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Abstract
Monogamy relations place restrictions on the shareability of quantum correlations in
multipartite states. Being an intrinsic quantum feature, monogamy property throws
light on residual entanglement, an entanglement which is not accounted for by the
pairwise entanglement in the state. Expressed in terms of suitable pairwise entangle-
ment measures such as concurrence, the monogamy inequality leads to the evaluation
of tangle, a measure of residual entanglement. In this work, we explore monogamy
relations in pure symmetric multiqubit states constituted by two distinct spinors, the
so-called Dicke-class of states. Pure symmetric N -qubit states constituted by permu-
tation of two orthogonal qubits form the well-known Dicke states. Those N -qubit
pure symmetric states constructed by permutations of two non-orthogonal qubits are a
one-parameter class of generalized Dicke states. With the help of Majorana geometric
representation and angular momentum algebra, we analyze the bounds on monogamy
inequality, expressed in terms of squared concurrence/squared negativity of partial
transpose. We show that the states with equal distribution of the two spinors are more
monogamous and hence possess larger residual entanglement when compared to other
inequivalent classes with different degeneracy configurations.
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1 Introduction

Quantum entanglement is an important resource for several quantum information
processing tasks which are impossible in information processing using classically
correlated states. One among the distinct properties of quantum entanglement that
separates it from classical correlations is its restricted shareability. While classical
correlations are infinitely shareable, there is a limitation on the manner in which
quantum entanglement is distributed among its subsystems. For instance, in a tripar-
tite system, entanglement of one party with another limits its entanglement with the
third party. This unique feature of quantum entanglement is termed ‘monogamy of
entanglement [1] and has evoked a lot of interest [1–53] in the quantum information
community. The importance of multipartite quantum states exhibiting monogamous
nature is due to their applicability in quantum communication tasks such as secure
quantum key distribution [4,24] and reliable quantum teleportation [53].

Quantifying ‘tripartite entanglement’ or the so-called residual entanglement,
which is not accounted for by the pairwise entanglement in the state, is another impor-
tant issue which can be addressed using monogamous nature of composite quantum
states. The restricted shareability in a multiqubit state is captured in the monogamy
inequality

DA1:A2A3···AN ≥ (DA1A2 + DA1A3 + DA1A4 + · · · + DA1AN

)
. (1)

Here DAi A j , i �= j = 1, 2, 3 . . . N is a suitable measure of pairwise entanglement,
and DA1:A2A3···AN quantifies entanglement between one party (say A1) and all other
parties A2, A3, . . . AN taken together. Equation (1) indicates that the sum of pairwise
entanglements in a composite state can never exceed the entanglement between one
party and the remaining parties. Quantification of three-party entanglement can be
done through the nonzero quantity

DA1:A2A3...AN − (DA1A2 + DA1A3 + DA1A4 + · · · + DA1AN

)
(2)

called tangle with respect to the chosen measure DAi A j of pairwise entanglement.
Choosing squared concurrence C [54,55] as a measure of pairwise entanglement,

Coffman et al. [1] proposed τc = C2
A:BC −(C2

AB +C2
AC ), the so-called three-tangle or

concurrence tangle as a measure of residual entanglement in three-qubit pure states.
Its generalization to N -qubit pure states has been carried out byOsborne andVerstraete
[2], and the measure of residual entanglement given by

τN = C2
A1:A2A3A4...AN

−
(
C2

A1A2
+ C2

A1A3
+ C2

A1A4
+ · · · + C2

A1AN

)
(3)

is termed the N -concurrence tangle [2].
Monogamy inequality in terms of different measures of entanglement such as

squared negativity of partial transpose [56–58] and square of entanglement of for-
mation [54,55] is proposed in Refs. [9] and [34]. It is shown that [40]W-class of states
have vanishing concurrence tangle [1] but nonzero negativity tangle [9,40]. Choosing
a particular measure of residual entanglement, among the several available choices,
is a non-trivial task. Despite this difficulty, the choice of a single convenient measure
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for an entire class of states serves to quantify the residual entanglement, with respect
to the chosen measure.

Symmetricmultiqubit states form an important class of states due to their theoretical
significance and experimental relevance. There has been a considerable experimental
progress in controlled generation of multiqubit Dicke states in physical systems like
photons, cold atoms and trapped ions [59–63]. Innovative experimental schemes have
also been proposed to produce a large variety of symmetric multiqubit photonic states
[64,65]. Establishing an entirely non-classical feature such as restricted shareability of
quantum entanglement/monogamous nature in symmetric multiqubit states is bound
to have immense impact in quantum information technology in general, and secure
quantum communications in particular.

In this paper, we focus our attention on monogamy property of N -qubit pure sym-
metric states constituted by two distinct qubits. This set of states, i.e., N -qubit pure
symmetric states characterized by only two distinct qubits, is defined as theDicke-class
of states [66,67]. Dicke states, the common eigenstates of collective angular momen-
tum operators Ĵ 2, Ĵz , consist of two orthogonal spinors [66,67]. Pure symmetric states
of N -qubits, constructed by permutations of any two arbitrary non-orthogonal spinors,
form a generalized class of Dicke states. Both Dicke and generalized Dicke states are
represented by two distinct points on the Bloch sphere based onMajorana’s geometric
description [68–73].

The paper is organized as follows: In Sect. 2, we employ Majorana geometric
representation [68–73] to obtain a simplified, one-parameter form of states in the
Dicke-class. Using this simplified form and with the help of well-established angular
momentum techniques,we obtain the structure of two-qubit and single-qubitmarginals
of the Dicke-class of states in Sect. 3. With the help of these reduced density matrices,
we explore monogamous nature of Dicke-class of states in Sect. 4. A summary of
results is given in Sect. 5.

2 Majorana geometric representation of pure symmetric N-qubit
states with two distinct spinors

Ettore Majorana, in his novel 1932 paper [68], proposed that a pure spin j = N
2

quantum state can be represented as a symmetrized combination of N constituent
spinors as follows:

|Ψsym〉 = N
∑

P

P̂ {|ε1, ε2, . . . , εN 〉}, (4)

where

|εl〉 =
(
cos(αl/2) |0〉 + sin(αl/2) |1〉eiβl/2

)
, l = 1, 2, . . . , N (5)

denote arbitrary states of spinors (qubits) |εl〉. In Eq. (4), the symbol P̂ corresponds to
the set of all N ! permutations of the qubits and N corresponds to an overall normal-
ization factor. The name Majorana geometric representation is owing to the fact that
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it leads to an intrinsic picture of the state in terms of N points on the unit sphere. The
spinors |εl〉, l = 1, 2, . . . , N of Eq. (5) correspond geometrically to N points on the
Bloch sphere S2, with the pair of angles (αl , βl) determining the orientation of each
point on the sphere. Pure symmetric N -qubit states consisting of two distinct qubits
(orthogonal as well as non-orthogonal) are given by [69–71],

|DN−k,k〉 = N
∑

P

P̂ {| ε1, ε1, . . . , ε1︸ ︷︷ ︸
N−k

; ε2, ε2, . . . , ε2︸ ︷︷ ︸
k

〉}, k = 1, 2, 3, . . .

[
N

2

]

(6)

It may be noted that in Eq. (6), one of the spinors say |ε1〉 occurs N −k times, whereas
the other spinor |ε2〉 occurs k times in each term of the symmetrized combination
(
[ N
2

] = N
2 when N is even and

[ N
2

] = N−1
2 when N is odd). It has been shown in

Refs. [28,71] that the states |DN−k,k〉 are equivalent, under identical1 local unitary
transformations, to a canonical form, characterized by only one real parameter. More
specifically, pure symmetric multiqubit states |DN−k,k〉 in Eq. (6) can be brought [28]
to the form

|DN−k,k〉 ≡
k∑

r=0

β(k)
r

∣∣∣∣
N

2
,
N

2
− r

〉
,

β(k)
r = N

√
N !(N − r)!

r !
ak−r br

(N − k)!(k − r)! , 0 ≤ a < 1, b =
√
1 − a2.

(7)

Here
∣∣ N
2 , N

2 − r
〉
, r = 0, 1, 2 . . . , N denote the Dicke states, which are common

eigenstates of the collective angular momentum operators Ĵ 2, Ĵz and are the basis
states of the symmetric subspace of collective angular momentum space, with dimen-
sion N + 1. The generalized Dicke states |DN−k,k〉 are characterized by only one
real parameter ‘a,’ and they belong to the one-parameter family, the Dicke-class of
states. The Dicke-class consists of both Dicke states (when a = 0) and generalized
Dicke states (when 0 < a < 1). While the Dicke states having parameter a = 0 are
characterized by two orthogonal spinors |0〉, |1〉, the states |DN−k, k〉 with 0 < a < 1
are characterized by two non-orthogonal spinors |ε1〉, |ε2〉. The parameter ‘a’ can thus
be termed as non-orthogonality parameter.

It is important to notice that in the Dicke-class of states |DN−k, k〉, different values
of k (k = 1, 2, 3, . . .

[ N
2

]
), correspond to SLOCC inequivalent classes [69–71,74]. In

fact, different values of k lead to different degeneracy configurations [69–71] of the two

1 For any symmetric state to be transformed into another symmetric state through local unitary transfor-
mations, the unitary transformations are to be identical in order to retain the symmetry of the state (see Ref.
[71]).
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spinors. For instance, when N = 4, there are two possible degeneracy configurations2

corresponding to k = 3 and k = 2. The states |D2,2〉 belong to the class {D2, 2},
and the states |D3,1〉 belong to {D3, 1}. Both {D2, 2} and {D3, 1} are the only possible
classes when N = 4. In general, for any N , the Dicke-class of states is a collection of
all inequivalent classes {DN , k}, k = 1, 2, 3, . . .

[ N
2

]
. In the next section, we evaluate

the two-qubit and single-qubit marginal density matrices of the state |DN−k,k〉 for
different values of k = 1, 2, 3, . . .

[ N
2

]
. We then proceed to analyze the monogamy

property of the states belonging to different inequivalent classes {DN , k} with respect
to two well-known measures of two-qubit entanglement.

3 Single- and two-qubit reduced density matrices of generalized
Dicke states

The monogamy relation in Eq. (1) requires evaluation of measures of entanglement
between any two qubits and also between a given qubit and all other qubits in the state.
For quantification of pairwise entanglement through any suitable measure of entangle-
ment, one needs to evaluate the two-qubit reduced densitymatrix of themultiqubit state
under consideration. Toward this end, we proceed to evaluate single- and two-qubit
reduced density matrices of pure symmetric states belonging to Dicke-class. For the
pure symmetric multiqubit state |DN−k, k〉, owing to exchange symmetry, all reduced
density matrices are identical. Thus, the two-qubit marginal density matrix ρ

(k)
2 cor-

responding to any random pair of qubits in the N -qubit symmetric state |DN−k, k〉 is
obtained by tracing over the remaining N − 2 qubits in it.

On using the form of the state |DN−k, k〉 given in Eq. (7), we have

ρ
(k)
2 = TrN−2

(|DN−k, k〉〈DN−k, k |
)
, k = 1, 2, 3, . . .

[
N

2

]
;

= TrN−2

⎛

⎝
k∑

r ,r ′=0

β(k)
r β

(k)
r ′

∣
∣∣∣
N

2
,
N

2
− r

〉 〈
N

2
,
N

2
− r ′

∣
∣∣∣

⎞

⎠ . (8)

To facilitate the tracing operation over N − 2 qubits, we partition the state |DN−k, k〉
into N − 2 qubits and two qubits. As a pure symmetric state with N − 2 qubits is
equivalent to an angular momentum state | j1, m1〉 with j1 = N−2

2 and a two-qubit
pure symmetric state is equivalent to the state | j2, m2〉with j2 = 1,we use the addition

2 In |D2,2〉, the spinors |ε1〉, |ε2〉 appear two times in each term of the symmetrized combination shown in
Eq. (6). That is,

|D2,2〉 = N [|ε1ε1ε2ε2〉 + |ε1ε2ε1ε2〉 + |ε1ε2ε2ε1〉 + |ε2ε1ε2ε1〉 + |ε2ε2ε1ε1〉] .

Similarly,

|D3,1〉 = N [|ε1ε1ε1ε2〉 + |ε1ε1ε2ε1〉 + |ε1ε2ε1ε1〉 + |ε2ε1ε1ε1〉] .

Here, spinor |ε1〉 appears three times, whereas |ε2〉 appears only once in each term of the symmetrized
combination.
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of angular momenta relation [75]

| j, m〉 =
j2∑

m2=− j2

C( j1, j2, j;m − m2, m2, m) (| j1,m − m2〉 ⊗ | j2,m2〉) (9)

for the required partition of the N -qubit state |DN−k, k〉. Here C( j1, j2, j;m −
m2, m2,m) are the Clebsch–Gordan coefficients [75] in the addition of angular
momenta, with quantum numbers j1 and j2. With j1 = N

2 − 1, j2 = 1, we obtain

∣
∣∣∣
N

2
,
N

2
− r

〉

=
∑

m2=−1,0,1

[
c(r)
m2

∣∣∣∣
N

2
− 1,

N

2
− r − m2

〉
⊗ |1, m2〉

]
, r = 0, 1, . . . , N ,

(10)

where we have denoted

c(r)
m2

= C

(
N

2
− 1, 1,

N

2
;m − m2, m2,m

)
,

m = −N

2
, −N

2
+ 1, . . . ,

N

2
, m2 = −1, 0, 1, r = 0, 1, . . . , N .

(11)

We thus obtain [see Eqs. (8) and (10)]

ρ
(k)
2 = TrN−2

⎧
⎨

⎩

k∑

r ,r ′=0

β(k)
r β

(k)
r ′

∑

m2,m′
2

[
c(r)
m2

c(r ′)
m′
2

∣∣∣∣
N

2
− 1,

N

2
− r − m2

〉 〈
N

2
− 1,

N

2
− r ′ − m′

2

∣∣∣∣

⊗|1,m2〉〈1,m′
2|
]
⎫
⎬

⎭
.

More explicitly, tracing over N − 2 qubits leads us to

ρ
(k)
2 =

⎧
⎨

⎩

k∑

r ,r ′=0

β(k)
r β

(k)
r ′

∑

m2,m′
2

c(r)
m2

c(r ′)
m′
2

[〈
N

2
− 1,

N

2
− r − m2

∣∣
∣∣
N

2
− 1,

N

2
− r ′ − m′

2

〉]
|1,m2〉〈1,m′

2|
⎫
⎬

⎭

=
⎧
⎨

⎩

k∑

r ,r ′=0

∑

m2,m′
2

β(k)
r β

(k)
r ′ c(r)

m2
c(r ′)
m′
2

(N/2)−1∑

m1=(−N/2)+1

〈
N

2
− 1,m1

∣∣
∣∣
N

2
− 1,

N

2
− r ′ − m′

2

〉

×
〈
N

2
− 1,

N

2
− r − m2

∣∣∣
∣
N

2
− 1,m1

〉
|1,m2〉〈1,m′

2|
⎫
⎬

⎭
. (12)
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In the second line of Eq. (12), we have made use of the completeness relation

I =
(N/2)−1∑

m1=(−N/2)+1

∣
∣∣∣
N

2
− 1, m1

〉 〈
N

2
− 1, m1

∣
∣∣∣ ,

with I being the identity matrix in the space of N − 2 qubits. We finally obtain the
two-qubit reduced density matrix of any random pair of qubits of the N -qubit state
|DN−k, k〉. The two-qubit reduced density matrix ρ

(k)
2 now turns out to be

ρ
(k)
2 =

∑

m2,m′
2=1,0,−1

ρ
(k)
m2,m′

2
|1,m2〉〈1,m′

2|, (13)

where

ρ
(k)
m2,m′

2
=

k∑

r ,r ′=0

β
(k)
r β

(k)
r ′ c(r)m2 c

(r ′)
m′
2

⎧
⎨

⎩

(N/2)−1∑

m1=(−N/2)+1

〈
N

2
− 1,m1

∣
∣∣
∣
N

2
− 1,

N

2
− r ′ − m′

2

〉

×
〈
N

2
− 1,

N

2
− r − m2

∣∣
∣
∣
N

2
− 1,m1

〉
⎫
⎬

⎭
(14)

denote the matrix elements of ρ
(k)
2 in the basis {|1, m2〉, m2 = −1, 0, 1}. The asso-

ciated Clebsch–Gordan coefficients c(r)
m2 are explicitly given by [75]

c(r)
1 =

√
(N − r)(N − r − 1)

N (N − 1)
, c(r)

−1 =
√

r (r − 1)

N (N − 1)
,

c(r)
0 =

√
2r (N − r)

N (N − 1)
. (15)

Expressing the spin-1 states in terms of the constituent two-qubit states i.e.,

|1, 1〉 = |0A, 0B〉, |1, 0〉 = (|0A, 1B〉 + |1A, 0B〉)/√2, |1,−1〉 = |1A, 1B〉,

the following simplified form [76,77] is realized for the symmetric two-qubit reduced
density matrix:

ρ
(k)
2 =

⎛

⎜⎜
⎝

A(k) B(k) B(k) C (k)

B(k) D(k) D(k) E (k)

B(k) D(k) D(k) E (k)

C (k) E (k) E (k) F (k)

⎞

⎟⎟
⎠ . (16)
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The elements A(k), B(k), C (k), D(k), E (k) and F (k) are real and are explicitly given
by [66]

A(k) =
k∑

r=0

(
βk

r

)2 (
c(r)
1

)2
, B(k) = 1√

2

k−1∑

r=0

β(k)
r β

(k)
r+1 c

(r)
1 c(r+1)

0

C (k) =
k−2∑

r=0

β(k)
r β

(k)
r+2 c(r)

1 c(r+2)
−1 , D(k) = 1

2

k∑

r=1

(
β(k)
r

)2 (
c(r)
0

)2
(17)

E (k) = 1√
2

k−1∑

r=0

β(k)
r β

(k)
r+1 c(r)

0 c(r+1)
−1 , F (k) =

k∑

r=0

(
β(k)
r

)2 (
c(r)
−1

)2

In order to evaluate the entanglement between a single qubit say A1 and the remain-
ing qubits A2A3 · · · AN , we recall that when the N -qubit state is pure, the partition
containing N − 1 qubits can be treated as a single qubit [1]. This observation allows
any measure of pairwise entanglement suitable for quantifying entanglement between
one qubit and the remaining qubits in a pure multiqubit state. In particular, when the
measure of entanglement is either concurrence [54] or negativity of partial transpose
[56–58], it is seen that [1,9]

CA1:A2A3···An = NA1:A2A3···An = 2
√
det ρA1 , (18)

where ρA1 is the density matrix of the qubit A1.
The state |DN−k, k〉 being symmetric, the marginal ρ(k)

1 is independent of the choice

of qubit. We obtain the single-qubit marginal ρ(k)
1 either by tracing N −1 qubits in the

state |DN−k, k〉 or by tracing a single qubit from the two-qubit reduced density matrix
ρ

(k)
2 [see Eq. (16)]. The reduced density matrix ρ

(k)
1 characterizing any single qubit of

the pure symmetric N -qubit state |DN−k, k〉 is thus obtained as

ρ
(k)
1 =

(
A(k) + D(k) B(k) + E (k)

B(k) + E (k) D(k) + F (k)

)
. (19)

The two-qubit and single-qubit marginals ρ
(k)
2 , ρ

(k)
1 obtained explicitly through

relations (16, 19), help in setting up themonogamy relationswith respect to any suitable
measure of pairwise entanglement. In the following section, we analyze the bounds
on monogamy relations for the state |DN−k, k〉, choosing concurrence and negativity
of partial transpose as measures of pairwise entanglement.

4 Monogamy relation for Dicke-class of states

Having obtained the form of single- and two-qubit reduced density matrices ρ
(k)
1 and

ρ
(k)
2 [see Eqs. (16, 19)] of the state |DN−k,k〉, we will use them here to set up the

monogamy relation for the Dicke-class of states. For this purpose, we choose squared
concurrence and squared negativity of partial transpose as two different, yet suitable
measures of entanglement. As the Dicke-class of states contains several inequivalent
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classes {DN , k}, with different degeneracy configuration [69–71] of the two spinors
(corresponding to k = 1, 2, · · · [N/2]), we analyze the bound on monogamy relation
in each class.

4.1 Monogamy relation for generalized Dicke states in terms of squared
concurrence

We recall here that the monogamy relation in terms of squared concurrence was set
up for three-qubit pure states by Coffman et al. [1]. It was generalized to N -qubit pure
states in Ref. [2]. Concurrence is a convenient measure of pairwise entanglement in
two-qubit states (pure as well as mixed). For the two-qubit state ρ

(k)
2 , concurrence C

is given by

Ck2 = max
(
0,
√

λ1 −√λ2 −√λ3 −√λ4

)
.

Here λi , i = 1, 2, 3, 4 are the eigenvalues of the matrix ρ
(k)
2 ρ

′(k)
2 with ρ

′(k)
2 =

(σy ⊗ σy)ρ
∗
2

(k) (σy ⊗ σy) being the spin-flipped density matrix [54,55].

With the explicit form of ρ
(k)
2 obtained in Sect. 3 [see Eq. (16)], the concurrence

Ck2 can readily be evaluated.
While the concurrence Ck2 quantifies the pairwise entanglement between any two

qubits of the state |DN−k, k〉, the entanglement between any qubit and the remaining
N − 1 qubits is given by [see Eq. (18)]

CA1:A2A3···AN ≡ Ck1 = 2
√
det ρ(k)

1 (20)

Notice here that, due to the symmetry of the state |DN−k, k〉 under permutation of
qubits, the choice of qubit A1 in CA1:A2A3···AN ≡ Ck1 is arbitrary and hence Eq. (20)
gives the entanglement between any qubit and remaining N−1 qubits.With the single-
qubit marginal ρ(k)

1 of the state |DN−k, k〉 being explicitly given in Sect. 3 [see Eq. (19)]
along with Eqs. (15, 17), one can readily evaluate the concurrence Ck1 [see Eq. (20)]
which quantifies the entanglement between any qubit and the remaining qubits. With
reference to an arbitrary qubit of the N -qubit pure symmetric state |DN−k, k〉, there are
N − 1 pairs of qubits [see Eqs. (2), (3)] and entanglement between them is quantified
through squared concurrence C2

k2
. The monogamy inequality for the Dicke-class of

states [see Eq. (3)] is therefore given by

C2
k1 > (N − 1)C2

k2 . (21)

The bound on monogamy inequality can be ascertained by evaluating the concurrence
tangle τc which quantifies residual entanglement (as entanglement of N -qubit states
which is not captured by pairwise entanglement measures alone) in terms of squared
concurrence [1]. For the states |DN−k, k〉 belonging to theDicke-class, the concurrence
tangle is given by
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τ
(k)
N = C2

k1 − (N − 1)C2
k2 . (22)

It may be noted that larger value of residual entanglement τ
(k)
N indicates that the

N -qubit generalized Dicke states |DN−k, k〉 are more monogamous. In other words,
Eq. (22) is useful to verify constrained shareability of entanglement among the N -
qubits because of monogamy property of quantum entanglement. We have explicitly
evaluated the concurrence tangle τ

(k)
N for the states belonging to inequivalent classes

{DN−k, k}, k = 1, 2, 3, 4, 5 as a function of N and the parameter ‘a.’ In Figs. 1, 2, 3
and 4, the variation of concurrence tangle τ

(k)
N (measure of residual entanglement in

terms of squared concurrence) with the parameter ‘a’ is shown.
The states |DN−1, 1〉 belong to the W-class of states [40] {DN−1, 1} in which one

of the spinors appears only once in each term of the symmetrized combination [see
Eq. (7)]. The well-known W-states | N2 , N

2 − 1〉 belong to this family and correspond
to the parameter a = 0 of the state |DN−1, 1〉 [see Eq. (7)]. It has been shown in Ref.
[40] that the W-class of states saturate the monogamy inequality in terms of squared
concurrence, i.e.,

C2
k1 = (N − 1)C2

k2 �⇒ τ
(k)
N = C2

k1 − (N − 1)C2
k2 = 0

for W-class of states. This has the physical implication that the N -qubit pure state
|DN−1, 1〉 possesses only pairwise entanglement, when squared concurrence is chosen
as measure of two-qubit entanglement. It also means that entanglement between one
qubit and the remaining qubits is equally shared among the pairwise entanglement in
the N − 1 pairs of qubits, when the entanglement is measured in terms of squared
concurrence. We will illustrate in the next section that, when expressed in terms of
squared negativity of partial transpose, theW-class of states are shown to have nonzero
residual entanglement.
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N
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N 100

N 50
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N 10

Fig. 1 The plot of concurrence tangle τ
(2)
N as a function of the real parameter ‘a’ (0 ≤ a ≤ 1), for the states

|DN−2, 2〉
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Fig. 2 The plot of concurrence tangle τ
(3)
N as a function of the real parameter ‘a’ (0 ≤ a ≤ 1), for the states

|DN−3, 3〉
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Fig. 3 The plot of concurrence tangle τ
(4)
N as a function of the real parameter ‘a’ for the states |DN−4, 4〉

From Figs. 1, 2, 3 and 4, one can draw the following conclusions about the bound
on monogamy relation, for Dicke-class of states.

1. For theDicke states | N2 , N
2 −r〉, r = 1, 2, · · · N , characterized by two orthogonal

spinors the bound onmonogamy is larger compared to their companion states with
non-orthogonal spinors. Figures 1, 2, 3 and 4 readily illustrate that the concurrence
tangle τ

(k)
N is maximum when the parameter a = 0 and monotonically decreases

when a (0 < a < 1) increases. For separable states corresponding to a = 1, the
concurrence tangle vanishes, as expected.

2. The concurrence tangle for the states |DN−k, k〉 increases with the increase in the
value of k (k = 2, 3, 4, 5). In particular, the state |DN−k, k〉 with k = [ N

2

]
is

more monogamous. This implies that the Dicke-class of states |DN−k, k〉 with
equal distribution of two spinors has larger bound on the monogamy relation and
possesses larger residual entanglement.
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Fig. 4 The plot of concurrence tangle τ
(5)
N as a function of the real parameter ‘a’ (0 ≤ a ≤ 1), for the states

|DN−5, 5〉,

3. The residual entanglement (and hence the bound on monogamy relation with
respect to squared concurrence) reduces with the increase in number of qubits N ,
as expected.

4.2 Monogamy relation for generalized Dicke states in terms of squared
negativity of partial transpose

Monogamous nature of pure three-qubit states with respect to negativity of partial
transpose was examined in Ref. [9]. This work gave an indication that any single
measure of entanglement serves to provide a bound on monogamy inequality, which
is specific to that measure and the state under consideration. For instance, it is shown
in Ref. [9] that three-qubit W-state and its non-symmetric generalization have nonzero
boundonmonogamy inequality, set up in terms of negativity of partial transpose.While
concurrence tangle ofW- and non-symmetric generalization ofW-states vanishes, their
negativity tangle is nonzero. It is also shown in Ref. [40] that for the one-parameter
family {DN−1, 1} of W-class of states |DN−1, 1〉 (generalized W-states), consisting of
two orthogonal/non-orthogonal qubits, concurrence tangle is zero but negativity tangle
has a maximum value for W-states | N2 , N

2 − 1〉 and decreases monotonically with
parameter a (0 < a ≤ 1) of |DN−1, 1〉. We thus focus on investigating monogamous
nature of Dicke-class of states with respect to squared negativity of partial transpose.

With the knowledge of two-qubit reduced density matrix [see Eq. (16)] of the state
|DN−k, k〉, we can readily evaluate its negativity of partial transpose [56–58]. The

partially transposed density matrix
(
ρ

(k)
2

)T
of the two-qubit state ρ

(k)
2 [see Eq. (16)]

is explicitly given by
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(
ρ

(k)
2

)T =

⎛

⎜⎜
⎝

A(k) B(k) B(k) D(k)

B(k) D(k) C (k) E (k)

B(k) C (k) D(k) E (k)

D(k) E (k) E (k) F (k)

⎞

⎟⎟
⎠ , (23)

as [56]
(
ρ

(k)
2

)T

i j;kl = (ρ
(k)
2 )il;k j = (ρ

(k)
2 )k j;il are the elements of

(
ρ

(k)
2

)T
.

The negativity of partial transpose [56–58] is defined as

Nk2 =
(∣∣
∣∣

∣∣
∣∣
(
ρ

(k)
2

)T ∣∣
∣∣

∣∣
∣∣− 1

)
/2,

where

∣
∣∣∣

∣
∣∣∣
(
ρ

(k)
2

)T ∣∣∣∣

∣
∣∣∣ is the trace norm

3 of the partially transposeddensitymatrix
(
ρ

(k)
2

)T
.

It may be noted that negativity of partial transpose of any two-qubit system varies from
0 to 0.5. Here we adopt the convention in Ref. [9] and redefine Nk2 as

Nk2 = ||(ρ(k)
2 )

T || − 1 (24)

so that it takes values in the range 0 to 1.
We now proceed to evaluate the entanglement Nk1 between any qubit of the state

|DN−k, k〉 and its remaining N − 1-qubits, in terms of squared negativity of partial
transpose. On recalling the result [9] that negativity of partial transpose between a
single qubit and the remaining qubits of any pure N -qubit state matches with the
corresponding concurrence, we have

Nk1 = Ck1 = 2
√
det ρ

(k)
1 (25)

for the pure symmetric state |DN−k, k〉.
As the pairwise entanglement between all the N − 1 pairs of qubits is equal, due

to symmetry of the states belonging to Dicke-class, the monogamy inequality [see
Eq. (1)] turns out to be [9],

N 2
k1 ≥ (N − 1)N 2

k2 (26)

in terms of squared negativity of partial transpose. The bound onmonogamy inequality
or, equivalently the measure of residual entanglement of the states |DN−k, k〉, is given
by

ξ
(k)
N = N 2

k1 − (N − 1)N 2
k2 . (27)

3 The trace norm [58]

∣
∣∣∣

∣
∣∣∣
(
ρ

(k)
2

)T
∣
∣∣∣

∣
∣∣∣ is the sum of the square roots of eigenvalues of the positive-definite

matrix

(
(ρ

(k)
2 )

T
)† (

ρ
(k)
2

)T
.
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where ξ
(k)
N denotes the negativity tangle of the states |DN−k, k〉 belonging to the Dicke-

class.
In fact, for k = 1, i.e., for {DN−1,1}, the so-called W-class of states, concurrence

tangle τ
(1)
N = 0, whereas negativity tangle ξ

(1)
N is nonzero for all values of N ≥ 3 [40].

This feature is seen in Fig. 9.
It may be seen from Figs. 5, 6, 7 and 8 that the nature of variation of negativity

tangle ξ
(k)
N is quite similar to that of concurrence tangle τ

(k)
N (see Figs. 1, 2, 3 and 4)

for each value of k (k = 2, 3, 4, 5) and N . We also notice that ξ
(k)
N ≥ τ

(k)
N (see

Figs. 5, 6, 7, 8 and 9). Thus, the bound on monogamy inequality in terms of squared
negativity of partial transpose exceeds the bound in terms of squared concurrence. In
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Fig. 5 Comparison of concurrence tangle τ
(2)
N with negativity tangle ξ
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N for N = 10 and N = 100
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Fig. 7 Comparison of concurrence tangle τ
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N for N = 100
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Fig. 9 The variation of negativity tangle ξ
(1)
N as a function of the parameter a for different values of N

other words, negativity tangle ξ
(k)
N is greater than or equal to concurrence tangle τ

(k)
N ,

quite in accordance with the result obtained in Ref. [9] for N -qubit states of the W-
class. We therefore conclude that for the entire Dicke-class {DN−1,1}, containing all
possible SLOCC inequivalent classes of states |DN−k, k〉, the nature of variation of the
bound onmonogamy inequality, expressed in squared concurrence, squared negativity
of partial transpose, is in agreement with that observed for W-class of states [40].

5 Conclusion

In this article, we have analyzed the monogamous nature of N -qubit pure symmet-
ric states with two distinct Majorana spinors—the so-called Dicke-class of states,
using squared concurrence, and squared negativity of partial transpose as measures of
two-qubit entanglement. Toward this end, we have made use of Majorana geometric
representation to obtain a simplified, one-parameter structure of Dicke-class of states.
The familiar angular momentum algebra relating to addition of angular momentum of
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two spin systems enables us to partition this simplified form of the generalized Dicke
states into two of its subsystems. Using this partitioning, we obtain the general form
of two-qubit and single-qubit density matrices of Dicke-class of states. The reduced
density matrices so obtained allow us to determine the pairwise entanglement and
residual entanglement (which goes beyond the pairwise entanglement) in the system.

The bound on monogamy relation, using squared concurrence as a measure of
entanglement, is analyzed for all SLOCC inequivalent families of states belonging to
Dicke-class.Moreover, our results reveal that, among the several inequivalent families,
corresponding to different degeneracy configuration of the two spinors, the states
belonging to the family having equal distribution of its two spinors are found to have
less shareability among its qubits (more monogamous), thereby possessing larger
residual entanglement.

The monogamy inequality in terms of squared negativity of partial transpose is
also analyzed, and it is seen that for the entire Dicke-class of states, the residual
entanglement quantified through negativity tangle exceeds the one quantified through
concurrence tangle. Our results confirm that both the measures of entanglement are
analogous in establishing monogamous nature in Dicke-class of states and either of
the two measures can be chosen for the evaluation of their residual entanglement.

Summarizing, ourwork accomplishes the task of analyzing themonogamous nature
of the entire one-parameter family of pure symmetric multiqubit states characterized
by two distinct spinors, for the first time. The results of this work open up avenues
for potential applications of Dicke-class of states in the field of quantum information
processing, as limited shareability of entanglement among subsystems/monogamous
nature happens to be one of the highlighted non-classical features of multiparty quan-
tum systems.
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