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Abstract
Entanglement-assisted quantumerror-correcting codes are a generalization of standard
stabilizer quantum error-correcting codes, which can be possibly constructed from any
classical codes by relaxing the duality condition and utilizing pre-shared entanglement
between the sender and the receiver. In this paper, we construct seven new families
of entanglement-assisted quantum maximum-distance-separable codes from cyclic
codes by exploiting less pre-shared entangled states. Most of these codes are new in
the sense that their parameters are not covered by the codes available in the literature.

Keywords Entanglement-assisted quantum error-correcting codes · Cyclic codes ·
Cyclotomic cosets

Mathematics Subject Classification 94B15 · 94B65

1 Introduction

Quantum error-correcting (QEC) codes were introduced to reduce decoherence during
quantum communications and quantum computations. The stabilizer formalismmakes
QEC codes that can be constructed from classical codeswith certain self-orthogonality
(dual-containing) properties. However, the need for such dual-containing forms an
obstacle in the development of quantum coding theory. In Brun et al. [1,12], a
more general framework named entanglement-assisted stabilizer formalismwas intro-
duced and it increases the communication capacity. The related codes are called
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entanglement-assisted quantum error-correcting (EAQEC) codes which can be possi-
bly constructed from any classical codes by relaxing the duality condition and utilizing
pre-shared entanglement between the sender and the receiver. After that, many schol-
ars have constructed lots of EAQEC codes with good parameters. (see, for example,
[6,10,11,16,17,35,36] and the relevant references therein).

Let q be a prime power. A q-ary EAQEC code, denoted by [[n, k, d; c]]q , encodes
k information qudits into n channel qudits with the help of c pairs of maximally
entangled states and can correct up to � d−1

2 � errors, where d is the minimum distance
of the code. Actually, if c = 0, it is the standard [[n, k, d]]q quantum codes. Moreover,
if c = n − k, it is called a maximal-entanglement EAQEC code.

Similar to quantum Singleton bound, there is also a so-called entanglement-assisted
(EA) quantum Singleton bound for EAQEC codes.

Theorem 1 (EA quantum Singleton bound) [1,7,15] For any [[n, k, d; c]]q EAQEC
code with d � n+2

2 , its parameters satisfy

n + c − k � 2(d − 1),

where 0 � c � n − 1.

An EAQEC code achieving this bound is called an EAQMDS code. If c = 0, it is
the quantum Singleton bound. As we said before, EAQEC codes can be constructed
from classical codes without dual-containing condition, but it is still hard to do so,
since it is not an easy task to determine the number of shared pairs in the construction
of EAQEC codes. Scholars have proposed several methods to solve this problem, and
many EAQEC codes with good parameters have been constructed.

Maximal-entanglement EAQEC codes with small lengths constructed from qua-
ternary zero radical codes were presented in [25]. Qian and Zhang [31] constructed
maximal-entanglement EAQEC codes from arbitrary binary linear codes and proved
that asymptotically good EAQEC codes exist in binary case. Very recently, Liu et
al. [22] generalized [31] to linear codeswith k-Galois product and they also constructed
some EAQEC codes from matrix-product codes in [21]. Recently, a relationship
between the number of maximally shared qudits required to construct an EAQEC
code from a classical code and hull of the classical code was obtained in [8], in which
EAQECcodeswithflexible parameterswere also constructed.Meanwhile, codes based
on linear codes with complementary duals were also used to construct EAQEC codes
in [9] and [32], respectively. In addition, EAQMDS codes were constructed from
Reed–Solomon and generalized Reed–Solomon codes in [18,28,29].

Lu et al. [24] utilized the decomposition of the defining set of codes which was
introduced in [20], to construct EAQEC codes from BCH codes. Recently, Lu et
al. [26] and Chen et al. [2] proposed the concept of decomposition of the defining set
of constacyclic codes, which makes the shared qudits c that can be easily determined,
and they also constructed some new EAQMDS codes. Since then, many EAQMDS
codes have been constructed from constacyclic codes (including cyclic codes and
negacyclic codes). Among the obtained results, the lengths of these EAQMDS codes

divide q2 +1 (see, for example, q2 +1 in [2,27,33,34]; q2+1
2 in [2]; q2+1

5 in [3,13,26];
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q2+1
10 in [13,27], etc.), and q2−1 (see, for example, [2,19,23,26,27,34]). Very recently,

Chen et al. [4] also used negacyclic BCH codes to construct EAQEC codes.
In this paper, through the analysis of the intersection of the defining set D of cyclic

codes and −qD, we obtain several new families of EAQMDS codes of lengths that
divide q2 + 1 with q being an odd prime power as follows:

(1) [[ q2+1
2 ,

q2+1
2 − 2d + 6, d; 4]]q , where q + 2 ≤ d ≤ 2q − 1 is odd.

(2) [[ q2+1
5 ,

q2+1
5 − 2d + 3, d; 1]]q , where q ≡ 3 (mod 10), q > 3, 2 ≤ d ≤ 4q−2

5
is even.

(3) [[ q2+1
5 ,

q2+1
5 −2d+7, d; 5]]q , where q ≡ 3 (mod 10), q > 3, 4q+8

5 ≤ d ≤ 6q+2
5

is even.
(4) [[ q2+1

5 ,
q2+1
5 − 2d + 3, d; 1]]q , where q ≡ 7 (mod 10), 2 ≤ d ≤ 4q+2

5 is even.

(5) [[ q2+1
5 ,

q2+1
5 − 2d + 7, d; 5]]q , where q ≡ 7 (mod 10), 4q+12

5 ≤ d ≤ 6q−2
5 is

even.
(6) [[ q2+1

10 ,
q2+1
10 −2d+6, d; 4]]q ,whereq ≡ 3 (mod 10), q > 3, 2q+9

5 ≤ d ≤ 4q+3
5

is odd.
(7) [[ q2+1

10 ,
q2+1
10 − 2d + 6, d; 4]]q , where q ≡ 7 (mod 10), 2q+11

5 ≤ d ≤ 4q−3
5 is

odd.

The paper is organized as follows. In Sect. 2, some notations and basic results
of cyclic codes and EAQEC codes are presented. In Sect. 3, some new families of
EAQMDS codes with small pre-shared entangled states are constructed from cyclic
codes. The conclusion is given in Sect. 4.

2 Preliminaries

Let q be a prime power and Fq2 be the Galois field with q
2 elements. A q2-ary linear

code C of length n with dimension k, denoted by [n, k]q2 , is a linear subspace of Fn
q2

with dimension k. The number of nonzero components of c ∈ C is said to be the
weight wt(c) of the codeword c. The minimum nonzero weight of all codewords in
C is said to be the minimum distance of C , denoted by d(C ). An [n, k]q2 linear code
with minimum distance d is denoted by [n, k, d]q2 .

Given two vectors x = (x0, x1, . . . , xn−1), and y = (y0, y1, . . . , yn−1) ∈ F
n
q2
, their

Hermitian inner product is defined as

〈x, y〉 := x0y
q
0 + x1y

q
1 + · · · + xn−1y

q
n−1.

The vectors x and y are called orthogonal with respect to the Hermitian inner product
if 〈x, y〉 = 0. For a q2-ary linear code C of length n, the Hermitian dual code of C is
defined as

C⊥H := {x ∈ F
n
q2 : 〈x, y〉 = 0 for all y ∈ C }.

It is clear that C⊥H is a q2-ary linear code with dimension n − dim(C ).
A q2-ary linear code C of length n is called cyclic if it is invariant under the

cyclic shift of Fn
q2
: (c0, c1, . . . , cn−1) → (cn−1, c0, . . . , cn−2). Each codeword c =
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(c0, c1, . . . , cn−1) is customarily identified with its polynomial representation c(x) :=
c0 + c1x + · · · + cn−1xn−1, and the code C is in turn identified with the set of all
polynomial representations of its codewords. Then in the ringR := Fq2 [x]/(xn − 1),
xc(x) corresponds to a cyclic shift of c(x). It is well known that a q2-ary linear code
C of length n is cyclic if and only if C is an ideal of the quotient ring R. Moreover,
R is a principal ideal ring, whose ideals are generated by monic factors of xn −1, i.e.,
C = ( f (x)) and f (x)|(xn − 1).

Suppose that gcd(n, q) = 1. Let i be an integer with 0 ≤ i ≤ n − 1. The q2-
cyclotomic coset of i modulo n is defined by Ci := {iq2l (mod n) : 0 ≤ l ≤ li − 1},
where li is the smallest positive integer such that iq2li ≡ i (mod n). The smallest
number in Ci is called the coset leader of Ci .

Let C be a q2-ary cyclic code of length n with generator polynomial g(x), then
the set D = {0 � i � n − 1 : g(αi ) = 0} is called the defining set of C , where α is
a primitive n-th root of unity in some extension field of Fq2 . Obviously, the defining
set D is a union of some q2-cyclotomic cosets and dim(C ) = n − |D|, where |D|
denotes the cardinality of the set D. The minimum distance of C has the following
well-known bound.

Theorem 2 (BCH bound) [30] Let δ be an integer in the range 2 � δ � n. Assume that
C is a cyclic code of length n with defining set D. If D consists of δ − 1 consecutive
elements, then d(C ) ≥ δ.

As we said before, scholars had proposed several methods to construct EAQMDS
codes. Among these methods, the most frequently used one is to decompose the
defining set of the codes based on [2,26] et al. Similar to this method, we have the
following result.

Theorem 3 Let C be a q2-ary cyclic code of length n with defining set D. Suppose
D = D ∩ (−qD), where −qD = {−qz (mod n) : z ∈ D}. If C has parameters
[n, n − |D|, d]q2 , then there exists an EAQEC code with parameters [[n, n − 2|D| +
|D |, d; |D |]]q .

3 Constructions of entanglement-assisted quantumMDS codes

In this section, we will construct some new EAQMDS codes with lengths that divide
q2 + 1. We first give a useful lemma in the following which will play an important
role in our construction.

Lemma 1 [14] Let n | (q2+1) and s = � n
2 �. If n is odd, then the q2-cyclotomic cosets

modulo n containing integers from 0 to n are: C0 = {0},Ci = {i,−i} = {i, n − i},
where 1 � i � s. If n is even, then the q2-cyclotomic cosets modulo n containing
integers from 0 to n are: C0 = {0},Cs = {s} and Ci = {i,−i} = {i, n − i}, where
1 � i � s − 1.
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3.1 Entanglement-assisted quantumMDS codes of length q2+1
2

Throughout this subsection, let q be an odd prime power, n = q2+1
2 and s = n−1

2 .
From Lemma 1, the q2-cyclotomic cosets modulo n are: C0 = {0} and for every i
with 0 ≤ i ≤ s − 1,

Cs−i = {s − i, s + 1 + i}. (1)

For every t with 0 ≤ t ≤ s − 1, let CI ,t be the q2-ary cyclic code of length n with
defining set

DI ,t =
t⋃

i=0

Cs−i . (2)

We have the following basic property for the defining set DI ,t .

Lemma 2 Let DI ,t be defined as above. If q−1
2 ≤ t ≤ q − 2, then |DI ,t ∩ (−qDI ,t )|

= 4.

Proof Clearly, for every q2-cyclotomic coset C , −qC is also a q2-cyclotomic coset
modulo n. Consequently, DI ,t ∩(−qDI ,t ) is either an empty set or a union of some q2-
cyclotomic cosets. Next, by analyzing the q2-cyclotomic coset modulo n represented
by −qCs−i , for 0 ≤ i ≤ t , we will determine DI ,t ∩ (−qDI ,t ). Thereby, the desired
result follows.

For every i with 0 ≤ i ≤ s − 1, from (1), there is a unique ai with 0 ≤ ai ≤ s − 1
such that −qCs−i = Cs−ai . Now, we determine ai for 0 ≤ i ≤ t . Since s = n−1

2 and
q is odd,

− q(s − i) ≡ s + q + 1

2
+ qi (mod n), (3)

for each i in the range 0 ≤ i ≤ s − 1. It follows from (1) and (3) that

ai ≡ q − 1

2
+ qi (mod n), (4)

or

ai ≡ −
(
q + 1

2
+ qi

)
(mod n). (5)

Notice that q+1
2 ≤ q+1

2 +qi ≤ 2n− 3q+1
2 for 0 ≤ i ≤ q−2, so we have the following

four cases.

– Case 1: i ∈ �1 := {i : q+1
2 ≤ q+1

2 + qi ≤ s}. From (4), ai = q−1
2 + qi . Hence,

−qCs−i = Cs− q−1
2 −qi .

From (2), (−qCs−i ) ∩ DI ,t = ∅ if and only if 0 ≤ q−1
2 + qi ≤ t ≤ q − 2. Since

i is an integer, there is only an i = 0 such that (−qCs−i ) ∩ DI ,t = ∅ for i ∈ �1.
Hence,

(∪i∈�1(−qCs−i )) ∩ DI ,t = Cs− q−1
2

.
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– Case 2: i ∈ �2 := {i : s + 1 ≤ q+1
2 + qi ≤ n}. We claim q+1

2 + qi = s + 1.
Otherwise,

n − q

2
= s + 1 − q + 1

2
≡ 0 (mod q).

It implies that n ≡ 0 (mod q) since q is odd, which contradicts to the fact that
gcd(n, q) = 1. It follows from (5) that

ai = n − q + 1

2
− qi = q

(
q − 1

2
− i

)
.

From (2), (−qCs−i ) ∩ DI ,t = ∅ if and only if 0 ≤ ai ≤ t ≤ q − 2. Since i is an
integer, there is only an i = q−1

2 such that (−qCs−i ) ∩ DI ,t = ∅ for i ∈ �2. In
this case, ai = 0. Therefore,

(∪i∈�2(−qCs−i )) ∩ DI ,t = Cs .

– Case 3: i ∈ �3 := {i : n + 1 ≤ q+1
2 + qi ≤ n + s}. It follows from (4) that

ai = q + 1

2
+ qi − n − 1 = q

(
i − q − 1

2

)
− 1.

From (2), (−qCs−i ) ∩ DI ,t = ∅ if and only if 0 ≤ ai ≤ t ≤ q − 2. Since
i is an integer, there is no i ∈ �3 such that 0 ≤ ai ≤ q − 2. That is to say,
∪i∈�3(−qCs−i ) ∩ DI ,t = ∅.

– Case 4: i ∈ �4 := {i : n + s + 1 ≤ q+1
2 + qi ≤ 2n − 3q+1

2 }. Clearly, if �4 = ∅,
we have q > 3. Now, assume that q > 3. We claim q+1

2 + qi = n + s + 1 for
i ∈ �4. Otherwise,

q2 + 3

4
= n + 1

2
= s + 1 = qi + q + 1

2
− n = q(i − q − 1

2
),

which implies that 3 ≡ 0 (mod q) since q is odd. This contradicts to the fact that
q > 3. It follows from (5) that

3q + 1

2
≤ ai = 2n − q + 1

2
− qi = q(q − i) − q − 1

2
.

From (2), (−qCs−i ) ∩ DI ,t = ∅ if and only if 3q+1
2 ≤ ai ≤ t ≤ q − 2. Since i is

an integer, there is no i ∈ �4 such that
3q+1
2 ≤ ai ≤ q − 2. Then,

(∪i∈�4(−qCs−i )) ∩ DI ,t = ∅.

In conclusion, we have DI ,t ∩ (−qDI ,t ) = Cs ∪ Cs− q−1
2
. The result follows ��

Theorem 4 Let q be an odd prime power. For each odd integer d with q + 2 ≤ d ≤
2q−1, there exists an EAQMDS code with parameters [[ q2+1

2 ,
q2+1
2 −2d+6, d; 4]]q .
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Table 1 New entanglement-
assisted quantum MDS codes of

length q2+1
2

q Parameters [[n, k, d; c]]q d

7 [[25, 31 − 2d, d; 4]]7 9 � d � 13 is odd

9 [[41, 27 − 2d, d; 4]]9 11 � d � 17 is odd

11 [[61, 67 − 2d, d; 4]]11 13 � d � 21 is odd

13 [[85, 91 − 2d, d; 4]]13 15 � d � 25 is odd

17 [[145, 151 − 2d, d; 4]]17 19 � d � 33 is odd

19 [[181, 187 − 2d, d; 4]]19 21 � d � 37 is odd

23 [[265, 271 − 2d, d; 4]]23 25 � d � 45 is odd

25 [[313, 319 − 2d, d; 4]]25 27 � d � 49 is odd

Table 2 Entanglement-assisted quantum MDS codes of length q2+1
2

q Parameters [[n, k, d; c]]q d References

Odd [[ q2+1
2 ,

q2+1
2 − 2d + 3, d; 1]]q 2 � d � q + 1 is even [5]

Odd [[ q2+1
2 ,

q2+1
2 − 2d + 7, d; 5]]q q + 5 � d � 2q is even [2]

Odd [[ q2+1
2 ,

q2+1
2 − 2d + 6, d; 4]]q q + 2 � d � 2q − 1 is odd New

Proof For each odd integer d with q + 2 ≤ d ≤ 2q − 1, let t = d−3
2 , then q−1

2 ≤
t ≤ q − 2. Consider the q2-ary cyclic code CI ,t of length n = q2+1

2 with defining set
DI ,t . It follows from (1) and (2) that |DI ,t | = 2t + 2 = d − 1. Hence, dim(CI ,t ) =
n − |DI ,t | = n − d + 1. By the definition of DI ,t (see (2)), the defining set DI ,t

consists of d − 1 consecutive integers

{
s − d − 3

2
, s − d − 5

2
, · · · , s − 1, s, s + 1, · · · , s + d − 3

2
, s + d − 1

2

}
.

Then by Theorem 2, the minimum distance of CI ,t is at least d. Thus, CI ,t is a cyclic
code with parameters [n, n − d + 1,� d]q2 . From Lemma 2, |DI ,t ∩ (−qDI ,t )| = 4.
Combining Theorem 3 with EA quantum Singleton bound, there is an EAQMDS code
with parameters

[[n, n − 2d + 6, d; 4]]q .
The result follows. ��

Example 1 We list some new EAQMDS codes of length q2+1
2 obtained from Theorem

4 in Table 1.

Remark 1 EAQMDS codes of length q2+1
2 with c = 1 and c = 5 had been constructed

in [2] and [5] using cyclic codes and negacyclic codes, respectively. We list them in
Table 2.
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3.2 Entanglement-assisted quantumMDS codes of length q2+1
5

Throughout this subsection, let q be an odd prime power with q ≡ ±3 (mod 10)

and q > 3. Let n = q2+1
5 , then n is even. From Lemma 1, the q2-cyclotomic cosets

modulo n are: C0 = {0}, C n
2

= { n2 }, and for 1 ≤ i ≤ n
2 − 1,

Ci = {i, n − i}. (6)

For each t with 0 ≤ t ≤ n
2 − 1, let CI I ,t be the q2-ary cyclic code of length n with

defining set

DI I ,t =
t⋃

i=0

Ci . (7)

We have the following basic property for the defining set DI I ,t .

Lemma 3 Let DI I ,t be defined as above. If 0 ≤ t ≤ � 3q−4
5 �, then

|DI I ,t ∩ (−qDI I ,t )| =
{
1 if 0 ≤ t ≤ � 2q−4

5 �,
5 if � 2q+1

5 � ≤ t ≤ � 3q−4
5 �.

Proof Let t0 = � 3q−4
5 �. We now prove

DI I ,t0 ∩ (−qDI I ,t0) = C0 ∪ C� q−2
5 � ∪ C� 2q+1

5 �

and−qC� q−2
5 � = C� 2q+1

5 �. Themain idea is to analyze the q2-cyclotomic cosetmodulo

n represented by −qCi for 0 ≤ i ≤ t0. Clearly, −qC0 = C0. For every i in the range
1 ≤ i ≤ t0,

− q(n − i) ≡ qi (mod n). (8)

Let ai be an integer with 1 ≤ ai ≤ n
2 such that −qCi = Cai . From (6) and (8), we

have
ai ≡ qi (mod n), (9)

or
ai ≡ −qi (mod n). (10)

Notice that 0 < qi ≤ qt0 < 3n for 1 ≤ i ≤ t0, we now analyze ai in the following
six cases.

– Case 1: i ∈ �1 := {i : 1 ≤ qi ≤ n
2 }. From (9), ai = qi , i.e., −qCi = Cqi . From

(7), (−qCi ) ∩ DI I ,t0 = ∅ if and only if 1 ≤ qi ≤ t0. Since i is an integer and
t0 < q, then

(∪i∈�1(−qCi )) ∩ DI I ,t0 = ∅.

– Case 2: i ∈ �2 := {i : n
2 + 1 ≤ qi ≤ n}. Since gcd(n, q) = 1, qi = n. It follows

from (10) that ai = n − qi , i.e., −qCi = Cn−qi . From (7), (−qCi ) ∩ DI I ,t0 = ∅
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if and only if 1 ≤ n − qi ≤ t0. Since i is an integer, 1 ≤ n − qi ≤ t0 is equivalent
to ⌈

q − 2

5

⌉
=

⌈
n − t0
q

⌉
≤ i ≤

⌊
n − 1

q

⌋
=

⌊
q − 2

5

⌋
.

Hence, if q ≡ −3 (mod 10), there is only an i = q−2
5 such that (−qCi )∩DI I ,t0 =

∅ for i ∈ �2. In this case, ai = n − qi = 2q+1
5 , and

(∪i∈�2(−qCi )) ∩ DI I ,t0 = C 2q+1
5

.

If q ≡ 3 (mod 10), (∪i∈�2(−qCi )) ∩ DI I ,t0 = ∅.
– Case 3: i ∈ �3 := {i : n + 1 ≤ qi ≤ 3n

2 }. From (9), ai = qi − n, i.e.,
−qCi = Cqi−n . It follows from (7) that (−qCi ) ∩ DI I ,t0 = ∅ if and only if
1 ≤ qi − n ≤ t0. Note that i is an integer, 1 ≤ qi − n ≤ t0 is equivalent to

⌈
q + 2

5

⌉
=

⌈
n + 1

q

⌉
≤ i ≤

⌊
n + t0
q

⌋
=

⌊
q + 2

5

⌋
.

Hence, if q ≡ 3 (mod 10), there is only an i = q+2
5 such that (−qCi )∩DI I ,t0 = ∅

for i ∈ �3. In this case, ai = qi − n = 2q−1
5 , and

(∪i∈�3(−qCi )) ∩ DI I ,t0 = C 2q−1
5

.

If q ≡ −3 (mod 10), we have (∪i∈�3(−qCi )) ∩ DI I ,t0 = ∅.
– Case 4: i ∈ �4 := {i : 3n

2 + 1 ≤ qi ≤ 2n}. Since q is an odd prime power and
gcd(n, q) = 1, one can get qi = 2n. Hence, 1 ≤ 2n − qi ≤ n

2 − 1. From (10),
ai = 2n − qi , i.e., −qCi = C2n−qi . It follows from (7) that (−qCi ) ∩ DI I ,t0 = ∅
if and only if 1 ≤ 2n−qi ≤ t0. Since i is an integer, 1 ≤ 2n−qi ≤ t0 is equivalent
to ⌈

2q − 1

5

⌉
=

⌈
2n − t0

q

⌉
≤ i ≤

⌊
2n − 1

q

⌋
=

⌊
2q − 1

5

⌋
.

Hence, if q ≡ 3 (mod 10), there is only an i = 2q−1
5 such that (−qCi )∩DI I ,t0 =

∅, for i ∈ �4. In this case, ai = 2n − qi = q+2
5 , and

(∪i∈�4(−qCi )) ∩ DI I ,t0 = Cq+2
5

.

If q ≡ −3 (mod 10), we have (∪i∈�4(−qCi )) ∩ DI I ,t0 = ∅.
– Case 5: i ∈ �5 := {i : 2n+1 ≤ qi ≤ 5n

2 }. Similar to Case 4, one can get qi = 5n
2 .

It implies that 1 ≤ qi−2n ≤ n
2 −1. From (9), ai = qi−2n, i.e.,−qCi = Cqi−2n .

From (7), (−qCi ) ∩ DI I ,t0 = ∅ if and only if 1 ≤ qi − 2n ≤ t0. Since i is an
integer, 1 ≤ qi − 2n ≤ t0 is equivalent to

⌈
2q + 1

5

⌉
=

⌈
2n + 1

q

⌉
≤ i ≤

⌊
2n + t0

q

⌋
=

⌊
2q + 1

5

⌋
.
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Therefore, if q ≡ −3 (mod 10), there is only an i = 2q+1
5 such that (−qCi ) ∩

DI I ,t0 = ∅, for i ∈ �5. In this case, ai = qi − 2n = q−2
5 , and

(∪i∈�5(−qCi )) ∩ DI I ,t0 = Cq−2
5

.

If q ≡ 3 (mod 10), we have (∪i∈�5(−qCi )) ∩ DI I ,t0 = ∅.
– Case 6: i ∈ �6 := {i : 5n

2 + 1 ≤ qi ≤ qt0}. Obviously, 1 < 3n − qt0 ≤
3n − qi ≤ n

2 − 1. From (10), ai = 3n − qi , i.e., −qCi = C3n−qi . From (7),
(−qCi )∩ DI I ,t0 = ∅ if and only if 3n−qt0 ≤ 3n−qi ≤ t0. Since i is an integer,
3n − qt0 ≤ 3n − qi ≤ t0 is equivalent to

⌈
3q − 1

5

⌉
=

⌈
3n − t0

q

⌉
≤ i ≤ t0 =

⌊
3q − 4

5

⌋

Therefore, (∪i∈�6(−qCi )) ∩ DI I ,t0 = ∅.
In conclusion, we have DI I ,t0 ∩ (−qDI I ,t0) = C0 ∪ C� q−2

5 � ∪ C� 2q+1
5 �. The result

follows. ��
Theorem 5 Let q be an odd prime power with q ≡ ±3 (mod 10) and q > 3. For each
even integer d with 2 ≤ d ≤ 2� 2q+1

5 �, there exists an EAQMDS code with parameters

[[
q2 + 1

5
,
q2 + 1

5
− 2d + 3, d; 1

]]

q
.

For each even integer d with 2� 2q+6
5 � ≤ d ≤ 2� 3q+1

5 �, there exists an EAQMDS code
with parameters [[

q2 + 1

5
,
q2 + 1

5
− 2d + 7, d; 5

]]

q
.

Proof For each even integer d with 2 ≤ d ≤ 2� 3q+1
5 �, let t = d−2

2 , then 0 ≤ t ≤
� 3q−4

5 �.Nowconsider theq2-ary cyclic codeCI I ,t of lengthn = q2+1
5 with defining set

DI I ,t . From (7), |DI ,t | = 2t+1 = d−1.Hence, dim(CI I ,t ) = n−|DI I ,t | = n−d+1.
According to the definition of DI I ,t , it consists of d − 1 consecutive integers

{
−d − 2

2
, · · · ,−1, 0, 1, · · · ,

d − 2

2

}
.

Then by Theorem 2, d(CI I ,t ) � d. Therefore, CI I ,t is a cyclic code with parameters
[n, n − d + 1,� d]q2 . From Lemma 3,

|DI I ,t ∩ (−qDI I ,t )| =
{
1 if 0 ≤ t ≤ � 2q−4

5 �,
5 if � 2q+1

5 � ≤ t ≤ � 3q−4
5 �.
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Table 3 New entanglement-
assisted quantum MDS codes of

length q2+1
5

q Parameters [[n, k, d; c]]q d

13 [[34, 37 − 2d, d; 1]]13 2 � d � 10 is even

[[34, 41 − 2d, d; 5]]13 12 � d � 16 is even

17 [[58, 61 − 2d, d; 1]]17 2 � d � 14 is even

[[58, 65 − 2d, d; 5]]17 16 � d � 20 is even

37 [[274, 277 − 2d, d; 1]]37 2 � d � 30 is even

[[274, 281 − 2d, d; 5]]37 32 � d � 44 is even

53 [[562, 565 − 2d, d; 1]]53 2 � d � 42 is even

[[562, 569 − 2d, d; 5]]53 44 � d � 64 is even

57 [[650, 653 − 2d, d; 1]]57 2 � d � 46 is even

[[650, 657 − 2d, d; 5]]57 48 � d � 68 is even

Combining Theorem 3 with the EA quantum Singleton bound, there is an EAQMDS
code with parameters

[[
q2 + 1

5
,
q2 + 1

5
− 2d + 3, d; 1

]]

q
,

for even d with 2 ≤ d ≤ 2� 2q+1
5 �; and

[[
q2 + 1

5
,
q2 + 1

5
− 2d + 7, d; 5

]]

q
,

for even d with 2� 2q+6
5 � ≤ d ≤ 2� 3q+1

5 �. The result follows. ��
Example 2 We list somenewEAQMDScodes of length q2+1

5 obtained fromTheorem5
in Table 3.

Remark 2 EAQMDS codes of length q2+1
5 with c = 1 and c = 5 had been constructed

in [26] from negacyclic codes, where q = 10m + 3, q = 10m + 7 and m is an even

integer. However, in this paper, we construct EAQMDS codes of length q2+1
5 with

c = 1 and c = 5 under the case q = 10m + 3, q = 10m + 7 and m is any positive
integer. Hence, our results are more general. It is easy to see that our results coincide
with theirs under the casem is even. But whenm is odd, our results are new. EAQMDS
codes of such length with other cases also had been studied (see Table 4).

3.3 Entanglement-assisted quantumMDS codes of length q2+1
10

Throughout this subsection, let q be an odd prime power with q ≡ ±3 (mod 10) and

q > 3. Let n = q2+1
10 and s = n−1

2 . From Lemma 1, the q2-cyclotomic cosets modulo
n are: C0 = {0},

Cs−i = {s − i, s + 1 + i}, (11)

123



65 Page 12 of 18 L. Wang et al.

Table 4 Entanglement-assisted quantum MDS codes of length q2+1
5

q Parameters [[n, k, d; c]]q d References

10m + 2 [[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]]q 3q+9

5 � d � q + 1 is odd [3,13]

10m + 8 [[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]]q 3q+11

5 � d � q + 1 is odd [3,13]

20m + 3 [[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]]q 12m + 4 � d � 20m + 4 is even [3]

20m + 7 [[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]]q 12m + 6 � d � 20m + 8 is even [3]

10m + 3 [[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]]q 4m + 3 � d � 6m + 1 is odd [26]

m odd 6m + 4 � d � 10m + 4 is even

m even [[ q2+1
5 ,

q2+1
5 − 2d + 3, d; 1]]q 2 � d � 8m + 2 is even

[[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]]q 4m + 3 � d � 6m + 1 is odd

[[ q2+1
5 ,

q2+1
5 − 2d + 7, d; 5]]q 8m + 4 � d � 12m + 4 is even

10m + 7 [[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]]q 8m + 7 � d � 14m + 11 is odd [26]

m odd 6m + 6 � d � 10m + 8 is even

m even [[ q2+1
5 ,

q2+1
5 − 2d + 3, d; 1]]q 2 � d � 8m + 6 is even

[[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]]q 8m + 7 � d � 14m + 11 is odd

[[ q2+1
5 ,

q2+1
5 − 2d + 7, d; 5]]q 8m + 8 � d � 12m + 8 is even

10m + 3 [[ q2+1
5 ,

q2+1
5 − 2d + 3, d; 1]]q 2 � d � 8m + 2 is even New

m odd [[ q2+1
5 ,

q2+1
5 − 2d + 7, d; 5]]q 8m + 4 � d � 12m + 4 is even

10m + 7 [[ q2+1
5 ,

q2+1
5 − 2d + 3, d; 1]]q 2 � d � 8m + 6 is even New

m odd [[ q2+1
5 ,

q2+1
5 − 2d + 7, d; 5]]q 8m + 8 � d � 12m + 8 is even

for 1 ≤ i ≤ s − 1. For every t with 0 ≤ t ≤ s − 1, let CI I I ,t be the q2-ary cyclic code
of length n with defining set

DI I I ,t =
t⋃

i=0

Cs−i . (12)

We have the following basic property for the defining set DI I I ,t .

Lemma 4 Let DI I I ,t be defined as above. If � q−3
5 � ≤ t ≤ � 2q−6

5 �, then

|DI I I ,t ∩ (−qDI I I ,t )| = 4.

Proof Let t0 = � 2q−6
5 �. It is clear that we only have to prove that

DI I I ,t0 ∩ (−qDI I I ,t0) = Cs−� q−3
10 � ∪ Cs−� q−3

5 �.

The main idea is similar to Lemma 3, that is, to analyze the q2-cyclotomic coset
modulo n represented by −qCs−i for 0 ≤ i ≤ t0. From (11), there is a unique integer
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ai with 0 ≤ ai ≤ s − 1 such that −qCs−i = Cs−ai . For every i with 0 ≤ i ≤ t0, it is
easy to check that

− q(s − i) ≡ s + q + 1

2
+ qi (mod n). (13)

From (11), we have

ai ≡ q − 1

2
+ qi (mod n), (14)

or

ai ≡ −(
q + 1

2
+ qi) (mod n). (15)

Note that q+1
2 ≤ q+1

2 + qi ≤ q+1
2 + qt0 < 4n, for 0 ≤ i ≤ t0. We now analyze

DI I I ,t0 ∩ (−qDI I I ,t0) in the following eight cases.

– Case 1: i ∈ �1 := {i : q+1
2 ≤ q+1

2 + qi ≤ s}. From (14), ai = q−1
2 + qi , i.e.,

−qCs−i = Cs− q−1
2 −qi . From (12), (−qCs−i ) ∩ DI I I ,t0 = ∅ if and only if 0 ≤

q−1
2 +qi ≤ t0. Since i is an integer and 0 < t0 <

q−1
2 , we have (∪i∈�1(−qCs−i ))∩

DI I I ,t0 = ∅.
– Case 2: i ∈ �2 := {i : s + 1 ≤ q+1

2 + qi ≤ n}. Similar to Case 2 in the proof

of Lemma 2, q+1
2 + qi = s + 1. From (15), ai = n − q+1

2 − qi . Thereby, from
(12), (−qCs−i ) ∩ DI I I ,t0 = ∅ if and only if 0 ≤ ai ≤ t0. Since i is an integer,
0 ≤ ai ≤ t0 is equivalent to

⌈
q − 7

10

⌉
=

⌈
2n − q − 1 − 2t0

2q

⌉
≤ i ≤

⌊
q2 − 5q − 4

10q

⌋
=

⌊
q − 7

10

⌋
.

Therefore, if q ≡ −3 (mod 10), there is only an i = q−7
10 such that 0 ≤ ai ≤ t0

for i ∈ �2. In this case, ai = n − q+1
2 − qi = q−2

5 . Hence,

(∪i∈�2(−qCs−i )) ∩ DI I I ,t0 = Cs− q−2
5

.

If q ≡ 3 (mod 10), there is no i ∈ �2 such that 0 ≤ ai ≤ t0. Hence,

∪i∈�2(−qCs−i ) ∩ DI I I ,t0 = ∅.

– Case 3: i ∈ �3 := {i : n+1 ≤ q+1
2 +qi ≤ n+ s}. From (14), ai = q−1

2 +qi −n.
It follows from (12) that (−qCs−i )∩ DI I I ,t0 = ∅ if and only if 0 ≤ ai ≤ t0. Since
i is an integer, 0 ≤ ai ≤ t0 is equivalent to

⌈
q − 3

10

⌉
=

⌈
2n − q + 1

2q

⌉
≤ i ≤

⌊
2n − q + 1 + 2t0

2q

⌋
=

⌊
q − 3

10

⌋
.

Hence, ifq ≡ 3 (mod 10), there is only an i = q−3
10 such that (−qCs−i )∩DI I I ,t0 =

∅ for i ∈ �3. Therefore,

(∪i∈�3(−qCs−i )) ∩ DI I I ,t0 = Cs− q−3
5

.
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If q ≡ −3 (mod 10), ∪i∈�3(−qCs−i ) ∩ DI I I ,t0 = ∅.
– Case 4: i ∈ �4 := {i : n + s + 1 ≤ q+1

2 + qi ≤ 2n}. Similar to Case 4 in

the proof of Lemma 2, we have q+1
2 + qi = n + s + 1. It follows from (15) that

ai = 2n− q+1
2 −qi . From (12), (−qCs−i )∩DI I I ,t0 = ∅ if and only if 0 ≤ ai ≤ t0.

Since i is an integer, 0 ≤ ai ≤ t0 is equivalent to � q−3
5 � ≤ i ≤ � q−3

5 �. Hence, if
q ≡ 3 (mod 10), there is only an i = q−3

5 such that (−qCs−i ) ∩ DI I I ,t0 = ∅ for
i ∈ �4, i.e.,

(∪i∈�4(−qCs−i )) ∩ DI I I ,t0 = Cs− q−3
10

.

Otherwise, if q ≡ −3 (mod 10), we have ∪i∈�4(−qCs−i ) ∩ DI I I ,t0 = ∅.
– Case 5: i ∈ �5 := {i : 2n+1 ≤ q+1

2 +qi ≤ 2n+s}. From (14),ai = q−1
2 +qi−2n.

From (12), (−qCs−i )∩DI I I ,t0 = ∅ if and only if 0 ≤ ai ≤ t0. Since i is an integer,
0 ≤ ai ≤ t0 is equivalent to � q−2

5 � ≤ i ≤ � q−2
5 �. Hence, if q ≡ −3 (mod 10),

there is only an i = q−2
5 such that (−qCs−i ) ∩ DI I I ,t0 = ∅ for i ∈ �5. Thereby,

(∪i∈�5(−qCs−i )) ∩ DI I I ,t0 = Cs− q−7
10

.

Otherwise, if q ≡ 3 (mod 10), we have ∪i∈�5(−qCs−i ) ∩ DI I I ,t0 = ∅.
– Case 6: i ∈ �6 := {i : 2n + s + 1 ≤ q+1

2 + qi ≤ 3n}. We claim q+1
2 + qi =

2n + s + 1. Otherwise, q + 1 + 2qi = 5n + 1. It implies that 5n ≡ 0 (mod q),
which contradicts to the fact that gcd(5n, q) = 1. From (15), ai = 3n− q+1

2 −qi .
It follows from (12) that (−qCs−i )∩ DI I I ,t0 = ∅ if and only if 0 ≤ ai ≤ t0. Since
i is an integer, 0 ≤ ai ≤ t0 is equivalent to � 3q−1

10 � ≤ i ≤ � 3q−9
10 �. Therefore,

(∪i∈�6(−qCs−i )) ∩ DI I I ,t0 = ∅.

– Case 7: i ∈ �7 := {i : 3n+1 ≤ q+1
2 +qi ≤ 3n+s}. From (14),ai = q−1

2 +qi−3n.
It follows from (12) that (−qCs−i )∩ DI I I ,t0 = ∅ if and only if 0 ≤ ai ≤ t0. Since
i is an integer, 0 ≤ ai ≤ t0 is equivalent to � 3q−1

10 � ≤ i ≤ � 3q−9
10 �. Hence,

(∪i∈�7(−qCs−i )) ∩ DI I I ,t = ∅.

– Case 8: i ∈ �8 := {i : 3n + s + 1 ≤ q+1
2 + qi ≤ q+1

2 + qt0}. We claim
q+1
2 + qi = 3n + s + 1. Otherwise, q + 1 + 2qi = 7n + 1. It implies that

7n ≡ 0 (mod q). Note that gcd(n, q) = 1, we have q = 7. However, if q = 7,
we have �8 = ∅. It follows from (15) that ai = 4n − q+1

2 − qi . From (12),

(−qCs−i )∩ DI I I ,t0 = ∅ if and only if 0 ≤ ai ≤ t0, that is, � 2q−4
5 � ≤ i ≤ � 2q−4

5 �.
Notice that i ≤ � 2q−6

5 �, we have (∪i∈�8(−qCs−i )) ∩ DI I I ,t0 = ∅.
According to all the cases above, we have DI I I ,t0 ∩ (−qDI I I ,t0) = Cs−� q−3

10 � ∪
Cs−� q−3

5 �. The result follows. ��
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Table 5 New entanglement-
assisted quantum MDS codes

of length q2+1
10

q Parameters [[n, k, d; c]]q d

13 [[17, 23 − 2d, d; 4]]13 7 � d � 11 is odd

17 [[29, 35 − 2d, d; 4]]17 9 � d � 13 is odd

23 [[53, 59 − 2d, d; 4]]23 11 � d � 19 is odd

27 [[73, 79 − 2d, d; 4]]27 13 � d � 21 is odd

37 [[137, 143 − 2d, d; 4]]37 17 � d � 29 is odd

43 [[185, 191 − 2d, d; 4]]43 19 � d � 35 is odd

47 [[221, 227 − 2d, d; 4]]47 21 � d � 37 is odd

Theorem 6 Let q be an odd prime power with q ≡ ±3 (mod 10) and q > 3. For each
odd integer d with 2� q+2

5 � + 1 ≤ d ≤ 2� 2q−1
5 � + 1, there is an EAQMDS code with

parameters [[
q2 + 1

10
,
q2 + 1

10
− 2d + 6, d; 4

]]

q
.

Proof For each odd integer d with 2� q+2
5 � + 1 ≤ d ≤ 2� 2q−1

5 � + 1, let t = d−3
2 ,

then � q−3
5 � ≤ t ≤ � 2q−6

5 �. Consider the q2-ary cyclic code CI I I ,t of length n =
q2+1
10 with defining set DI I I ,t . From (12), |DI I I ,t | = 2(t + 1) = d − 1. Hence,

dim(CI I I ,t ) = n − |DI I I ,t | = n − d + 1. Clearly, the defining set DI I I ,t consists
of d − 1 consecutive integers {s − d−3

2 , · · · , s − 1, s, s + 1, · · · , s + d−1
2 }. Then

by Theorem 2, d(CI I I ,t ) � d. Therefore, CI I I ,t is a cyclic code with parameters
[n, n − d + 1,� d]q2 . From Lemma 4, c = |DI I I ,t ∩ (−qDI I I ,t )| = 4. Combining
Theorem 3 with the EA quantum Singleton bound, CI I I ,t is an EAQMDS code with
parameters [[

q2 + 1

10
,
q2 + 1

10
− 2d + 6, d; 4

]]

q
.

The result follows. ��
Example 3 We list somenewEAQMDScodes of length q2+1

10 obtained fromTheorem6
in Table 5.

Remark 3 EAQMDS codes of length q2+1
10 with c = 1 had been constructed in [2]

from negacyclic codes. EAQMDS codes of the same length with c = 5 and c = 9 had
been constructed in [13] utilizing constacyclic codes with order q + 1. We list all the

known results of EAQMDS codes of length q2+1
10 in Table 6.

4 Conclusion

In this paper, EAQMDS codes of three different lengths, i.e., q2+1
2 , q2+1

5 , q
2+1
10 , have

been constructed by exploiting less pre-sharedmaximally entangled states. Comparing
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Table 6 Entanglement-assisted quantum MDS codes of length q2+1
10

q Parameters [[n, k, d; c]]q d References

10m + 3 [[ q2+1
10 ,

q2+1
10 − 2d + 3, d; 1]]q 2 � d � q+7

5 is even [5]

10m + 7 [[ q2+1
10 ,

q2+1
10 − 2d + 3, d; 1]]q 2 � d � q+3

5 is even [5]

10m + 3 [[ q2+1
10 ,

q2+1
10 − 2d + 3, d; 1]]q 2 � d � 6m + 2 is even [27]

10m + 7 [[ q2+1
10 ,

q2+1
10 − 2d + 3, d; 1]]q 2 � d � 6m + 4 is even [27]

10m + 3 [[ q2+1
10 ,

q2+1
10 − 2d + 7, d; 5]]q 3q+11

5 � d � 4q−2
5 is even [13]

10m + 7 [[ q2+1
10 ,

q2+1
10 − 2d + 7, d; 5]]q 3q+9

5 � d � 4q+2
5 is even [13]

10m + 3 [[ q2+1
10 ,

q2+1
10 − 2d + 11, d; 9]]q 4q+8

5 � d � q − 1 is even [13]

10m + 7 [[ q2+1
10 ,

q2+1
10 − 2d + 11, d; 9]]q 4q+22

5 � d � q + 3 is even [13]

10m + 3 [[ q2+1
10 ,

q2+1
10 − 2d + 6, d; 4]]q 2q+9

5 � d � 4q+3
5 is odd New

10m + 7 [[ q2+1
10 ,

q2+1
10 − 2d + 6, d; 4]]q 2q+11

5 � d � 4q−3
5 is odd New

the parameters of the obtained EAQMDS codes with all known EAQMDS codes of
such lengths, one can find that these EAQMDS codes are new in the sense that their
parameters are not covered by the codes available in the literature, except the length
q2+1
5 , where q = 10m + 3 and q = 10m + 7 with m even, which is the same as the

results in [27].
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