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Abstract
Genuine steering is still not well understood enough in contrast to genuine entangle-
ment and nonlocality. Here, we provide a protocol which can reveal genuine steering
under some restricted operations compared to the existing witnesses of genuine mul-
tipartite steering. Our method has an impression of some sort of ‘hidden’ protocol in
the same spirit of hidden nonlocality, which is well understood in bipartite scenario.
We also introduce a genuine steering measure which indicates the enhancement of
genuine steering in the final state of our protocol compared to the initial states.

Keywords Sequential measurement · Genuine steering

1 Introduction

Einstein–Podolsky–Rosen steering, the phenomenon that was first discussed by
Schrodinger and afterward considered as a notion of quantum nonlocality, has gained
significant attention in recent days [1–4]. This quantum phenomenon, which has no
classical analogue, is observed if one of two distant observers, sharing an entangled
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state, can remotely steer the particle of the other distant observer by performing mea-
surements on his/her particle only. The experimental criteria for analyzing the presence
of bipartite steering, first investigated in [5], were formalized in ref where the authors
generalized this concept for arbitrary systems [6]. Till date there has been a lot of anal-
ysis regarding various features of steering nonlocality such as methods of detection
[7] and quantification of steering [8,9], steering of continuous variable systems [10],
loophole-free demonstration of steering [11], applications as a resource of nonlocal
correlations in the field of quantum information protocols, exploiting the relation of
steeringwith incompatibility of quantummeasurements [12,13] and its ability to detect
bound entanglement [14]. Apart from its foundational richness, EPR steering do have
multifaceted applications in practical tasks such as semi-device independent scenario
[15] where only one party can trust his or her apparatus but the other party’s apparatus
is not trusted. In that situation the presence of steerable state provides a better chance
to allow secure key distribution [16]. Even for some other tasks such as randomness
certification [17], entanglement-assisted sub-channel discrimination [18], and secure
teleportation through continuous-variables steerable states [19] are found to be useful.

Being a notion of nonlocality, there exists a hierarchy according to which steering is
defined as a formof quantum inseparability, intermediate in between entanglement and
Bell nonlocality. Considering pure quantum states these three notions are equivalent,
whereas in general they are inequivalent in case of mixed states [20]. However in
the context of comparison of steering nonlocality with that of Bell nonlocality, it
is interesting to mention that analogous to hidden nonlocality [21,22], existence of
hidden steering has been proved in [20] for bipartite scenario. Just as in the case
of exploiting nonlocality beyond Bell scenarios via the notion of hidden nonlocality
[21,22], hidden steering refers to revelation of steering nonlocality under suitable
sequential measurements. In this context, an obvious interest grows regarding analysis
of the same for multipartite scenario.

Due to increase in complexity as one shifts from bipartite to multipartite system,
till date there has been limited attempts to understand the feature of multipartite steer-
ing phenomenon. Analogous to both entanglement and Bell nonlocality, the concept
of genuine steering has been established in recent days. In this context, it may be
mentioned that unlike Bell nonlocality and entanglement, due to asymmetric nature
of steering nonlocality the notion of genuine steering nonlocality lacks uniqueness.
However, genuine steering was first introduced in [23] where the authors provided
the criteria for detecting genuineness in steering scenario for both continuous as well
as discrete variable systems. Later two other notions of genuine steering were intro-
duced in [24] mainly for tripartite framework where two parties measurements are
fully specified, i.e., one party can control remaining. In this context, the author has
also designed genuine steering inequalities to detect genuine tripartite steering. Now
speaking of genuine steering nonlocality, itmay be interesting to explore the possibility
of exploiting the same via some suitable sequential measurement protocol.

To be precise, our present topic of discussion will continue in the direction of ana-
lyzing hidden genuine tripartite steering nonlocality in the framework introduced in
[24]. For present topic of discussion, we will follow terms and terminologies used in
[24]. We will design a protocol involving a sequence of measurements such that ini-
tially starting from tripartite states which may not be genuinely steerable, the protocol
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may generate a genuinely steerable state. Interestingly, the initial states which will be
used in the protocol do have a bi-local model [25–27].

The paper has organized as follows. In Sect. 2, we have introduced the notion of
steering both in bipartite as well as genuine multipartite scenario. Then, in Sect. 3,
we have presented suitable sequential operations to achieve the final state. Section 4
contains our main results then discussion.

2 Background

In this section, we are basically going to include a brief detailing of the mathematical
tools that will be used in our work.

2.1 Genuine tripartite steering

Firstly, we discuss the criteria of detecting genuine steering [24]. It is true that there
are lots of definitions are available in the literature about Genuine steering, we choose
one of them.

2.1.1 Formal definition

Correlations P(a, b, c|x, y, z) shared between three parties, say Alice, Bob and Char-
lie are obtained by performing the measurements x, y, z by Alice, Bob and Charlie,
respectively, having outcomes a, b, c. Correlations P(a, b, c|x, y, z) are said to be
genuinely steerable [24] from one party, say Charlie to remaining two parties Alice
and Bob, if those are inexplicable in the following form:

P(a, b, c|x, y, z) =
∑

λ

qλ [P(a, b|x, y, ρAB(λ))] P(c|z, λ)

+
∑

λ

pλP
(
a|x, ρλ

a

)
P

(
b|y, ρλ

b

)
P(c|z, λ). (1)

where P(a, b|x, y, ρAB(λ)) denotes the nonlocal probability distribution arising from
two-qubit state ρλ

AB, and P(a|x, ρλ
A) and P(b|y, ρλ

B) are the distributions arising from
qubit states ρλ

A and ρλ
B. Here, we want to mention that both the terms of right-hand

side of the equation are taken over same λ and
∑

λ qλ + ∑
λ pλ = 1.

Here, Charlie performs uncharacterized measurement, whereas both Alice and Bob
have access to qubit measurements. The tripartite correlation will be called genuinely
unsteerable if it is explained by (1) where ρAB(λ) is called hidden state for Alice and
Bob side. In [24], the author designed detection criteria of tripartite genuine steering
(Svetlichny steering), based on Svetlichny inequality [28]. The detection criterion is
given in the form of a Bell-type inequality:

〈CHSHABz1 + CHSH′
ABz0〉NLHS2×2×? ≤ 2

√
2. (2)
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where CHSHAB and CHSH′
AB stand for two inequivalent facets defining Bell-CHSH

polytope for Alice and Bob and {z0, z1} are measurements on Charlie’s part. Here,
NLHS stands for nonlocal hidden state, whereas 2 × 2×? implies that only two par-
ties (Alice and Bob) have access to qubit measurements but Charlie does not trust
his measurement devices and hence are uncharacterized. Alice and bob should have
orthonormal measurement settings. If correlations arising due to measurements on
any given quantum state (ρ) violate this inequality (Eq. 2), then that guarantees gen-
uinely steerable of ρ from Charlie to Alice and Bob. Analogously genuine steerability
of ρ from Bob to Charlie and Alice and that from Alice to Charlie and Bob can be
guaranteed, respectively, by violation of the following criteria:

〈CHSHBCx1 + CHSH′
BCx0〉NLHS2×2×? ≤ 2

√
2. (3)

〈CHSHACy1 + CHSH′
ACy0〉NLHS2×2×? ≤ 2

√
2. (4)

Terms CHSHBC, CHSH′
BC, CHSHAC, CHSH′

AC have analogous definitions. Hence,
a state is genuinely steerable from one party to the remaining two parties if it can
violate atleast one of these three criteria (Eqs. 2, 3, 4). Now this definition of steering
is slightly different from the definition given in [23]. Now we shall discuss how this
definition is different from previous definition.

2.1.2 Previous definition

According to the definition by He and Reid [23], the tripartite correlation
P(a, b, c|x, y, z) detects genuine steering iff it does not have a decomposition as
follows:

P(a, b, c|x, y, z) = p1
∑

λ

r(λ)P(a|x, λ)P(b, c|y, z, ρBC(λ))

+ p2
∑

λ

s(λ)P(b|y, λ)P(a, c|x, z, ρAC(λ))

+ p3
∑

λ

t(λ)P(c|z, λ)P(a, b|x, y, ρAB(λ)), (5)

where p1 + p2 + p3 = 1,
∑

λ r(λ) = 1,
∑

λ s(λ) = 1,
∑

λ t(λ) = 1. Here,
P(a|x, λ) denotes an arbitrary probability distributions arising from LHV λ and
P(b, c|y, z, ρBC(λ)) denotes the quantum probability of obtaining the outcomes b
and c, when measurements y and z are performed by Bob and Charlie, respectively,
on the bipartite local hidden state (LHS) ρBC(λ) shared between Bob and Charlie.
The quantum probability distribution PQ(b, c|y, z, ρBC(λ)) may demonstrate quan-
tum nonlocality, or EPR steering. The other terms are defined similarly.

Note that the definition of genuine tripartite steering by [24] is not equivalent to
that by He and Reid [23]. In the above definition by He and Reid, Alice, Bob and
Charlie are all assumed to perform characterized measurements at some point in the
decomposition given by Eq. (5) (i.e., trusted and untrusted parties are not fixed). One
the other hand, we have considered a tripartite steering scenario where the trusted and
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untrusted parties are fixed. (Alice and Bob are trusted parties and Charlie is untrusted
party.) The definition by [24] is applicable in such a tripartite steering scenario where
the trusted and untrusted parties are fixed. We have, therefore, used the definition
of genuine tripartite steering by [24]. We now discuss about some relevant tools for
measuring genuine multipartite entanglement and genuine steering.

2.2 Genuinemultipartite concurrence

We briefly now describe CGM, a measure of genuine multipartite entanglement.
For pure n-partite states(|ψ〉), this measure is defined as [29] : CGM(|ψ〉) :=
min j

√
2(1 − � j (|ψ〉)) where � j (|ψ〉) is the purity of j th bipartition of |ψ〉. The

expression of CGM for X states is given in [30]. For tripartite X states,

CGM = 2maxi {0, |γi | − wi } (6)

with wi = ∑
j �=i

√
a jb j where a j , b j and γ j ( j = 1, 2, 3, 4) are the elements of the

density matrix of tripartite X state:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 0 0 0 0 γ1
0 a2 0 0 0 0 γ2 0
0 0 a3 0 0 γ3 0 0
0 0 0 a4 γ4 0 0 0
0 0 0 γ4

∗ b4 0 0 0
0 0 γ3

∗ 0 b3 0 0
0 γ2

∗ 0 0 0 0 b2 0
γ1

∗ 0 0 0 0 0 0 b1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.3 Genuine steeringmeasure

As we have discussed initially, there is no formal definition of genuine steering, but
we can propose a formal measure of genuine steering irrespective of the definitions.
First, we define genuine steering measure which is analogous to the bipartite steering
measure first described in [31]. This measure is given by the following quantity:

Sgen(ρ) = max

{
0,

Sn(ρ) − 1

Smax
n − 1

}
(7)

whereSmax
n = maxρ Sn(ρ) and Sn(ρ) = maxη Sn(ρ, η) with the maximization taken

over all measurement settings η and 0 ≤ Sgen(ρ) ≤ 1.
After giving a brief detailing of our mathematical tools, we now proceed with our

results. To start with, we design the sequential measurement protocol based on which
we observe the enhanced revelation of genuine steering.
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3 Revealingmultipartite genuine steering

The protocol that we propose here is a stochastic local operation and classical com-
munication (SLOCC) protocol which consists of two stages: preparation stage and
measurement stage. We name this protocol as sequential measurement protocol. A
detailed sketch of the protocol is given below:

3.1 Brief outline of the protocol

Sequential measurement protocol Three spatially separated parties (say, Ai ; i =
1, 2, 3) are involved in this protocol. n number of tripartite quantum states can be
distributed among them. None of these states violate genuine steering inequality [24].
As each party holds one particle from each of the n tripartite states hence each of the
parties holds n number of particles.

3.1.1 Preparation stage

• In the preparation stage, every party can perform some joint measurement on their
respective n − 1 particles and then broadcast the results to others (Fig. 1).

• At the end ofmeasurements by all the three parties, a tripartite quantum state shared
among A1, A2 and A3 is generated. Clearly this final state is always prepared
depending upon the measurement results obtained by the parties in the previous
step.

3.1.2 Measurement stage

• In themeasurement stage, all the three parties can perform any projectivemeasure-
ment in arbitrary directions. But in this stage they are not allowed to communicate
among themselves.

• Aftermeasurements they can generate a tripartite correlation so that they can verify
that this correlation can violate the genuine steering inequality.

We refer to this protocol of sequential measurements by the three parties sharing n
states as a sequential measurement protocol (SMP).

Having sketched the protocol we now give examples of some families of tripartite
states which when used in this network, reveal genuine steering for some members
of these families. Such an observation is supported with an increase in the amount of
genuine steering, guaranteed by the measure of steering Sgen(ρ) (Eq. 7).

Let the three initial states be given by:

ρ1 = p1|ψ f 〉〈ψ f | + (1 − p1)|001〉〈001| (8)

with |ψ f 〉 = cos θ1|000〉 + sin θ1|111〉, 0 ≤ θ1 ≤ π
4 and 0 ≤ p1 ≤ 1;

ρ2 = p2|ψm〉〈ψm | + (1 − p2)|010〉〈010| (9)
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Fig. 1 Schematic diagram for preparation and measurement stage

with |ψm〉 = |000〉+|111〉√
2

and 0 ≤ p2 ≤ 1;

ρ3 = p3|ψl〉〈ψl | + (1 − p3)|100〉〈100| (10)

with |ψl〉 = sin θ3|000〉 + cos θ3|111〉, 0 ≤ θ1 ≤ π
4 and 0 ≤ p1 ≤ 1. In this context

it may be noted that the three initial states have Svetlichny bi-local model under
projective measurement for the following restricted range of state parameters:

• For first state (ρ1) : p1 ≤ 1
(1+sin[2θ1]) ;

• Second state (ρ2) : p2 ≤ 1
2 ;

• Third state (ρ3) : p3 ≤ 1
(1+sin[2θ3]) .

Each of the three parties A1, A2 and A3 performs Bell basis measurements on their
respective particles. Depending on a particular output of all the measurements (here
|ψ±〉 = |01〉±|10〉√

2
), a resultant state ρ±

4 is obtained which after correcting the phase
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term is given by:

ρ4 = p3|φ〉〈φ| + (1 − p3) sin2 θ1|100〉〈100|
sin2 θ1 + p3 cos 2θ1 sin2 θ3

(11)

where |φ〉 = cos θ1 sin θ3|000〉 + sin θ1 cos θ3|111〉.
Clearly ρ4 is independent of p1 and p2. Interestingly, ρ4 can also be generated for

some other combination of sequential operations on some different arrangement of
particles between the parties Ai (1, 2, 3) and for different output of Bell measurement.
For the initial states ρi (i = 1, 2, 3), the amount of genuine entanglement are given
by

Cρ1
GM = p1 sin 2θ1,

Cρ2
GM = p2

and
Cρ3
GM = p3 sin 2θ3 (12)

whereas that of ρ4 is given by

Cρ4
GM = p3 sin 2θ1 sin 2θ3

2(sin2 θ1 + p3 cos 2θ1 sin2 θ3)
. (13)

Equation (12) indicates that the initial states ρi (i = 1, 2, 3) are genuinely entangled
for any nonzero value of the state parameters .

The maximum value of the genuine steering operators (Si ) (Eq. 2) under projective
measurements, for state ρi (i = 1, 2, 3) is given by:

S1 = max

[
2 p1 sin 2θ1,

1√
2

√
((1 − p1 − p1Cos[2θ1])2 + (p1Sin[2θ1])2

]
,

S2 = max

[
2 p2,

1√
2

√
((1 − p2)2 + (p2)2)

]

and

S3 = max

[
2 p3 sin 2θ3,

1√
2

√
((1 − p3 + p3Cos[2θ3])2 + (p3Sin[2θ3])2)|

]
, (14)

respectively, whereas that for the final state ρ4, it is given by

S4 = max

[
p3 sin 2θ1 sin 2θ3

sin2 θ1 + p3 cos 2θ1 sin2 θ3
,

√
2
√

(1 − p3 + p3Cos[2θ3] − Cos[2θ1])2 + (p3Sin[2θ1]Sin[2θ3])2
2 − 2(1 − p3)Cos[2θ1] − p3Cos[2(θ1 − θ3)] − p3Cos[2(θ1 + θ3)]

]
. (15)
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3.1.3 Result: observation

It is clear from the maximum value of genuine steering operator (Eqs. 14, 15) and the
measure of entanglement (Eqs. 12, 13) of both initial states and final state, that each
of them does not violate genuine steering inequalities (Eqs. 2, 3, 4) for Cρi

GM ≤ 1
2 (i =

1, 2, 3, 4).
Thus to observe genuine steering revelation, there should exist some fixed values of

the parameters of the three initial Sveltlichny bi-local states with Cρi
GM ≤ 1

2 such that
the final state can have Cρ4

GM > 1
2 . Interestingly, we get such states from the families

of the initial states ρ1 (Eq. 8), ρ2 (Eq. 9) and ρ3 (Eq. 10).
For example, let θ1 = 0.1, p1 ≤ 0.509 , p2 ≤ 1

2 , θ3 = 0.1 and p3 ∈ [0, 0.83426].
Then, each of the initial states have Svetlichny bi-local model (moreover one can show
that these models are NS2 local [25–27]) and Cρi

GM ≤ 1
2 . Thus, they do not violate

genuine steering inequalities (Eqs. 2, 3, 4).
Butwhen used in our protocol (Sect. 3), they can generate a stateρ4 (withC

ρ4
GM > 1

2 )
which exhibits genuine steering by violating genuine steering inequalities for p3 ≥
0.33557. This guarantees revelation of genuine steering for p3 ∈ [0.33557, 0.83426].
So initially each of these three states are unable to exhibit genuine steering but after the
sequential measurements are taken into account they can violate that genuine steering
inequality. Now a pertinent question would be whether one can quantify this revelation
of genuine steering as observed in our protocol. We deal with this question in the next
subsection.

3.2 Result: enhancement of the genuine steeringmeasure

In this part, we show that the prescribed protocol indeed enhances ameasure of genuine
steering in the resulting state. The amount of genuine steering for the three initial states
is:

Sgen(ρ1) = max{0, 2 p1 sin 2θ1 − 1},
Sgen(ρ2) = max{0, 2 p2 − 1},
Sgen(ρ3) = max{0, 2 p3 sin 2θ3 − 1} (16)

whereas for the final states the genuine steerable quantity takes the form:

Sgen(ρ4) = max

{
0,

p3 sin 2θ1 sin 2θ3
sin2 θ1 + p3 cos 2θ1 sin2 θ3

− 1

}
(17)

If we take p1 = p3 and θ1 = θ3 then for any values of p1 and θ1 the final state is more
genuinely steerable than the initial ones.
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4 Conclusion

Genuine steering nonlocality, being a weaker notion of genuine nonlocality is consid-
ered to be a resource in various practical tasks. So apart from its theoretical importance,
revelation of such a resource under any protocol that allows only classical commu-
nication and shared randomness is of immense practical importance. Motivated by
that we have attempted to design a SLOCC protocol which demonstrates revelation of
‘hidden’ genuine steering. Our discussion in a restricted sense guarantees the fact that
under suitable measurements by the parties involved in the network, our protocol is
sufficient to show genuine steering even from some quantum stateswhich have bi-local
models. However, under our protocol each of the parties having two particles perform
Bell basis measurements and the remaining parties perform projective measurements.
In brief, this protocol enables one to go beyond the scope of existing witnesses of gen-
uine steering and thus demonstrate genuine steering for a larger class of multipartite
states. In this context, it will be interesting to consider more generalized measurement
settings by the parties which may be yielding better results.
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