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Abstract
Entanglement-assisted quantumerror-correcting (EAQEC) codes could generalize and
improve performance of standard quantum error-correcting (QEC) codes to a great
extent. In this paper, series of EAQEC codes of length n = q−1

a (q+1) are constructed
from cyclic codes and negacyclic codes, where q is a prime power and a is a positive
integer such that a | (q−1). It turns out that the number of required entanglement bits
can take almost all possible values. Consequently, our EAQEC codes have flexible
parameters and most of them are new. For given the same length, our construction
contain and extend those known consequences in Grassl et al. (Int J Quantum Inf
2(1):55–64, 2004), Jin et al. (IEEE Trans Inf Theory 56:4735–4740, 2010), Kai et al.
(IEEE Trans Inf Theory 60:2080–2086, 2014), Jin and Xing (IEEE Trans Inf Theory
60:2921–2925, 2014), Chen et al. (IEEE Trans Inf Theory 61:1474–1484, 2015),
Zhang and Ge (IEEE Trans Inf Theory 61:5224–5228, 2015; Des Codes Cryptogr
83(3):503–517, 2016), Shi et al. (Cryptogr Commun 10(6):1165–1182, 2018; Finite
Fields Appl 46:347–362, 2017), Fan et al. (Quantum Inf Comput 16:423–434, 2016),
Lu et al. (Quantum Inf Process 17(69):1–23, 2018), Li et al. (Int J Quantum Inf
17(1):1950022, 2019), Liu et al. (Quantum Inf Process 17(210):1–19, 2018), Fang et al.
(Euclidean and Hermitian Hulls of MDS Codes and Their Applications to EAQECCs.
arXiv:https://arxiv.org/abs/1812.09019v3). Above all, all our codes are maximum-
distance-separable (MDS) if their minimum distance d ≤ n+2
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1 Introduction

In 1995, Shor [1] presented the first QEC code [[9, 1, 3]] to reduce decoherence in
quantum computation. Afterward, binary or nonbinary stabilizer QEC codes were of
particular interest and investigated by many researchers, see Refs. [2–10]. Calderbank
et al. clarified that binary QEC codes could come from classical codes over F2 or
F4 in [2]. Later, in [5], Ketkar et al. made it clear that q-ary QEC codes can be
constructed fromHermitian self-orthogonal classical codes overFq2 or fromEuclidean
self-orthogonal classical codes over Fq . In the past years, constructing QEC codes,
denoted as [[n, k, d]]q , with good parameters has become a central topic in coding
field. A QEC code is optimal if its parameters satisfy k = n − 2d + 2 and called a
quantum MDS (QMDS) code. Naturally, many consequences on QMDS codes have
been verified in [11–19].

It is well known that the self-orthogonality conditions mentioned above pre-
vent many common classical codes from producing QEC codes. To weaken self-
orthogonality condition and simplify the theory of QEC codes, Brun et al. [20]
presented entanglement-assisted formalism to obtain entanglement-assisted QEC
(EAQEC) codes from any classical linear codes. They showed that EAQEC codes,
denoted as [[n, k, d; c]]q , are feasible if pre-shared entanglement bits between the
encoder and decoder are available. Clearly, an EAQEC code is a standard QEC code
if the number of entanglement bits is c = 0. Moreover, EAQEC codes are MDS if
they achieve the following EA-Singleton bound. Such codes are called entanglement-
assisted QMDS (EAQMDS) codes.

Lemma 1 (EA-Singleton Bound, [20–22]) For any [[n, k, d; c]]q EAQEC code, if d ≤
n+2
2 , then it satisfies 2d ≤ n − k + c + 2, where 0 ≤ c ≤ n − 1.

Recently, many EAQMDS codes have been derived from constacyclic codes or
generalized Reed-Solomon (GRS) codes, extended GRS codes, see Refs. [23,25–
30]. Fan et al. [23] proposed three classes of EAQMDS codes by utilizing only one
entanglement bit. In 2018, Lu et al. [25,26] constructed classes of EAQMDS codes
with some special lengths by consuming one entanglement bit or four entanglement
bits. In [28], Li et al. obtained a family of EAQMDS codes of length n = q−1

2a (q + 1)
from negacyclic codes and made a general statement of c ≤ 2a instead of some
specific values. Liu et al. [29] applied constacyclic codes to EAQMDS codes with
length n = q+1

r (q − 1) by determining the value of c from 1 to r , where 3 ≤ r ≤ 7.
Using more flexible entanglement bits to construct EAQEC codes always means more
difficult to verify their parameters. In 2019, Qian et al. [27] derived a family of EAQEC
codes with flexible parameters from cyclic codes. Via GRS codes and extended GRS
codes, Fang et al. also obtained several families of EAQMDS codes with flexible
parameters in [30].

It is fortunate to find that more and more conclusions on EAQEC codes with flex-
ible parameters have been made in recent years although it is hard to determine their
required entanglement bits. As shown in the papers mentioned above, the minimum
distance of EAQEC codes or EAQMDS codes increased remarkably with the help of
pre-shared entanglement bits. However, almost all of them did not use the entangle-
ment resource fully or merely discussed some sparse special lengths under certain
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conditions. In this paper, we pay attention to constructing EAQEC codes of length
n = q−1

a (q + 1) from cyclic codes and negacyclic codes, where a | (q − 1) and
q ≥ 2a + 1. By deeply investigating properties of q2-cyclotomic cosets modulo rn,
where r = 1 or r = 2, we clarify that the number of entanglement bits can take almost
all possible values. That is to say, our construction can produce series of new EAQEC
codes with large minimum distance and generalize almost all known results with the
same length in [11–19,23,26,28–30]. In particular, all our codes are EAQMDS codes
if their minimum distance d ≤ n+2

2 .
The paper is organized as follows. In Sect. 2, some basic notions and preliminaries

are recalled. In Sects. 3 and 4, EAQEC codes of length n = q−1
a (q+1) are constructed

from cyclic codes and negacyclic codes, respectively. In Sect. 5, some remarks and
comparisons are made finally.

2 Preliminaries

In this section, we recall some basic concepts on constacyclic codes, cyclotomic cosets
and EAQEC codes. For more details, we may refer to Refs. [20,21,31,32].

Let q be a prime power and Fq2 be a finite field with q
2 elements. For any α ∈ Fq2 ,

α = αq is denoted as the conjugation of α. Given two vectors x = (x1, x2, . . . , xn),
y = (y1, y2, . . . , yn) in Fn

q2
, their Hermitian inner product is defined by

(x, y)h =
n∑

i=1

xi yi = x1y1 + x2y2 + · · · + xn yn .

A linear code C with length n over Fq2 is said to be a k-dimension subspace of Fn
q2
,

which is denoted by [n, k]q2 . Hermitian dual code of C is defined as

C⊥h = {x ∈ F
n
q2 |(x, y)h = 0, for any y ∈ C}.

For any codeword (c0, c1, . . . , cn−1) ∈ C, if (λcn−1, c0, c1, . . . , cn−2) is still a
codeword in C, then C is called a λ-constacyclic code, where λ ∈ Fq2\{0}. Particularly,
if λ = 1, then C is a cyclic code; if λ = −1, then C is a negacyclic code. Denote that
r = ordq2(λ), then one can get that C is a cyclic code if r = 1 and C is a negacyclic
code if r = 2 by definition.

Define a mapping ϕ from F
n
q2

toRn = Fq2 [x]
〈xn−λ〉 as follows:

(c0, c1, . . . , cn−1) �→ c0 + c1x + · · · + cn−1x
n−1.

One can check that C is a λ-constacyclic code with length n over Fq2 if and only
if ϕ(C) is an ideal of quotient ringRn . Thus, there exists a monic polynomial divisor
g(x) of xn − λ with the least degree such that g(x) generates C, i.e., C = 〈g(x)〉. It
is well known that C has dimension k = n−deg(g(x)). Let gcd(q, n) = 1, �r ,n =
{1 + ir | 0 ≤ i ≤ n − 1} and ζ be a primitive rnth root of unity in some extension
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field of Fq2 such that ζ n = λ. For any j ∈ �r ,n , q2-cyclotomic coset C j modulo rn
containing j is defined by

C j = { j, jq2, j(q2)2, . . . , j(q2)l−1} mod rn,

where l is the smallest positive integer such that j(q2)l ≡ j mod rn. The defining set
of C is the set T = { j ∈ �r ,n|g(ζ j ) = 0}. Obviously, we can see that T is a union of
some q2-cyclotomic cosets modulo rn and the dimension of C is k = n − |T |.

The following lemma can be used to determine minimum distance of a λ-
constacyclic code.

Lemma 2 (The BCH bound for λ-constacyclic codes, [34,35]) Let C be a q2-ary λ-
constacyclic code of length n with generator polynomial g(x). If g(x) has its elements
{ζ 1+ir |0 ≤ i ≤ δ − 2} as roots, where ζ is a primitive rnth root of unity, then the
minimum distance of C is at least δ.

As to compute the parameters of EAQEC codes constructed from a linear code
C, we need to determine the optimal number of required entanglement bits c. Wilde
et al. [21] provided a formula that c = rank(HH†), where H is a parity check
matrix of C and H† is conjugate transpose of H . Further, for EAQEC codes obtained
from constacyclic codes (including cyclic codes and negacyclic codes), the authors in
[24,29,33] proposed decomposition of their defining set to count the value of c instead
of calculating rank(HH†) as follows.

Definition 1 Let C be a q2-ary λ-constacyclic code of length n with defining set T .
Denote Tss = T

⋂ −qT and Tsas = T \Tss , where −qT = {−qx mod rn | x ∈ T }
and r | (q + 1). Then, T = Tss

⋃
Tsas is called decomposition of T .

Using the definition above, parameters of the EAQEC codes constructed from con-
stacyclic codes can be confirmed readily.

Theorem 1 ([29], Theorem1)Let C be an [n, k, d]q2 λ-constacyclic codewith defining
set T . Suppose decomposition of T is T = Tss

⋃
Tsas . Then there exists an [[n, n −

2|T | + |Tss |, d; |Tss |]]q EAQEC code.

From now on till the end of this paper, we give some notations beforehand to make
the discussions in the sequel simple.

Notation 1 Set n = q−1
a (q + 1) = a′(q + 1), where q ≥ 2a + 1 is a prime power

and aa′ = q − 1. Given a symbol S, |S| is defined as its cardinality if S is a set and
its absolute value if S is an integer. Denote the sequence {b, b + 1, . . . , e} by [b, e],
where b < e. For μ ∈ [b, e], denote that μ = [b, e].

Throughout this paper, we study EAQEC codes derived from cyclic codes or nega-
cyclic codes with length n, i.e., r = 1 or r = 2. Note that i(q2 −1) ≡ 0 mod rn holds
for all 1 ≤ i ≤ n − 1. Thus, it is easy to see that any q2-cyclotomic coset modulo rn
has only one element.
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3 Construction of EAQEC codes from cyclic codes with length n

In this section, we investigate the properties of q2-cyclotomic cosets modulo n first of
all. Then, by decomposition of defining set, the number of entanglement bits can be
determined precisely. Consequently, series of EAQEC codes could be obtained from
these cyclic codes.

Lemma 3 Let n, q, a, a′ be given as above.

(1) For i ≡ 0 mod a′, any Ci is a skew symmetric coset.
(2) For i ∈ [1, n − 1], let i = ua′ + v, where v ∈ [1, a′] if u ∈ [0, q − 1] and

v ∈ [1, a′ − 1] if u = q. Then,

−qCua′+v =
{
C(u−1−va)a′+a′−v if u − 1 − va ≥ 0;
C(q+u−va)a′+a′−v if u − 1 − va < 0.

Proof (1) Assume that there exists a skew symmetric coset Ci , then there holds i(q +
1) ≡ 0 mod n ⇔ i ≡ 0 mod a′. Clearly, our desired result has been clarified.

(2) Note that any q2-cyclotomic coset Ci contains one element. From −q(ua′ + v) =
−ua′(q + 1) + ua′ − v(q − 1) − v = −ua′(q + 1) + (u − 1 − va)a′ + a′ − v,
one can see that −q(ua′ + v) ≡ (u − 1− va)a′ + a′ − v mod n if u − 1− va ≥ 0
and −q(ua′ + v) ≡ (q + u − va)a′ + a′ − v mod n if u − 1− va < 0. Thus, (2)
holds.


�

Lemma 4 Let n, q, a, a′ be given as above. Denote that f ∈ [1, a′ − 1] if e = 0 and
f ∈ [� e

a �, a′−1] if e ∈ [1, a(a′−1)]. Set T1 = ⋃
Cea′+ f , there holds T1

⋂ −qT1 = ∅.

Proof From Lemma 3 (2), one needs to verify firstly that if e − 1 − f a < 0 or not.
Indeed, e−1− f a < 0 holds when e = 0.When e ∈ [1, a(a′−1)], f ∈ [� e

a �, a′ −1],
it is easy to check that e − 1 − f a ≤ e − � e

a �a − 1 < 0 as well. Thus, we have that
−qT1 = ⋃

C(q+e− f a)a′+a′− f .
Suppose that T1

⋂ −qT1 �= ∅, from T1 = ⋃
Cea′+ f and the range of e, f , there

are two cases as below.
Case 1: When e = 0, one can see that q + e − f a ⊆ e\{0} then a′ − f ≥

� q+e− f a
a � = � q− f a

a � > a′ − f , a contradiction.
Case 2: When e ∈ [1, a(a′ − 1)], we also have that q + e − f a ⊆ e\{0}. Note that

a′ − f ≥ � q+e− f a
a � > a′ − f , a contradiction.

Till now, our claim holds. 
�

As shown in Theorem 1, one could know the number of entanglement bits by
calculating the cardinality of Tss .

Theorem 2 Let n, q, a, a′ be given as above. Keep the notations defined inLemma 4. If
C is a cyclic codewith defining set T = C1

⋃
C2

⋃ · · ·⋃Cβa′+a′−1, whereβ ∈ [0, q],
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then

|Tss | =

⎧
⎪⎪⎨

⎪⎪⎩

β for β ∈ [0, a];
β +

β∑
k=a+1

2
(⌈ k

a

⌉ − 1
)
for β ∈ [a + 1, q − 1];

n − 1 for β = q.

Proof See in “Appendix 1”. 
�
After the detailed analysis on cyclotomic cosets modulo n and defining set of

certain cyclic codes of length n, one can construct EAQEC codes from these cyclic
codes naturally.

Theorem 3 Let n, q, a, a′ be given as above. Keep the notations defined in Lemma 4
andTheorem2. There exist EAQECcodeswith parameters [[n, n−2(d−1)+c, d; c]]q .
(1) If q = 2a + 1, then

⎧
⎨

⎩

d ∈ [2, a′], c = 0 for β = 0;
d ∈ [βa′ + 1, (β + 1)a′], c = β for β ∈ [1, a];
d = n, c = n − 1 for β = q.

(2) If q ≥ 3a + 1, then
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d ∈ [2, a′], c = 0 for β = 0;
d ∈ [βa′ + 1, (β + 1)a′], c = β for β ∈ [1, a];
d ∈ [βa′ +

⌈
β
a

⌉
, (β + 1)a′], c = β +

β∑
k=a+1

2
(⌈ k

a

⌉ − 1
)
for β ∈ [a + 1, q − a − 1];

d = n, c = n − 1 for β = q.

Particularly, for β ∈ [0, q−1
2 ], these EAQEC codes are EAQMDS codes.

Proof According to different q, we can calculate the exact parameters of EAQEC
codes with length n for given minimum distance.

Note that any q2-cyclotomic coset contains only one element. It is clear that the
cyclic code C with defining set T = C1

⋃
C2

⋃ · · ·⋃Cd−1 is an MDS code with
parameters [n, n − d + 1, d]q2 . From Theorems 1 and 2, one can obtain series of
[[n, n − 2(d − 1) + c, d; c]]q EAQEC codes easily.

For β ∈ [0, q−1
2 ], there holds d ≤ (β + 1)a′ = n

2 . Then, one can conclude that the
constructed EAQEC codes above are EAQMDS codes since all of them saturate the
EA-Singleton bound when β ∈ [0, q−1

2 ]. 
�

4 Construction of EAQEC codes from negacyclic codes with length n

In this section, the properties of q2-cyclotomic cosets modulo 2n are investigated in
detail. From these results, many EAQEC codes with length n could be constructed
from negacyclic codes. Set r = 2, r | a qnd aa′ = q − 1, then, a is an even positive
integer and q is an odd prime power.
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Table 1 New EAQEC codes with length n = q2 − 1

q Paras. d From Paras. d Refs.

3 [[8, 10 − 2d, d; 0]]3 d = 2 Th.3(1) [[8, 10 − 2d, d]]3 d ≤ 2 [11,14,19]

[[8, 11 − 2d, d; 1]]3 d = 3 [[8, 5, 3; 1]]3 d = 3 [30]

∗[[8, 11 − 2d, d; 1]]3 d = 4

[[8, 17 − 2d, d; 7]]3 d = 8 [[8, 1, 8; 7]]3 d = 8

4 [[15, 17 − 2d, d; 0]]4 2 ≤ d ≤ 3 Th.3 (2) [[15, 17 − 2d, d]]4 d ≤ 3 [11,14,19]

[[15, 18 − 2d, d; 1]]4 d = 4 [[15, 10, 4; 1]]4 d = 4 [30]

∗[[15, 18 − 2d, d; 1]]4 5 ≤ d ≤ 6

♦[[15, 21 − 2d, d; 4]]4 8 ≤ d ≤ 9

[[15, 31 − 2d, d; 14]]4 d = 15 [[15, 1, 15; 14]]4 d = 15

5 [[24, 26 − 2d, d; 0]]5 2 ≤ d ≤ 4 Th.3(2) [[24, 26 − 2d, d]]5 d ≤ 4 [11,14,19]

[[24, 27 − 2d, d; 1]]5 d = 5 [[24, 17, 5; 1]]5 d = 5 [30]

∗[[24, 27 − 2d, d; 1]]5 6 ≤ d ≤ 8

∗[[24, 30 − 2d, d; 4]]5 10 ≤ d ≤ 12

♦[[24, 35 − 2d, d; 9]]5 15 ≤ d ≤ 16

[[24, 49 − 2d, d; 23]]5 d = 24 [[24, 1, 24; 23]]5 d = 24

7 [[48, 50 − 2d, d; 0]]7 2 ≤ d ≤ 6 Th.3(2) [[48, 50 − 2d, d]]7 d ≤ 6 [11,14,19]

[[48, 51 − 2d, d; 1]]7 d = 7 [[48, 37, 7; 1]]7 d = 7 [30]

∗[[48, 51 − 2d, d; 1]]7 8 ≤ d ≤ 12

∗[[48, 54 − 2d, d; 4]]7 14 ≤ d ≤ 18

∗[[48, 59 − 2d, d; 9]]7 21 ≤ d ≤ 24

♦[[48, 66 − 2d, d; 16]]7 28 ≤ d ≤ 30

♦[[48, 75 − 2d, d; 25]]7 35 ≤ d ≤ 36

[[48, 97 − 2d, d; 47]]7 d = 48 [[48, 1, 48; 47]]7 d = 48

Lemma 5 Let n, q, a, a′ be given as above. Denote that i ∈ [0, n − 1].
(1) Any C1+2i is a skew asymmetric coset.
(2) Let i = ua′ + v, where u ∈ [0, q], v ∈ [0, a′ − 1]. Then,

−qC1+2(ua′+v) =
{
C1+2((u−va− a

2−1)a′+a′−1−v) if u − va − a
2 − 1 ≥ 0;

C1+2((q+u−va− a
2 )a′+a′−1−v) if u − va − a

2 − 1 < 0.

Proof (1) Suppose thatC1+2i is skew symmetric, one can derive that (1+2i)(q+1) ≡
0 mod 2n = 2a′(q+1) ⇔ 1+2i ≡ 0 mod 2a′. Actually, 1+2i is an odd integer,
so this congruence cannot hold. Then, (1) follows.

(2) If i = ua′ + v, then C1+2i = C1+2(ua′+v) = {1 + 2(ua′ + v)}. Thus, from
−q(1+2(ua′ +v)) = −q−2(q+1)ua′ +2ua′ −2qv = −(q−1)−2(q−1)v+
2ua′ −2(q +1)ua′ −1−2v ≡ 1+2((u−va− a

2 −1)a′ +a′ −1−v) mod 2n, it
follows that−q(1+2(ua′ +v)) ≡ 1+2((u−va− a

2 −1)a′ +a′ −1−v) mod 2n
if u − va − a

2 − 1 ≥ 0 and −q(1 + 2(ua′ + v)) ≡ 1 + 2((q + u − va − a
2 )a′ +

a′ − 1 − v) mod 2n if u − va − a
2 − 1 < 0. 
�
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Table 2 New EAQEC codes with length n = q−1
2 (q + 1)

q Paras. d From Paras. d Refs.

(a)

5 [[12, 14 − 2d, d; 0]]5 d = 2 Th.3(1)

[[12, 15 − 2d, d; 1]]5 d = 3 [[12, 9, 3; 1]]5 d = 3 [30]

∗[[12, 15 − 2d, d; 1]]5 d = 4

[[12, 16 − 2d, d; 2]]5 5 ≤ d ≤ 6

[[12, 25 − 2d, d; 11]]5 d = 12 [[12, 1, 12; 11]]5 d = 12

7 [[24, 26 − 2d, d; 0]]7 2 ≤ d ≤ 3 Th.3(2)

[[24, 27 − 2d, d; 1]]7 d = 4 [[24, 19, 4; 1]]7 d = 4 [30]

∗[[24, 27 − 2d, d; 1]]7 5 ≤ d ≤ 6

[[24, 28 − 2d, d; 2]]7 7 ≤ d ≤ 9

∗[[24, 31 − 2d, d; 5]]7 11 ≤ d ≤ 12

♦[[24, 34 − 2d, d; 8]]7 14 ≤ d ≤ 15

[[24, 49 − 2d, d; 23]]7 d = 24 [[24, 1, 24; 23]]7 d = 24

9 [[40, 42 − 2d, d; 0]]9 2 ≤ d ≤ 4 Th.3(2) [[40, 42 − 2d, d]]9 2 ≤ d ≤ 4 [19]

[[40, 43 − 2d, d; 1]]9 d = 5 [[40, 33, 5; 1]]9 d = 5 [30]

∗[[40, 43 − 2d, d; 1]]9 6 ≤ d ≤ 8

[[40, 44 − 2d, d; 2]]9 9 ≤ d ≤ 12

∗[[40, 47 − 2d, d; 5]]9 14 ≤ d ≤ 16

∗[[40, 50 − 2d, d; 8]]9 18 ≤ d ≤ 20

♦[[40, 55 − 2d, d; 13]]9 23 ≤ d ≤ 24

♦[[40, 60 − 2d, d; 18]]9 27 ≤ d ≤ 28

[[40, 81 − 2d, d; 39]]9 d = 40 [[40, 1, 40; 39]]9 d = 40

(b)

5 [[12, 14 − 2d, d; 0]]5 2 ≤ d ≤ 5 Th.5 [[12, 14 − 2d, d]]5 2 ≤ d ≤ 5 [13,15–18,26]

[[12, 16 − 2d, d; 2]]5 6 ≤ d ≤ 7 [[12, 16 − 2d, d; 2]]5 5 ≤ d ≤ 7 [23]

[[12, 16 − 2d, d; 2]]5 6 ≤ d ≤ 7 [26]

[[12, 18 − 2d, d; 4]]5 8 ≤ d ≤ 9 [[12, 18 − 2d, d; 4]]5 8 ≤ d ≤ 9

♦[[12, 26 − 2d, d; 12]]5 d = 13

7 [[24, 26 − 2d, d; 0]]7 2 ≤ d ≤ 7 Th.5 [[24, 26 − 2d, d]]7 2 ≤ d ≤ 7 [13,15–18,26]

[[24, 28 − 2d, d; 2]]7 8 ≤ d ≤ 10 [[24, 28 − 2d, d; 2]]7 6 ≤ d ≤ 10 [23]

[[24, 28 − 2d, d; 2]]7 8 ≤ d ≤ 10 [26]

[[24, 30 − 2d, d; 4]]7 11 ≤ d ≤ 13 [[24, 30 − 2d, d; 4]]7 11 ≤ d ≤ 13

♦[[24, 34 − 2d, d; 8]]7 15 ≤ d ≤ 16

♦[[24, 38 − 2d, d; 12]]7 18 ≤ d ≤ 19

♦[[24, 50 − 2d, d; 24]]7 d = 25
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Table 2 continued

q Paras. d From Paras. d Refs.

9 [[40, 42 − 2d, d; 0]]9 2 ≤ d ≤ 9 Th.5 [[40, 42 − 2d, d]]9 2 ≤ d ≤ 9 [13,15–18,26]

[[40, 44 − 2d, d; 2]]9 10 ≤ d ≤ 13 [[40, 44 − 2d, d; 2]]9 7 ≤ d ≤ 13 [23]

[[40, 44 − 2d, d; 2]]9 10 ≤ d ≤ 13 [26]

[[40, 46 − 2d, d; 4]]9 14 ≤ d ≤ 17 [[40, 46 − 2d, d; 4]]9 14 ≤ d ≤ 17

∗[[40, 50 − 2d, d; 8]]9 19 ≤ d ≤ 21

♦[[40, 54 − 2d, d; 12]]9 23 ≤ d ≤ 26

♦[[40, 60 − 2d, d; 18]]9 28 ≤ d ≤ 29

♦[[40, 66 − 2d, d; 24]]9 32 ≤ d ≤ 33

♦[[40, 82 − 2d, d; 40]]9 d = 41

Table 3 New EAQEC codes with length n = q−1
3 (q + 1)

q Paras. d From Paras. d Refs.

7 ∗[[16, 18 − 2d, d; 0]]7 d = 2 Th.3(1)

[[16, 19 − 2d, d; 1]]7 d = 3 [[16, 13, 3; 1]]7 d = 3 [30]

∗[[16, 19 − 2d, d; 1]]7 d = 4

∗[[16, 20 − 2d, d; 2]]7 5 ≤ d ≤ 6

∗[[16, 21 − 2d, d; 3]]7 7 ≤ d ≤ 8

[[16, 33 − 2d, d; 15]]7 d = 16 [[16, 1, 16; 15]]7 d = 16

13 [[56, 58 − 2d, d; 0]]13 2 ≤ d ≤ 4 Th.3(2) [[56, 58 − 2d, d]]13 2 ≤ d ≤ 4 [19]

[[56, 59 − 2d, d; 1]]13 d = 5 [[56, 49, 5; 1]]13 d = 5 [30]

∗[[56, 59 − 2d, d; 1]]13 6 ≤ d ≤ 8

∗[[56, 60 − 2d, d; 2]]13 9 ≤ d ≤ 12

∗[[56, 61 − 2d, d; 3]]13 13 ≤ d ≤ 16

∗[[56, 64 − 2d, d; 6]]13 18 ≤ d ≤ 20

∗[[56, 67 − 2d, d; 9]]13 22 ≤ d ≤ 24

∗[[56, 70 − 2d, d; 12]]13 26 ≤ d ≤ 28

♦[[56, 75 − 2d, d; 17]]13 31 ≤ d ≤ 32

♦[[56, 80 − 2d, d; 22]]13 35 ≤ d ≤ 36

♦[[56, 85 − 2d, d; 27]]13 39 ≤ d ≤ 40

[[56, 113 − 2d, d; 55]]13 d = 56 [[56, 1, 56; 55]]13 d = 56

Lemma 6 Let n, q, a, a′ be given as above. Denote that f ∈ [0, a′ − 1] if e ∈ [0, a
2 ]

and f ∈ [� e− a
2

a �, a′ − 1] if e ∈ [ a+2
2 , q − a+2

2 ]. Set T2 = ⋃
C1+2(ea′+ f ), there holds

T2
⋂ −qT2 = ∅.

Proof According to the value of e, our discussions are divided into the following two
cases.

Case 1: If e ∈ [0, a
2 ] and f ∈ [0, a′ −1], it is easy to check that e− f a− a

2 −1 < 0.
Then, −qT2 = ⋃

C1+2((q+e− f a− a
2 )a′+a′−1− f ). Note that q + e − f a − a

2 ∩ e �= ∅
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Table 4 New EAQEC codes with length n = q−1
4 (q + 1)

q Paras. d From Paras. d Refs.

(a)

9 [[20, 22 − 2d, d; 0]]9 d = 2 Th.3(1)

[[20, 23 − 2d, d; 1]]9 d = 3 [[20, 17, 3; 1]]9 d = 3 [30]

∗[[20, 23 − 2d, d; 1]]9 d = 4

∗[[20, 24 − 2d, d; 2]]9 5 ≤ d ≤ 6

∗[[20, 25 − 2d, d; 3]]9 7 ≤ d ≤ 8

∗[[20, 26 − 2d, d; 4]]9 d = 9

[[20, 26 − 2d, d; 4]]9 d = 10

[[20, 41 − 2d, d; 19]]9 d = 20 [[20, 1, 20; 19]]9 d = 20

13 [[42, 44 − 2d, d; 0]]13 2 ≤ d ≤ 3 Th.3(2)

[[42, 45 − 2d, d; 1]]13 d = 4 [[42, 37, 4; 1]]13 d = 4 [30]

∗[[42, 45 − 2d, d; 1]]13 5 ≤ d ≤ 6

∗[[42, 46 − 2d, d; 2]]13 7 ≤ d ≤ 9

∗[[42, 47 − 2d, d; 3]]13 10 ≤ d ≤ 12

∗[[42, 48 − 2d, d; 4]]13 d = 13

[[42, 48 − 2d, d; 4]]13 14 ≤ d ≤ 15

∗[[42, 51 − 2d, d; 7]]13 17 ≤ d ≤ 18

∗[[42, 54 − 2d, d; 10]]13 20 ≤ d ≤ 21

♦[[42, 57 − 2d, d; 13]]13 23 ≤ d ≤ 24

♦[[42, 60 − 2d, d; 16]]13 26 ≤ d ≤ 27

[[42, 85 − 2d, d; 41]]13 d = 42 [[42, 1, 42; 41]]13 d = 42

(b)

9 [[20, 22 − 2d, d; 0]]9 2 ≤ d ≤ 7 Th.5 [[20, 22 − 2d, d]]9 2 ≤ d ≤ 7 [15–17,26]

[[20, 24 − 2d, d; 2]]9 8 ≤ d ≤ 9 [[20, 24 − 2d, d; 2]]9 8 ≤ d ≤ 9 [26]

[[20, 26 − 2d, d; 4]]9 10 ≤ d ≤ 11 [[20, 26 − 2d, d; 4]]9 10 ≤ d ≤ 11

♦[[20, 28 − 2d, d; 6]]9 12 ≤ d ≤ 13

♦[[20, 30 − 2d, d; 8]]9 14 ≤ d ≤ 15

♦[[20, 42 − 2d, d; 20]]9 d = 21

13 [[42, 44 − 2d, d; 0]]13 2 ≤ d ≤ 10 Th.5 [[42, 44 − 2d, d; 0]]13 2 ≤ d ≤ 10 [13,16,26]

[[42, 46 − 2d, d; 2]]13 11 ≤ d ≤ 13 [[42, 46 − 2d, d; 2]]13 11 ≤ d ≤ 13

[[42, 48 − 2d, d; 4]]13 14 ≤ d ≤ 15 [[42, 48 − 2d, d; 4]]13 14 ≤ d ≤ 15

∗[[42, 50 − 2d, d; 6]]13 16 ≤ d ≤ 19

∗[[42, 52 − 2d, d; 8]]13 20 ≤ d ≤ 22

♦[[42, 56 − 2d, d; 12]]13 24 ≤ d ≤ 25

♦[[42, 60 − 2d, d; 16]]13 27 ≤ d ≤ 28

♦[[42, 64 − 2d, d; 20]]13 30 ≤ d ≤ 31

♦[[42, 68 − 2d, d; 24]]13 33 ≤ d ≤ 34

♦[[42, 86 − 2d, d; 42]]13 d = 43
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Table 5 New EAQEC codes with length n = q−1
5 (q + 1)

q Paras. d From Paras. d Refs.

11 ∗[[24, 26 − 2d, d; 0]]11 d = 2 Th.3(1)

[[24, 27 − 2d, d; 1]]11 d = 3 [[24, 21, 3; 1]]11 d = 3 [30]

∗[[24, 27 − 2d, d; 1]]11 d = 4

∗[[24, 28 − 2d, d; 2]]11 5 ≤ d ≤ 6

∗[[24, 29 − 2d, d; 3]]11 7 ≤ d ≤ 8

∗[[24, 30 − 2d, d; 4]]11 9 ≤ d ≤ 10

∗[[24, 31 − 2d, d; 5]]11 11 ≤ d ≤ 12

[[24, 49 − 2d, d; 23]]11 d = 24 [[24, 1, 24; 23]]11 d = 24

16 ∗[[51, 53 − 2d, d; 0]]16 2 ≤ d ≤ 3 Th.3(2)

[[51, 54 − 2d, d; 1]]16 d = 4 [[51, 46, 4; 1]]16 d = 4 [30]

∗[[51, 54 − 2d, d; 1]]16 5 ≤ d ≤ 6

∗[[51, 55 − 2d, d; 2]]16 7 ≤ d ≤ 9

∗[[51, 56 − 2d, d; 3]]16 10 ≤ d ≤ 12

∗[[51, 57 − 2d, d; 4]]16 13 ≤ d ≤ 15

∗[[51, 58 − 2d, d; 5]]16 16 ≤ d ≤ 18

∗[[51, 61 − 2d, d; 8]]16 20 ≤ d ≤ 21

∗[[51, 64 − 2d, d; 11]]16 23 ≤ d ≤ 24

♦[[51, 67 − 2d, d; 14]]16 26 ≤ d ≤ 27

♦[[51, 70 − 2d, d; 17]]16 29 ≤ d ≤ 30

♦[[51, 73 − 2d, d; 20]]16 32 ≤ d ≤ 33

[[51, 103 − 2d, d; 50]]16 d = 51 [[51, 1, 51; 50]]16 d = 51

and [0, a′ −1] = a′ − 1 − f ∩ f �= ∅. Suppose that T2 ⋂ −qT2 �= ∅, there must hold

that a′ − 1 − f ≥ � q+e− f a− a
2− a

2
a � > a′ − 1 − f , a contradiction.

Case 2: If e ∈ [ a+2
2 , q − a+2

2 ] and f ∈ [� e− a
2

a �, a′ − 1], then denote that e′ =
e − a

2 ∈ [1, a(a′ − 1)] and f ′ ∈ [� e′
a �, a′ − 1]. Similar to Case 2 of Lemma 3, one

can seek a contradiction to T2
⋂ −qT2 �= ∅ readily.

The proof is complete. 
�
The following theorem shows value of |Tss |, which is useful to confirm the number

of entanglement bits.

Theorem 4 Let n, q, a, a′ be given as above. Keep the notations defined inLemma 6. If
C is a negacyclic code with defining set T = C1

⋃
C3

⋃ · · · ⋃C1+2(βa′+a′−1), where
β ∈ [0, q], then

|Tss | =

⎧
⎪⎨

⎪⎩

0 for β ∈ [
0, a

2

] ;
β∑

k= a+2
2

2
⌈
k− a

2
a

⌉
for β ∈ [ a+2

2 , q
]
.
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Table 6 New EAQEC codes with length n = q−1
6 (q + 1)

q Paras. d From Paras. d Refs.

(a)

13 [[28, 30 − 2d, d; 0]]13 d = 2 Th.3(1)

[[28, 31 − 2d, d; 1]]13 d = 3 [[28, 25, 3; 1]]13 d = 3 [30]

∗[[28, 31 − 2d, d; 1]]13 d = 4

∗[[28, 32 − 2d, d; 2]]13 5 ≤ d ≤ 6

∗[[28, 33 − 2d, d; 3]]13 7 ≤ d ≤ 8

∗[[28, 34 − 2d, d; 4]]13 9 ≤ d ≤ 10

∗[[28, 35 − 2d, d; 5]]13 11 ≤ d ≤ 12

∗[[28, 36 − 2d, d; 6]]13 d = 13

[[28, 36 − 2d, d; 6]]13 d = 14

[[28, 57 − 2d, d; 27]]13 d = 28 [[28, 1, 28; 27]]13 d = 28

19 [[60, 62 − 2d, d; 0]]19 2 ≤ d ≤ 3 Th.3(2)

[[60, 63 − 2d, d; 1]]19 d = 4 [[60, 55, 4; 1]]19 d = 4 [30]

∗[[60, 63 − 2d, d; 1]]19 5 ≤ d ≤ 6

∗[[60, 64 − 2d, d; 2]]19 7 ≤ d ≤ 9

∗[[60, 65 − 2d, d; 3]]19 10 ≤ d ≤ 12

∗[[60, 66 − 2d, d; 4]]19 13 ≤ d ≤ 15

∗[[60, 67 − 2d, d; 5]]19 16 ≤ d ≤ 18

∗[[60, 68 − 2d, d; 6]]19 d = 19

[[60, 68 − 2d, d; 6]]19 20 ≤ d ≤ 21

∗[[60, 71 − 2d, d; 9]]19 23 ≤ d ≤ 24

∗[[60, 74 − 2d, d; 12]]19 26 ≤ d ≤ 27

∗[[60, 77 − 2d, d; 15]]19 29 ≤ d ≤ 30

♦[[60, 80 − 2d, d; 18]]19 32 ≤ d ≤ 33

♦[[60, 83 − 2d, d; 21]]19 35 ≤ d ≤ 36

♦[[60, 86 − 2d, d; 24]]19 38 ≤ d ≤ 39

[[60, 121 − 2d, d; 59]]19 d = 60 [[60, 1, 60; 59]]19 d = 60

(b)

13 [[28, 30 − 2d, d; 0]]13 2 ≤ d ≤ 9 Th.5 [[28, 30 − 2d, d; 0]]13 2 ≤ d ≤ 9 [15–17,26]

[[28, 32 − 2d, d; 2]]13 10 ≤ d ≤ 11 [[28, 32 − 2d, d; 2]]13 10 ≤ d ≤ 11 [26,28]

[[28, 34 − 2d, d; 4]]13 12 ≤ d ≤ 13 [[28, 34 − 2d, d; 4]]13 12 ≤ d ≤ 13

[[28, 36 − 2d, d; 6]]13 14 ≤ d ≤ 15 [[28, 36 − 2d, d; 6]]13 14 ≤ d ≤ 15 [28]

♦[[28, 38 − 2d, d; 8]]13 16 ≤ d ≤ 17

♦[[28, 40 − 2d, d; 10]]13 18 ≤ d ≤ 19

♦[[28, 42 − 2d, d; 12]]13 20 ≤ d ≤ 21

♦[[28, 58 − 2d, d; 28]]13 d = 29

19 [[60, 62 − 2d, d; 0]]19 2 ≤ d ≤ 13 Th.5 [[60, 62 − 2d, d; 0]]19 2 ≤ d ≤ 13 [13,15–17,26]

[[60, 64 − 2d, d; 2]]19 14 ≤ d ≤ 16 [[60, 64 − 2d, d; 2]]19 14 ≤ d ≤ 16 [26,28]

[[60, 66 − 2d, d; 4]]19 17 ≤ d ≤ 19 [[60, 66 − 2d, d; 4]]19 17 ≤ d ≤ 19

[[60, 68 − 2d, d; 6]]19 20 ≤ d ≤ 22 [[60, 68 − 2d, d; 6]]19 20 ≤ d ≤ 22 [28]
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Table 6 continued

q Paras. d From Paras. d Refs.

∗[[60, 70 − 2d, d; 8]]19 23 ≤ d ≤ 25

∗[[60, 72 − 2d, d; 10]]19 26 ≤ d ≤ 28

∗[[60, 74 − 2d, d; 12]]19 29 ≤ d ≤ 31

♦[[60, 78 − 2d, d; 16]]19 33 ≤ d ≤ 34

♦[[60, 82 − 2d, d; 20]]19 36 ≤ d ≤ 37

♦[[60, 86 − 2d, d; 24]]19 39 ≤ d ≤ 40

♦[[60, 90 − 2d, d; 28]]19 42 ≤ d ≤ 43

♦[[60, 94 − 2d, d; 32]]19 45 ≤ d ≤ 46

♦[[60, 98 − 2d, d; 36]]19 48 ≤ d ≤ 49

♦[[60, 122 − 2d, d; 60]]19 d = 61

Proof See in “Appendix 2”. 
�
Summarizing those observations above,we canfinish this sectionwith the following

theorem, which is helpful to construct EAQEC codes of length n with large minimum
distance from negacyclic codes.

Theorem 5 Let n, q, a, a′ be given as above. Keep the notations defined in Lemma 6
and Theorem 4. There exist EAQEC codes with parameters [[n, n − 2(d − 1) +
c, d; c]]q , where
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d ∈
[
2, (a+2)a′

2 + 1
]
, c = 0

d ∈
[
βa′ +

⌈
β− a

2
a

⌉
+ 1, (β + 1)a′ + 1

]
, c =

β∑

k= a+2
2

2
⌈
k− a

2
a

⌉
for β ∈ [ a+2

2 , q − a
2 − 1

] ;

d = n + 1, c = n for β = q.

Particularly, for β ∈ [0, q−1
2 ], these EAQEC codes are EAQMDS codes.

Proof From those consequences of Lemma 6 and Theorem 4, one can construct series
of EAQEC codes based on Theorem 1 directly. When d ≤ n+2

2 , these codes are
optimal. The process of proof is similar to that of Theorem 3 and is omitted here.


�

5 Code comparisons and conclusions

In this paper, by investigating q2-cyclotomic cosets modulo rn, we construct a family
of EAQEC codes with length n, where q is a prime power, n = q−1

a (q+1), a | (q−1)
and r = 1 or 2. Note that each coset contains only one element. Naturally, any EAQEC
code derived in this paper achieves EA-Singleton bound and is optimal if its minimum
distance d ≤ n+2

2 . Furthermore, our construction could produce many new EAQEC
codes with large minimum distance that are not covered in the literature.
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In order to obtain QMDS or EAQMDS codes with big minimum distance, many
scholars restricted their attention to studying constacyclic codes orGRScodes of length
n ≤ q2 + 1. Indeed, lots of consequences on codes with length n | (q2 − 1) have been
made, see Refs. [11–19,23,26,28–30]. However, most of conclusions in those above
researches required many corresponding conditions, such as an odd prime power q,
n = λ(q+1)with λ an odd divisor of q−1 in [13], an odd prime power q = 2tm+1,

n = q2−1
2t in [16] and an odd prime power q ≡ 1 mod 2a with a ≥ 3, n = q−1

2a (q+1)
in [28] and so on. Our construction comes into existence under only one condition,
i.e., a | (q − 1). Clearly, given the same length n, our conclusions generalize those
results in [11–19,23,26,28–30] evidently.

To make comparisons with the known codes clearly, we enumerate examples of
EAQEC codes of length n = q−1

a (q + 1) in Tables 1, 2, 3, 4, 5, 6, where a ∈ [1, 6].
For even a, EAQEC codes in part (a) of Table a are obtained from cyclic codes by
Theorem 3, while EAQEC codes in part (b) of Table a are derived from negacyclic
codes by Theorem 5. Symbols ∗ and ♦ in the tables denote that those corresponding
codes are new EAQMDS codes and new EAQEC codes, respectively.

As shown inTables 1, 2, 3, 4, 5, 6, for given lengthn, our construction is prior to those
already known ones. Specifically, many known constructions of EAQEC codes are
applicable for big and specific q, which might be empty of practicality. Nevertheless,
those codes produced by their construction have shorter minimum distance than ours.
In other words, the bigger q is, the larger minimum distance of our EAQEC codes
could have. Moreover, quite a lot of known results can be seemed as some special
cases of ours in Theorems 3 and 5.

Practically, it is difficult to construct EAQEC codes with flexible good parameters.
Whereas, we present a family of EAQEC codes whose required number of entangle-
ment bits is flexible. We believe that our method of studying EAQEC codes employed
in this paper can facilitate more good results in the future.

Appendix 1: Proof of Theorem 2

Proof Let T1 = ⋃
Cea′+ f , where f ∈ [1, a′ − 1] if e = 0 and f ∈ [� e

a �, a′ − 1] if
e ∈ [1, a(a′ − 1)]. Then, one can get that T1

⋂ −qT1 = ∅ by Lemma 4.
Denote that T c

1 = ⋃
Cka′+l

⋃
Cwa′ , where l ∈ [1, � k

a � − 1] if k ∈ [a + 1, q − 1],
l ∈ [1, � k

a � − 2] if k = q and w ∈ [1, q]. From Lemma 3, it is easy to obtain that
−qT c

1 = ⋃
C(k−1−la)a′+a′−l

⋃
Cwa′ since k−1−la ≥ 0 and−qCwa′ = Cwa′ . Next,

we verify that T c
1

⋂ −qT c
1 = Cwa′ .

Suppose that (
⋃

Cka′+l)
⋂

(
⋃

C(k−1−la)a′+a′−l) �= ∅, there are two cases accord-
ing to k.

Case 1: If k ∈ [a + 1, q − 1], then there holds that l ≤ � k
a � − 1 ⇒ a′ − l ≤

� k−1−la
a � − 1 ≤ � q−2−la

a � − 1 < a′ − l − 1, a contradiction.
Case 2: If k = q, then from l ≤ � k

a �−2, one can derive that a′−l ≤ � k−1−la
a �−2 ≤

� q−1−la
a � − 2 < a′ − l − 2, which yields also a contradiction.

From Case 1, Case 2 and (
⋃

Cka′+l)
⋂

Cwa′ = ∅, one can conclude that
T c
1

⋂ −qT c
1 = Cwa′ .
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Note that T = C1
⋃

C2
⋃ · · ·⋃Cβa′+a′−1 for some β. Then, it is not difficult to

check that T = T1
⋃

T c
1 . Hence, Tss = T

⋂ −qT = (T1
⋃

T c
1 )

⋂ −q(T1
⋃

T c
1 ) =

(T c
1

⋂ −qT1)
⋃

(T1
⋂ −qT c

1 )
⋃

Cwa′ . Obviously, T1
⋂ −qT c

1 = −q(T c
1

⋂ −qT1),
which indicates that |Tss | = 2|T1 ⋂ −qT c

1 | + |Cwa′ |.
As discussed above, −qT c

1 = ⋃
C(k−1−la)a′+a′−l

⋃
Cwa′ . Clearly, from 0 /∈ f ,

it follows that T1
⋂

(
⋃

Cwa′) = ∅. According to different e, f , k, l, we prove that
(
⋃

C(k−1−la)a′+a′−l) ⊆ T1 below.
Case 1: If k−1− la = 0 = e, then we have that a′ − l = a′ − k−1

a = [1, a′ −1] ⊆
f , which implies that (

⋃
C(k−1−la)a′+a′−l) ⊆ T1

Case 2: If k − 1 − la �= 0, then k − 1 − la ⊆ e\{0} clearly. Note that a′ − l ≥
� k−1−la

a � and a′ − l ≤ a′ − 1. Thus, one can gain that a′ − l ⊆ f for any k − 1 − la
and a − l ′, implying that (

⋃
C(k−1−la)a′+a′−l) ⊆ T1.

Overall, it is easy to see that T1
⋂ −qT c

1 = ⋃
C(k−1−la)a′+a′−l . Therefore, |Tss | =

2|T1 ⋂ −qT c
1 | + |Cwa′ | = 2| ⋃C(k−1−la)a′+a′−l | + |Cwa′ | = 2| ⋃Cka′+l | + |Cwa′ |.

For β = 0 and T = C1
⋃

C2
⋃ · · ·⋃Ca′−1, then T c

1 = ∅.
For β = 1 and T = C1

⋃
C2

⋃ · · · ⋃C2a′−1, then T c
1 = Ca′ . Thus, |Tss | = 1.

For β = 2 and T = C1
⋃

C2
⋃ · · · ⋃C3a′−1, then T c

1 = ⋃
Cwa′ , where w ∈

[1, 2]. Naturally, |Tss | = 2.
· · ·
For β = a + 1 and T = C1

⋃
C2

⋃ · · · ⋃C(a+1)a′+a′−1, then T c
1 =⋃

Cka′+l
⋃

Cwa′ , where k = a + 1, l ∈ [1, � k
a � − 1], w ∈ [1, a + 1]. Hence,

|Tss | = a + 1 + 2(� k
a � − 1).

· · ·
For β = 2a + 1 and T = C1

⋃
C2

⋃ · · · ⋃C(2a+1)a′+a′−1, then T c
1 =⋃

Cka′+l
⋃

Cwa′ , where k ∈ [a + 1, 2a + 1], l ∈ [1, � k
a � − 1], w ∈ [1, 2a + 1].

It is easy to calculate that |Tss | = 2a + 1 +
2a+1∑
k=a+1

2(� k
a � − 1).

According to the analysis above, one can derive universal consequences as below.
For β ∈ [0, a] and T = C1

⋃
C2

⋃ · · · ⋃Cβa′−1, then T c
1 = ⋃

Cwa′ , where
w ∈ [1, β]. Hence, |Tss | = β.

For β ∈ [a + 1, q − 1] and T = C1
⋃

C2
⋃ · · · ⋃Cβa′−1, then T c

1 =⋃
Cka′+l

⋃
Cwa′ , where k ∈ [a + 1, β], l ∈ [1, � k

a � − 1], w ∈ [1, β]. Clearly,
|Tss | = β +

β∑
k=a+1

2(� k
a � − 1).

For β = q and T = C1
⋃

C2
⋃ · · · ⋃Cqa′+a′−1, then T c

1 = ⋃
Cka′+l

⋃
Cwa′ ,

where l ∈ [1, � k
a � − 1] if k ∈ [a + 1, q − 1], l ∈ [1, � k

a � − 2] if k = q and w ∈ [1, q].
One can obtain that |Tss | = q +

q−1∑
k=a+1

2(� k
a � − 1) + a′ − 1 = n − 1. 
�
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Appendix 2: Proof of Theorem 4

Proof By Lemma 6, one knows that T2
⋂ −qT2 = ∅, where T2 is defined as T2 =

⋃
C1+2(ea′+ f ), f ∈ [0, a′ −1] if e ∈ [0, a

2 ] and f ∈ [� e− a
2

a �, a′ −1] if e ∈ [ a+2
2 , q −

a+2
2 ].
Denote that T c

2 = ⋃
C1+2(ka′+l), where k ∈ [ a+2

2 , q], l ∈ [0, � k− a
2

a � − 1]. In the
sequel, we clarify that T c

2

⋂ −qT c
2 = ∅.

From l ≤ (� k− a
2

a � − 1) ⇒ la ≤ (� k− a
2

a � − 1)a ≤ k − a
2 − 1, it follows that

k − la − a
2 − 1 ≥ 0 and −qT c

2 = ⋃
C1+2((k−la− a

2−1)a′+a′−1−l) by Lemma 5 (2).

Suppose that T c
2

⋂ −qT c
2 �= ∅, then one can obtain that l ≤ � k− a

2
a �−1 ⇒ a′−1−l ≤

� k−la− a
2−1− a

2
a � − 1 ≤ � q−1−la−a

a � − 1 = a′ − l − 2, a contradiction. Thus, one can
conclude that T c

2

⋂ −qT c
2 = ∅.

Clearly, there holds T = T2
⋃

T c
2 . By definition, one knows that Tss =

T
⋂ −qT = (T c

2

⋂ −qT2)
⋃

(T2
⋂ −qT c

2 ) and |Tss | = 2|T2 ⋂ −qT c
2 |. Actually,

−qT c
2 ⊆ T2 holds and we give its proof as below. As to different range of e, f , we

need to split our discussions of −qT c
2 with different range of k, l as well.

Case 1: For e ∈ [0, a
2 ], f ∈ [0, a′ −1]. Set k = a+2

2 +μa+ν, l = � k− a
2

a �−1 = μ,
whereμ ∈ [0, a′−1] and ν ∈ [0, a

2 ].Obviously, one candeduce that k − la − a
2 − 1 =

ν = [0, a
2 ] ⊆ e, a′ − 1 − l = [0, a′ − 1] ⊆ f . Hence, it is not difficult to check that

−qT c
2 ⊆ T2 for any combination of k and l given as above.

Case 2: For e ∈ [ a+2
2 , q − a+2

2 ], f ∈ [� e− a
2

a �, a′ − 1]. Set k = a+2
2 + μa + ν, l ∈

[0, � k− a
2

a � − 2] = [0, μ − 1], where ν ∈ [0, a
2 ] if μ ∈ [1, a′ − 1]. Then, we have

that k − la − a
2 − 1 = μa + ν − la ⊆ e. From a′ − 1 − l ≥ � k−la− a

2−1− a
2

a � =
�μa+ν−la− a

2
a � and a′ −1−l ≤ a′ −1, it follows that a′ − 1 − l = [a′ −μ, a′ −1] ⊆ f

for any k − la − a
2 − 1, a′ − 1 − l. So we can derive that −qT c

2 ⊆ T2 with given
e, f , k, l above.

Case 3: For e ∈ [ a+2
2 , q − a+2

2 ], f ∈ [� e− a
2

a �, a′ − 1]. Set k = a+2
2 + μa + ν, l ∈

[0, � k− a
2

a � − 1] = [0, μ], where ν ∈ [ a+2
2 , a − 1] if μ ∈ [0, a′ − 2]. Then, one can

get that k − la − a
2 − 1 = μa + ν − la ⊆ e easily. Similar to the Case 2, there also

holds that −qT c
2 ⊆ T2 for any a′ − 1 − l, k − la − a

2 − 1 since a′ − 1 − l ⊆ f .
Utilizing the results of Cases 1–3, we can calculate the precise value of |Tss | =

2|T2 ⋂ −qT c
2 | = 2| − qT c

2 | = 2|T c
2 | simply.

For β ∈ [0, a
2 ] and T = C1

⋃
C3

⋃ · · ·⋃C1+2(βa′+a′−1), then T c
2 = ∅.

For β = a+2
2 and T = C1

⋃
C3

⋃ · · · ⋃C1+2(βa′+a′−1), then T c
2 = C1+2( a+2

2 a′).
Thus, |Tss | = 2.

For β = a+4
2 and T = C1

⋃
C3

⋃ · · · ⋃C1+2(βa′+a′−1), then T c
2 = ⋃

C1+2(ka′),
where k ∈ [ a+2

2 , a+4
2 ]. Obviously, |Tss | = 2 + 2 = 4.

· · ·
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For β ∈ [ a+2
2 , q] and T = C1

⋃
C3

⋃ · · · ⋃C1+2(βa′+a′−1), then T c
2 =

⋃
C1+2(ka′+l), where k ∈ [ a+2

2 , q], l ∈ [0, � k− a
2

a � − 1]. Then, it is easy to see that

|Tss | = 2|T c
2 | =

β∑

k= a+2
2

2� k− a
2

a �. 
�
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