of the Jones polynomial, VU (e2π i/5), estimation

for knots with 0 to 9 crossings, constructed solely by either σ12 or σ23 crossings. We
find that as the numbers of crossings are increased, the estimated polynomials quickly
deviate from theoretical values (see Fig. 9). This is to be expected from the studies in
previous sections. As the circuit depth increases, the measured 〈σx 〉 and

〈
σy

〉
on the

clean qubit decay exponentially. This in turn causes the Jones polynomial values to
tend to the origin on the complex plane with increasing circuit depths.

Though the deviation from the theoretical value is not ideal performance, the prin-
ciple behind estimating the Jones polynomial is to distinguish between knots. In this
spirit, we note that the distance between the two implementations of each knot (using
either σ12 or σ23) remains relatively low compared to the distance from their theo-
retical value. Differences between the two experimental implementations of the same
knot are likely driven by the significantly higher circuit depth for each σ23 unitary
(5 CNOTs vs. 2 CNOTs). Importantly, if we compare different knots that have the
same circuit depth—e.g., σ 5

12 and σ 2
23 each use 10 CNOT gates for their upper blocks
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Fig. 8 Results of Jones polynomial evaluations on qubits Q0 and Q1 of the IBMQ 14Melbourne. Knots are
given by the trace closure of σ k

12 (blue points), and σ k
23 (red points), k runs from 0 to 9 crossings. Gray points

mark the theoretical Jones polynomial values for each knot, with numbers representing the crossings in the
associated braid word; for each k, the knots represented by σ k

12 and σ k
23 are equivalent. Ellipses represent

the standard deviation of 12 trials (212 shots each) for each knot. The distance between ellipses measures,
in some sense, how well two knots can be distinguished on the IBM QPU. The black arrow between σ 3

12
and σ23 marks the distance between the two Jones polynomial estimates with a similar gate count (see also
Table 2). For clarity, results from knots with 2, 5 and 8 crossings (which are closer to the center) are not
plotted. Note that while the results generally get closer to the center as the gate count increases (a signature
of depolarizing noise), results for 7 and 9 crossings appear in the wrong quadrant in both representations
(a signature of systematic errors) (Color figure online)

and represent different knots—we see that they are largely distinguishable from one
another when the gate count is low.

At higher gate counts, the values are not only closer to the origin (as expected),
but also behave qualitatively different from the theoretical results; for example, in
Fig. 8, the real part of the braid with 7 crossings should be more negative than that
of 6 crossings, but in both implementations (σ12 and σ23), the knot with 7 crossings
is positive, while the knot with 6 is negative. Moreover, these types of errors, while
fairly consistent on a single run of the experiment, appear to be very different when
the experiment is repeated later and/or on different qubits. In Fig. 10a, we show the
results for 0 and 3 crossings (σ12) taken on all 18 different pairs of qubits. The results
indicate that both the mean and the spread depend on the choice of qubits. In Fig. 10b,
we compare the results of the braids with 0 and 3 crossings (σ12) at different times,
where we chose the qubits pairs Q5, Q6 and Q4, Q5 for best performance. Even at
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Fig. 9 Distance between the
evaluated Jones polynomial from
σ12 unitaries, σ23 unitaries and
theory for knots with varying
numbers of crossings. Distances
are normalized by the theoretical
values of the polynomials to
account for values close to the
origin. σ23 estimates deviate
from the theoretical values for
fewer crossings, likely due to the
fact that a single σ12 unitary
requires 2 CNOTs, while a σ23
requires 5 CNOTs. The distance
between polynomial estimates
for σ12 and σ23 implementations
increases with number of
crossings (with the exception of
the final point where they both
tend the origin), making two
versions of the same knot
distinguishable from one another

Table 2 Comparison of Jones polynomial estimates for implementations of different knots using the similar
circuit depths

CNOTs in σ k
23 Unitaries J.P. dist. (Exp.) J.P. dist. (Theory)

5 |σ23 − σ 2
12| 1.42 ± 0.05 2.15

5 |σ23 − σ 3
12| 2.50 ± 0.08 3.62

10 |σ 2
23 − σ 5

12| 0.66 ± 0.05 1

15 |σ 3
23 − σ 7

12| 2.6 ± 0.2 4.25

15 |σ 3
23 − σ 8

12| 2.0 ± 0.2 3.24

A large distance, relative to the error, indicates that two knots can be distinguished using the IBM QPU

relatively low gate counts, we observe deviations from one run of the experiment to
the next. One consequence of these results is that there is no simple way to correct for
errors in post-processing. Such corrections would have been possible if the dominant
source of error was depolarization, in which case we could multiply the results by a
factor that depends on the number of gates.

6 DQC1 as a benchmark

Benchmarking protocols have usually been designed with the experimental physicist
in mind, often to quantify performance in terms of noise per gate, and usually with
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(b)

(a)

Fig. 10 a Jones polynomial results of the σ 0
12 (right) σ 3

12 (left) unitaries using different qubit combinations
on the Melbourne processor. Shown in bold are the Q4–Q5 (dark green) and Q5–Q6 (dark purple) pairs
which gave the best performance. Computations were performed on February 22, 2019 (before calibration).
b Comparing qubit pairs Q4–Q5 (dark green) and Q5–Q6 (dark purple) before (solid) and after (dashed,
filled) the February 25, 2019 re-calibration. The second set of computations was performed on February
26, 2019 (after calibration). A routine calibration process was performed on the machine by the IBM team
between these two dates. For both a and b ellipses represent the standard deviation of estimating Jones
polynomials over 10 trials (1024 shots each) (Color figure online)
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an outlook toward fault tolerance [28–33]. These protocols can be used to assess
performance and provide feedback for the development of hardware as well as guides
for the development of software. They are, however, computationally intensive, require
a high level of expertise to understand and are often difficult to put into the context
of specific tasks. The trace estimation algorithm in Sect. 4 provides some of the same
features at a qualitative level, using a fairly simple protocol.While the characterization
of errors is not precise, it is sufficient for making an educated guess as to the types of
errors and their relative significance. In the case of the results presented in Sect. 4 (see
Figs. 3, 4, 5), we see an indication of coherent noise which is not consistent over time.
In principle, had the dominant source of error been more consistent, the results would
have provided some means to mitigate the errors, either by modifying the circuit or
in post-processing. This would have been particularly useful if the main issue was
depolarizing noise, which could be mitigated by multiplying the expectation values
by a constant. (Note that this is not a scalable method.) We note that the analysis of the
results is particularly easy in the DQC1 circuit since the output is a set of two numbers
related to measurements on a single qubit, regardless of the input size. Moreover, the
inputs on all except the first qubit are in a mixed state and can be treated as random (a
property which is essential for many randomized benchmarking protocols).

A different approach to benchmarking is based on computational tasks of specific
interest. In the early days of quantum computing, the standard task was factoring
[34], but recently, developments have shifted to algorithms better suited to noisy
intermediate-scale quantum (NISQ) devices [35–38]. Benchmarks built around these
algorithms can be used to compare between vastly different quantum platforms as
well as between quantum and classical platforms. Additionally, these task-specific
protocols have the advantage that the analysis of the results requires minimal under-
standing of the underlying physics. However, the results tend to be very specific to
the task at hand, and little can be learned about performance more generally [39–41].
The protocol for distinguishing between knots (or estimating the Jones polynomial)
in Sect. 5 can be used for this type of benchmarking with the advantage that, unlike
many other protocols, it can be linked to a problem for which a quantum computer is
expected to exponentially outperform classical computers.

Finally, a large effort is currently being directed at proving quantum supremacy
[1], usually by outperforming classical computers on a problem which is expected to
be hard (usually sampling problems). In the context of DQC1, this can be approached
in two ways: First, estimation of some Jones polynomials (Sect. 5) at specific points
is expected to be a hard problem for classical computers and has historically been
one of the interesting problems for quantum computers. Second, the DQC1 protocol
can be modified slightly into a sampling problem (by allowing single qubit outcomes)
which is known to be hard under the same type of assumptions used for other quantum
supremacy protocols [42].

7 Discussion

As quantum computers become more available to non-specialists, there is need for
tools that can be used and understood by users who are not interested in the inner
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workings of the machine. The benchmarking experiments we used in this work were
designed with the end user of a small noisy quantum processor in mind. Using two
protocols based on the DQC1 trace estimation algorithm, we benchmarked IBM 14-
and 16-qubit processors and showed how performance degrades with circuit depth, in
one case for the task of distinguishing knots.

In the first set of experiments, we looked at how visibility drops as a function of
circuit depth and showed that coherent errors can be particularly harmful. For exam-
ple, we noted a spike in visibility (Fig. 4) for the DQC1 experiment with Qubit 11 on
the “Rüschlikon”. We also observed an undesired buildup of an imaginary component
(coherence in the σy axis) as the gate count increased. This was evident as early as
10 CNOT gates in a 2-qubit experiment (Fig. 3). Surprisingly, we noted that the per-
formance is not reduced (and was even enhanced on average) in a 4-qubit experiment
compared to the 2-qubit experiments when results with a similar CNOT gate count
were compared (Figs. 3 and 4). Finally, we saw that the results were not consistent
when the same experiment was performed at different times (Fig. 5). However, the
qualitative results regarding performance at different gate counts remained the same.

In the second set of experiments, we used 2 qubits on the IBM “Melbourne” to
estimate the Jones polynomial at the fifth root of unity for various knots. While the
results deviated from theory (Fig. 9), it was possible to compare knots at low gate
counts (Fig. 8). However, at higher gate counts, both depolarizing and systematic
errors start to dominate the results. While depolarizing noise can be countered by
repeating the experiment more times and normalizing,2 the systematic errors (which
are not constant in time) are difficult to deal with even in a small circuit. We note that
these errors prevented us fromoutperforming the 4-qubit liquid-stateNMRexperiment
[26].3

The relatively simple benchmarking procedure leads us to the conclusion that, at
least from the end user’s perspective, a major issue with current small noisy quantum
computers is the constantly changing environment that leads to frequently changing
systematic errors. While it is clear that this is a major engineering challenge for
superconducting architectures due to the sensitivity to environmental conditions, it is
worthwhile considering alternative architectures that may be more stable. A different
approach might be a method to reduce systematic errors on the software side, for
example, by using wider and shallower circuits or to turn these into statistical errors
by using various randomization techniques.
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References

1. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao,
F.G.S.L., Buell, D.A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney,W., Dunsworth,
A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, S.,
Harrigan, M.P., Hartmann, M.J., Ho, A., Hoffmann, M., Huang, T., Humble, T.S., Isakov, S.V., Jeffrey,
E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P.V., Knysh, S., Korotkov, A., Kostritsa,
F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandrà, S., McClean, J.R., McEwen, M.,
Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu,
M.Y., Ostby, E., Petukhov, A., Platt, J.C., Quintana, C., Rieffel, E.G., Roushan, P., Rubin, N.C., Sank,
D., Satzinger, K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D., Vainsencher, A., Villalonga, B.,
White, T., Yao, Z.J., Yeh, P., Zalcman, A., Neven, H., Martinis, J.M.: Quantum supremacy using a
programmable superconducting processor. Nature 574, 505 (2019)

2. IBM Quantum Experience. https://www.research.ibm.com/ibm-q
3. Takita, M., Cross, A.W., Córcoles, A.D., Chow, J.M., Gambetta, J.M.: Experimental demonstration of

fault-tolerant state preparation with superconducting qubits. Phys. Rev. Lett. 119, 180501 (2017)
4. Pokharel, B., Anand, N., Fortman, B., Lidar, D.: Demonstration of fidelity improvement using dynam-

ical decoupling with superconducting qubits. Phys. Rev. Lett. 121, 220502 (2018)
5. Figgatt, C., Maslov, D., Landsman, K.A., Linke, N.M., Debnath, S., Monroe, C.: Complete 3-qubit

grover search on a programmable quantum computer. Nat. Commun. 8, 1918 (2017)
6. Rudolph, T.: Why I am optimistic about the silicon-photonic route to quantum computing (2016).

arXiv:1607.08535
7. Lu, D., Li, K., Li, J., Katiyar, H., Park, A.J., Feng, G., Xin, T., Li, H., Long, G., Brodutch, A., Baugh,

J., Zeng, B., Laflamme, R.: Enhancing quantum control by bootstrapping a quantum processor of 12
qubits. npj Quantum Inf. 3, 45 (2017)

8. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)
9. 16-Qubit Backend: IBM Q team, IBM Q 16 Rüschlikon backend specification V1.1.0 (2018).

https://github.com/Qiskit/ibmq-device-information/blob/master/backends/rueschlikon/. Accessed 12
Nov 2019

10. 14-Qubit Backend: IBM Q team, IBM Q 14 Melbourne backend specification V1.1.0 (2018).
https://github.com/Qiskit/ibmq-device-information/tree/master/backends/melbourne/. Accessed 12
Nov 2019

11. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)
12. Shor, P.W., Jordan, S.P.: Estimating Jones polynomials is a complete problem for one clean qubit.

Quantum Inf. Comput. 8, 681 (2007)
13. Boyer, M., Brodutch, A., Mor, T.: Entanglement and deterministic quantum computing with one qubit.

Phys. Rev. A 95, 022330 (2017)
14. Park, D.K., Rhee, J.K.K., Lee, S.: Noise-tolerant parity learning with one quantum bit. Phys. Rev. A

97, 032327 (2018)
15. Morimae, T., Fujii, K., Nishimura, H.: Power of one non-clean qubit. Phys. Rev. A 95, 042336 (2017)
16. Kapourniotis, T., Kashefi, E., Datta, A.: In: 9th Conference on the Theory of Quantum Computation,

Communication and Cryptography (TQC 2014), Leibniz International Proceedings in Informatics
(LIPIcs), vol. 27, ed. by S.T. Flammia, A.W. Harrow (Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany, 2014), Leibniz International Proceedings in Informatics (LIPIcs), vol. 27,
pp. 176–204. https://doi.org/10.4230/LIPIcs.TQC.2014.176. http://drops.dagstuhl.de/opus/volltexte/
2014/4815

17. Emerson, J., Silva, M., Moussa, O., Ryan, C., Laforest, M., Baugh, J., Cory, D.G., Laflamme, R.:
Symmetrized characterization of noisy quantum processes. Science 317, 1893 (2007)

18. Wallman, J., Granade, C., Harper, R., Flammia, S.T.: Estimating the coherence of noise. New J. Phys.
17, 113020 (2015)

19. The code used for running the algorithms is available online via GitHub. https://github.com/agnostiQ/
DQC1-knots. Accessed 12 Nov 2019

20. Baez, J., Muniain, J.P.: Gauge Fields, Knots and Gravity. World Scientific Publishing Company, Sin-
gapore (1994)

21. Pullin, J.: Knot theory and quantum gravity in loop space: a primer. AIP Conf. Proc. 317, 141 (1994)
22. Lackenby, M.: A polynomial upper bound on Reidemeister moves. Ann. Math. 182, 491 (2015)

123

https://www.research.ibm.com/ibm-q
http://arxiv.org/abs/1607.08535
https://github.com/Qiskit/ibmq-device-information/blob/master/backends/rueschlikon/
https://github.com/Qiskit/ibmq-device-information/tree/master/backends/melbourne/
https://doi.org/10.4230/LIPIcs.TQC.2014.176
http://drops.dagstuhl.de/opus/volltexte/2014/4815
http://drops.dagstuhl.de/opus/volltexte/2014/4815
https://github.com/agnostiQ/DQC1-knots
https://github.com/agnostiQ/DQC1-knots


Benchmarking quantum processors with a single qubit Page 17 of 17 146

23. Jones, V.F.R.: A polynomial invariant for knots via Von Neumann algebras. Bull. Am. Math. Soc. 12,
103 (1985)

24. Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126,
335 (1987)

25. Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approximating the Jones
polynomial. Algorithmica 55, 395 (2009)

26. Passante, G., Moussa, O., Ryan, C.A., Laflamme, R.: Experimental approximation of the Jones poly-
nomial with one quantum bit. Phys. Rev. Lett. 103, 250501 (2009)

27. Passante, G.: On experimental deterministic quantum computation with one quantum bit (DQC1).
Ph.D. thesis, University of Waterloo (2012)

28. Lu, D., Li, H., Trottier, D.A., Li, J., Brodutch, A., Krismanich, A.P., Ghavami, A., Dmitrienko, G.I.,
Long, G., Baugh, J., et al.: Experimental estimation of average fidelity of a clifford gate on a 7-qubit
quantum processor. Phys. Rev. Lett. 114, 140505 (2015)

29. Knill, E., Leibfried, D., Reichle, R., Britton, J., Blakestad, R.B., Jost, J.D., Langer, C., Ozeri, R.,
Seidelin, S., Wineland, D.J.: Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307
(2008)
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