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Abstract
In this paper, we present three new classes of q-ary quantumMDS codes utilizing gen-
eralized Reed–Solomon codes satisfying Hermitian self-orthogonal property. Among
our constructions, the minimum distance of some q-ary quantum MDS codes can be
bigger than q

2 + 1. Comparing to previous known constructions, the lengths of codes
in our constructions are more flexible.

Keywords Quantum MDS code · Generalized Reed–Solomon code · Hermitian
construction · Hermitian self-orthogonal

1 Introduction

Quantum error-correcting codes play an important role in quantum information trans-
mission and quantum computation. Due to the establishment of the connections
between quantum codes and classical codes (see [2,4,23]), great progress has been
made in the study of quantum error-correcting codes. One of these connections shows
that quantum codes can be constructed from classical linear error-correcting codes sat-
isfying symplectic, Euclidean or Hermitian self-orthogonal properties (see [1,13,24]).

Let q be a prime power. We use [[n, k, d]]q to denote a q-ary quantum code of
length n, dimension qk and minimum distance d. Similar to the classical counterparts,
quantum codes have to satisfy the quantumSingleton bound: k ≤ n−2d+2. The quan-
tum code attaching this bound is called quantum maximum distance separable(MDS)
code.

In the past few decades, quantum MDS codes have been extensively studied. The
construction of q-ary quantumMDS codeswith length n ≤ q+1 has been investigated
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from classical Euclidean orthogonal codes (see [7,20]). On the other hand, some
quantumMDS codeswith length n ≥ q+1 have been investigated,most ofwhich have
minimum distances less than q

2 + 1 (see [11]). So it is a challenging and valuable task
to construct quantumMDS codes with minimal distances larger than q

2 + 1. Recently,
researchers have constructed some of such quantumMDS codes utilizing constacyclic
codes, negacyclic codes and generalized Reed–Solomon codes (see [3,5,6,8–12,14–
17,21,22,25–28]). However, q-ary quantumMDScodeswithminimal distances bigger
than q

2 + 1 are far from complete.
There are dozens of papers on the construction of [[n, n−2d, d+1]]q quantumMDS

codeswith relatively largeminimumdistances.Most of the known [[n, n−2d, d+1]]q
quantum MDS codes with minimum distances larger than q

2 + 1 have lengths n ≡
0, 1 (mod q+1) (see [3,5,7,9,11,14,15,21,22,28]) or n ≡ 0, 1 (mod q−1) (see [5,7,9–
12,14,21,22,25,28]), except for the following cases.

(i). n = q2 − l and d ≤ q − l − 1 for 0 ≤ l ≤ q − 2 (see [17]).
(ii). n = mq − l and d ≤ m − l for 0 ≤ l < m and 1 < m < q (see [17] and also [6]

for l = 0).
(iii). n = t(q+1)+2 and 1 ≤ d ≤ t+1 for 1 ≤ t ≤ q−1 and (p, t, d) �= (2, q−1, q)

(see [6] and also [17] for t = q − 1).

In this paper, we construct several new classes of quantum MDS codes whose
minimum distances can be larger than q

2 + 1 via generalized Reed–Solomon
codes and Hermitian construction. Their lengths are different from the above three
cases and also in most cases are not of the form n ≡ 0, 1 (mod q ± 1). More
precisely, the parameters of [[n, n − 2d, d + 1]]q quantum MDS codes are as
follows:

(i). n = 1+ lh +mr − q2−1
st · hr and 1 ≤ d ≤ min{ s+h

2 · q+1
s − 1, q+1

2 + q−1
t − 1},

for odd s | q + 1, even t | q − 1, t ≥ 2, l = q2−1
s , m = q2−1

t , odd h ≤ s − 1,

r ≤ t and q − 1 >
q2−1
st · hr (see Theorem 3);

(ii). n = lh + mr − q2−1
st · hr and 1 ≤ d ≤ min{� s+h

2 � · q+1
s − 2, q+1

2 + q−1
t − 1},

for odd s | q + 1, even t | q − 1, t ≥ 2, l = q2−1
s , m = q2−1

t , h ≤ s − 1, r ≤ t

and q − 1 >
q2−1
st · hr (see Theorem 4);

(iii). n = lh + mr and 1 ≤ d ≤ min{� s+h
2 � · q+1

s − 2, q+1
2 + q−1

t − 1}, for even
s | q + 1, even t | q − 1, t ≥ 2, l = q2−1

s , m = q2−1
t , h ≤ s

2 and r ≤ t
2 (see

Theorem 5).

This paper is organized as follows. In Sect. 2, we will introduce some basic
knowledge and useful results on Hermitian self-orthogonality and generalized Reed–
Solomon codes, which will be utilized in the proof of main results. In Sects. 3, 4 and
5, we will present our main results on the constructions of quantum MDS codes. In
Sect. 6, we will make a conclusion.
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2 Preliminaries

In this section, we introduce some basic notations and useful results on Hermitian
self-orthogonality and generalized Reed–Solomon codes (or GRS codes for short).

Let Fq2 be the finite field with q
2 elements and F

∗
q2

= Fq2\{0}, where q is a prime

power.Obviously,Fq is a subfield ofFq2 with q elements and denoted byF
∗
q = Fq\{0}.

For any two vectors −→x = (x1, . . . , xn) and
−→y = (y1, . . . , yn) ∈ Fq2 , the Euclidean

and Hermitian inner products are defined as

〈−→x ,
−→y 〉 =

n∑

i=1

xi yi

and

〈−→x ,
−→y 〉H =

n∑

i=1

xi y
q
i ,

respectively.
For a linear code C of length n over Fq2 , the Euclidean dual code of C is defined

as

C⊥ := {−→x ∈ F
n
q2 : 〈−→x ,

−→y 〉 = 0, for all −→y ∈ C},

and the Hermitian dual code of C is defined as

C⊥H := {−→x ∈ F
n
q2 : 〈−→x ,

−→y 〉H = 0, for all −→y ∈ C}.

If C ⊆ C⊥H , the code C is called Hermitian self-orthogonal.
Ashikhmin and Knill [2] proposed the Hermitian construction of quantum codes,

which is a very important technique for constructing quantum codes from classical
codes.

Theorem 1 [2, Corollary 1] A q-ary quantum [[n, n − 2d, d + 1]]q MDS code exists
provided that an [n, d, n − d + 1]q2 MDS Hermitian self-orthogonal code exists.

Choose two vectors −→v = (v1, v2, . . . , vn) and
−→a = (a1, a2, . . . , an), where vi ∈

F
∗
q2

(vi may not be distinct) and ai are distinct elements in Fq2 . For an integer d with

1 ≤ d ≤ n, the GRS code of length n associated with −→v and −→a is defined as follows:

GRSd(
−→a ,−→v ) = {(v1 f (a1), . . . , vn f (an)) : f (x) ∈ Fq2 [x], deg( f (x)) ≤ d − 1}.

(1)
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A generator matrix of the code GRSd(
−→a ,−→v ) is

Gd(
−→a ,−→v ) =

⎛

⎜⎜⎜⎝

v1 v2 · · · vn
v1a1 v2a2 · · · vnan

...
...

. . .
...

v1a
d−1
1 v2a

d−1
2 · · · vnad−1

n

⎞

⎟⎟⎟⎠ . (2)

It is well known that the code GRSd(
−→a ,−→v ) is a q-ary [n, d, n − d + 1] MDS code

[18, Chapter 11]. The following theorem will be useful, and it has been shown in
[19,28].

Theorem 2 [19,28] The two vectors −→a = (a1, . . . , an) and −→v = (v1, . . . , vn)

are defined above. Then, GRSd(
−→a ,−→v ) is Hermitian self-orthogonal if and only if

〈−→a qi+ j ,−→v q+1〉 = 0, for all 0 ≤ i, j ≤ d − 1.

If there are no specific statements, the following notations are fixed throughout this
paper.

• Let s | q + 1 and t | q − 1 with t even.

• Let l = q2−1
s and m = q2−1

t .
• Let g be a primitive element of Fq2 , δ = gs and θ = gt .

Lemma 2.1 Suppose gcd(s, t) = 1. For any α, β ∈ Zq2−1, the number of (i, j) of the

equation α + si ≡ β + t j (mod q2 − 1) satisfying 0 ≤ i <
q2−1
s and 0 ≤ j <

q2−1
t

is q2−1
st .

Proof Let β − α = γ . From α + si ≡ β + t j (mod q2 − 1), we have si − t j ≡
γ (mod q2 − 1). When 0 ≤ i <

q2−1
s and 0 ≤ j <

q2−1
t , si − t j mod q2 − 1 runs

q2−1
st times through every element of Zq2−1.
Indeed, for any γ ∈ Zq2−1, we have si−t j ≡ γ (mod q2−1) ⇔ s | t j+γ ⇔ t j ≡

−γ (mod s). Since gcd(s, t) = 1, then j mod s is unique. So when 0 ≤ j <
q2−1
t , the

number of j satisfying the equation is q2−1
st . The values of γ and i will be determined

after fixing j . So the number of (i, j) of the equation α + si ≡ β + t j (mod q2 − 1)

is q2−1
st satisfying 0 ≤ i <

q2−1
s and 0 ≤ j <

q2−1
t is q2−1

st . ��
The following two lemmas have been shown in [5,9]. In order to make the paper

self-completeness, we will give proofs.

Lemma 2.2 [5, Lemmas 5 and 11] Assume that h ≤ s − 1.

(i). For any 0 ≤ i, j ≤ � s+h
2 � · q+1

s − 3, l | (qi + j + q + 1) if and only if

qi + j + q + 1 = μ · l, with � s−h
2 � + 1 ≤ μ ≤ � s+h

2 � − 1.

(ii). For any 0 ≤ i, j ≤ � s+h
2 � · q+1

s − 2 with (i, j) �= (0, 0), l | (qi + j) if and only

if qi + j = μ · l, with � s−h
2 � + 1 ≤ μ ≤ � s+h

2 � − 1.
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Proof (i). When s ≡ h (mod 2), it implies � s+h
2 � = s+h

2 and � s−h
2 � = s−h

2 . Since

0 ≤ i, j ≤ s+h
2 · q+1

s − 3 < q − 2, 0 < qi + j + q + 1 < q2 − 1, that is

0 < μ < s. From qi + j +q + 1 = q
(

μ·(q+1)
s − 1

)
+

(
q − μ·(q+1)

s

)
, it follows

that

i = μ · (q + 1)

s
− 2, j = q − μ · (q + 1)

s
− 1.

By i < s+h
2 · q+1

s − 2 and j < s+h
2 · q+1

s − 2, it implies s−h
2 < μ < s+h

2 . So
l | (qi + j) if and only if qi + j = μ · l, with s−h

2 + 1 ≤ μ ≤ s+h
2 − 1.

When s �≡ h (mod 2), it implies � s+h
2 � = s+h−1

2 and � s−h
2 � = s−h+1

2 . Then, the
proof can be completed by proceeding as the situation that s ≡ h (mod 2).

(ii). In a similar way, we can complete the proof. So we omit the details.
��

Lemma 2.3 [9, Lemma 3.1] The identity
∑m−1

ν=0 θ
ν
(
qi+ j+ q+1

2

)

= 0 holds for all 0 ≤
i, j ≤ q+1

2 + q−1
t − 2, with even t ≥ 2.

Proof It is easy to check that the identity holds if and only if m � qi + j + q+1
2 . On

the contrary, assume that m | qi + j + q+1
2 . Let

qi + j + q + 1

2
= μ · m = q · μ(q − 1)

t
+ μ(q − 1)

t
(3)

with μ ∈ Z. By t ≥ 2, we have qi + j + q+1
2 < q2 − 1, which implies 0 < μ < t .

• If j + q+1
2 ≤ q − 1, comparing remainder and quotient of module q on both sides

of (3), we can deduce i = j + q+1
2 = μ · q−1

t . Since t is even, q−1
t | q−1

2 . From
q−1
t | j +1+ q−1

2 , we can deduce that q−1
t | j +1. Since j +1 ≥ 1, j +1 ≥ q−1

t .

So i = j + q+1
2 ≥ q+1

2 + q−1
t − 1, which is a contradiction.

• When j + q+1
2 ≥ q, it takes qi + j + q+1

2 = q(i +1)+
(
j − q−1

2

)
= q · μ(q−1)

t +
μ(q−1)

t . In a similar way, j − q−1
2 = i + 1 = μ · q−1

t which implies q−1
t | i + 1.

Since i + 1 ≥ 1, i + 1 ≥ q−1
t . Therefore, j = i + 1 + q−1

2 ≥ q+1
2 + q−1

t − 1,
which is a contradiction.

As a result,m � qi + j + q+1
2 which yields

∑m−1
ν=0 θν(qi+ j+ q+1

2 ) = 0 for all 0 ≤ i, j ≤
q+1
2 + q−1

t − 2. ��

3 QuantumMDS codes of length n = 1+ lh+mr − q2−1
st · hr

In this section, we assume that s is odd, h ≤ s − 1 with h odd and r ≤ t. Quantum
MDS codes of length n = 1+lh+mr− q2−1

st ·hr will be constructed. The construction
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is based on [5,9]. Firstly, we choose elements in F
∗
q2

/〈δ〉 as the first part of coordinates
in the vector −→a . Secondly, we choose elements from cosets of F

∗
q2

/〈θ〉 as the second
part of coordinates in−→a . Finally, we consider the duplicating elements between these
two parts.We construct the vector−→v in a similar way. Then, we can construct quantum

MDS codes of length n = 1 + lh + mr − q2−1
st · hr , whose minimum distances can

be bigger than q
2 + 1.

The next lemma has been shown in [5]. We give a new proof by Cramer’s rule,
which is shorter than [5].

Lemma 3.1 [5, Lemma 7] For s−h
2 + 1 ≤ μ ≤ s+h

2 − 1, there exists a solution in
(F∗

q)
h of the following system of equations

⎧
⎪⎨

⎪⎩

u0 + u1 + · · · + uh−1 = 1
h−1∑
k=0

gkμluk = 0
(4)

Proof Denote ξ = gl and c = s−h
2 + 1. For any 0 ≤ ν �= ν′ ≤ h − 2 < s − 2, the

elements ξ c+ν , ξ c+ν′
and 1 are distinct. The system of Eq. (4) can be expressed in the

matrix form
A−→u T = (1, 0, . . . , 0)T , (5)

where

A =

⎛

⎜⎜⎜⎝

1 1 · · · 1
1 ξ c · · · ξ (h−1)c

...
...

. . .
...

1 ξ c+h−2 · · · ξ (h−1)(c+h−2)

⎞

⎟⎟⎟⎠

h×h

and

−→u = (u0, u1, . . . , uh−1).

We will show that uk ∈ F
∗
q for any 0 ≤ k ≤ h − 1.

It is obvious that det(A) �= 0. By Cramer’s rule,

uk = (−1)k · det(Dk)

det(A)
,

where

Dk =

⎛

⎜⎜⎜⎝

1 ξ c · · · ξ (k−1)c ξ (k+1)c · · · ξ (h−1)c

1 ξ c+1 · · · ξ (k−1)(c+1) ξ (k+1)(c+1) · · · ξ (h−1)(c+1)

...
...

. . .
...

...
. . .

...

1 ξ c+h−2 · · · ξ (k−1)(c+h−2) ξ (k+1)(c+h−2) · · · ξ (h−1)(c+h−2)

⎞

⎟⎟⎟⎠ (6)
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is an (h−1)×(h−1)matrix obtained from A by deleting the first row and the (k+1)th
column with 0 ≤ k ≤ h − 1. It is easy to see det(Dk) is equal to nonzero constant
times of a Vandermonde determinant. So det(Dk) �= 0, which implies uk �= 0.

It remains to show uk ∈ Fq , for any 0 ≤ k ≤ h − 1. Since s | q + 1 and ξ s = 1,

ξ k(c+ν)q = ξ
−k

(
s−h
2 +1+ν

)

= ξ
k
(
s+h
2 −1−ν

)

= ξ k(c+h−2−ν),

for any 0 ≤ k ≤ h − 1 and 0 ≤ ν ≤ h − 2. So (det(A))q = (−1)
h−1
2 · det(A) and

det(Dk)
q = (−1)

h−1
2 · det(Dk). It follows that u

q
k = (−1)qk ·det(Dk )

q

(det(A))q
= (−1)k ·det(Dk )

det(A)
=

uk , which implies uk ∈ F
∗
q with 0 ≤ k ≤ h − 1. This completes the proof. ��

Now, we let −→u = (u0, u1, . . . , uh−1) satisfy the system of Eq. (4). Choose

−→a 1 = (0, 1, δ, . . . , δl−1, g, gδ, . . . , gδl−1, . . . , gh−1, gh−1δ, . . . , gh−1δl−1)

and

−→v 1 = (e, v0, . . . , v0︸ ︷︷ ︸
l times

, . . . , vh−1, . . . , vh−1︸ ︷︷ ︸
l times

),

where v
q+1
k = uk (0 ≤ k ≤ h − 1) and eq+1 = −l. Then, we have the following

lemma, which has been shown in [5]. We give proof in order to make the paper self-
completeness.

Lemma 3.2 [5, Theorem 3] The identity

〈−→a qi+ j
1 ,−→v q+1

1 〉 = 0

holds for all 0 ≤ i, j ≤ s+h
2 · q+1

s − 2.

Proof When (i, j) = (0, 0),

〈−→a 0
1,

−→v q+1
1 〉 = eq+1 + l(vq+1

0 + · · · + v
q+1
h−1) = −l + l(u0 + · · · + uh−1) = 0.

When (i, j) �= (0, 0), since δ is of order l,

〈−→a qi+ j
1 ,−→v q+1

1 〉 =
h−1∑

k=0

gk(qi+ j)v
q+1
k

l−1∑

ν=0

δν(qi+ j) =

⎧
⎪⎨

⎪⎩

0, l � qi + j,

l ·
h−1∑
k=0

gk(qi+ j)v
q+1
k , l | qi + j .

We consider the case l | qi + j . According to Lemma 2.2 (ii) and Lemma 3.1,

〈−→a qi+ j
1 ,−→v q+1

1 〉 = 〈−→a μl
1 ,−→v q+1

1 〉 = l ·
h−1∑

k=0

gkμlvq+1
k = l ·

h−1∑

k=0

gkμluk = 0.
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Therefore, the result holds. ��
For the second part of −→a and −→v , we choose

−→a 2 = (1, θ, . . . , θm−1, g, gθ, . . . , gθm−1, . . . , gr−1, gr−1θ, . . . , gr−1θm−1)

and

−→v 2 = (1, g
t
2 , . . . , g(m−1)· t2 , 1, g

t
2 , . . . , g(m−1)· t2 , . . . , 1, g

t
2 , . . . , g(m−1)· t2 ).

Then, the following lemma can be obtained.

Lemma 3.3 The identity

〈−→a qi+ j
2 ,−→v q+1

2 〉 = 0

holds for all 0 ≤ i, j ≤ q+1
2 + q−1

t − 2.

Proof By Lemma 2.3, we can calculate directly

〈−→a qi+ j
2 ,−→v q+1

2 〉 =
r−1∑

k=0

m−1∑

ν=0

(gkθν)qi+ j · θν· q+1
2

=
r−1∑

k=0

gk(qi+ j)
m−1∑

ν=0

θν(qi+ j+ q+1
2 )

= 0.

(7)

��
Now, we give our first construction.

Theorem 3 Let n = 1 + lh + mr − q2−1
st · hr, where odd s | q + 1, even t | q − 1,

t ≥ 2, l = q2−1
s , m = q2−1

t , odd h ≤ s − 1 and r ≤ t . If q − 1 >
q2−1
st · hr, then for

any 1 ≤ d ≤ min{ s+h
2 · q+1

s −1, q+1
2 + q−1

t −1}, there exists an [[n, n−2d, d +1]]q
quantum MDS code.

Proof Denote

A = {gαδi |0 ≤ α ≤ h − 1, 0 ≤ i ≤ l − 1}

and

B = {gβθ j |0 ≤ β ≤ r − 1, 0 ≤ j ≤ m − 1}.
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From Lemma 2.1, we know |A ∩ B| = q2−1
st · hr . Let A1 = A − B and B1 = B − A.

Define

f1 : A ∪ {0} → F
∗
q , f1(gαδi ) = v

q+1
α and f1(0) = −l,

f2 : B → F
∗
q , f2(gβθ j ) = θ j · q+1

2 .

Let

−→a = (0,−→a A1 ,
−→a B1 ,

−→a A∩B),

where −→a S = (a1, . . . , ak) for S = {a1, . . . , ak} and
−→v q+1 = (−l, f1(

−→a A1), λ f2(
−→a B1), f1(

−→a A∩B) + λ f2(
−→a A∩B)),

where λ ∈ F
∗
q and f j (

−→a S) = ( f j (a1), . . . , f j (ak)) with S = {a1, . . . , ak} and
j = 1, 2.

Indeed, since q − 1 >
q2−1
st · hr = |A ∩ B|, there exists λ ∈ F

∗
q such that all

coordinates of f1(
−→a A∩B) + λ f2(

−→a A∩B) are nonzero.
According to Lemmas 3.2 and 3.3, it takes

〈−→a qi+ j ,−→v q+1〉 = 〈−→a qi+ j
1 ,−→v q+1

1 〉 + λ〈−→a qi+ j
2 ,−→v q+1

2 〉 = 0,

for any 0 ≤ i, j ≤ d−1.As a consequence, byTheorem2,GRSd(
−→a ,−→v ) isHermitian

self-orthogonal. Therefore, by Theorem1, there exists an [[n, n−2d, d+1]]q quantum
MDS code, where n = 1+lh+mr− q2−1

st ·hr and 1 ≤ d ≤ min{ s+h
2 · q+1

s −1, q+1
2 +

q−1
t − 1}. ��

Remark 3.1 We try to choose s, h, t such that s+h
2 · q+1

s − 1 ≈ q+1
2 + q−1

t − 1. For
large q, we take s ≈ 1

2

√
2(q + 1) · h and t ≈ √

2(q + 1). Then, it follows that

s + h

2
· q + 1

s
− 1 ≈ q

2
+

√
q

2
and

q + 1

2
+ q − 1

t
− 1 ≈ q

2
+

√
q

2
.

This indicates that the minimum distance of the quantum MDS code in Theorem 3

can reach q
2 +

√
q
2 approximately.

Example 3.1 Let q = 641. Choose s = 107, t = 32, h = 5 and r = 1. In this case,

one has s+h
2s · (q + 1) − 1 = 341 and q+1

2 + q−1
t − 1 = 340 ≈ q

2 +
√

q
2 = 338.4. The

length is n = 1+lh+mr− q2−1
st ·hr = 16,081. There exists [[16081, 15401, 341]]641

quantum MDS code, which has not been covered in any previous work.
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4 QuantumMDS codes of length n = lh+mr − q2−1
st · hr

In this section, we assume s is odd, h ≤ s − 1 and r ≤ t. Now, we consider the first
part of coordinates in vectors −→a and −→v . Firstly, we give two useful lemmas that are
Lemmas 4.1 and 4.2, which generalize Lemma 13 and Theorem 5 in [5], respectively.

Lemma 4.1 There exists a solution in (F∗
q)

h of the following system of equations

h−1∑

k=0

gk(μl−q−1)uk = 0 (8)

for � s−h
2 � + 1 ≤ μ ≤ � s+h

2 � − 1.

Proof Let ξ = gl , η = g−q−1 ∈ F
∗
q and c = � s−h

2 � + 1. It is clear that ξ c+ν �= ξ c+ν′

for any 0 ≤ ν �= ν′ ≤ h − 2 < s − 2. We discuss two cases.
Case 1 h is odd. In this case, � s−h

2 � = s−h
2 and � s+h

2 � = s+h
2 . The system of

equations (8) can be expressed in the matrix form

A−→u T = (0, 0, . . . , 0)T , (9)

where

A =

⎛

⎜⎜⎜⎝

1 ξ cη ξ2cη2 · · · ξ (h−1)cηh−1

1 ξ c+1η ξ2(c+1)η2 · · · ξ (h−1)(c+1)ηh−1

...
...

...
. . .

...

1 ξ c+h−2η ξ2(c+h−2)η2 · · · ξ (h−1)(c+h−2)ηh−1

⎞

⎟⎟⎟⎠

is an (h − 1) × h matrix over Fq2 and

−→u = (u0, u1, . . . , uh−1).

It is obvious that rank(A) = h− 1. We will show that uk ∈ F
∗
q for any 0 ≤ k ≤ h− 1.

Let

A′ =

⎛

⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 ξ cη ξ2cη2 · · · ξ (h−1)cηh−1

1 ξ c+1η ξ2(c+1)η2 · · · ξ (h−1)(c+1)ηh−1

...
...

...
. . .

...

1 ξ c+h−2η ξ2(c+h−2)η2 · · · ξ (h−1)(c+h−2)ηh−1

⎞

⎟⎟⎟⎟⎟⎠
.

We consider the equations

A′−→u T = (1, 0, 0, . . . , 0)T . (10)

It is easy to check that A′ is row equivalent to A′(q) and det(A′) �= 0. Similarly as the
proof of Lemma 3.1, we obtain that (10) has a solution −→u = (u0, u1, . . . , uh−1) ∈
(F∗

q)
h . Since the solution of (10) is also the solution of (9), the result has been proved.
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Case 2 h is even. In this case, � s−h
2 � = s−h+1

2 and � s+h
2 � = s+h−1

2 . The system of
equations (8) can be expressed in the matrix form

A−→u T = (0, 0, . . . , 0)T , (11)

where

A =

⎛

⎜⎜⎜⎝

1 ξ cη ξ2cη2 · · · ξ (h−1)cηh−1

1 ξ c+1η ξ2(c+1)η2 · · · ξ (h−1)(c+1)ηh−1

...
...

...
. . .

...

1 ξ c+h−3η ξ2(c+h−3)η2 · · · ξ (h−1)(c+h−3)ηh−1

⎞

⎟⎟⎟⎠

is an (h − 2) × h matrix over Fq2 . By s | q + 1 and ξ s = 1, it takes

(
ξ k(c+ν)ηk

)q = ξ
−k

(
s−h+1

2 +1+ν
)

ηk = ξ
k
(
s+h−1

2 −1−ν
)

ηk = ξ k(c+h−3−ν)ηk,

for any 0 ≤ k ≤ h − 1 and 0 ≤ ν ≤ h − 3. Therefore, A and A(q) are row equivalent.
By deleting the first (resp. the last) column of A, we obtain an (h−2)× (h−1)matrix
denoted by A0 (resp. Ah−1). Then, A0 (resp. Ah−1) is row equivalent to A(q)

0 (resp.

A(q)
h−1). Obviously, rank(A0) = rank(Ah−1) = h − 2. Similarly as the proof of Case

1, we can deduce that the following equations

A0
−→x T = (0, . . . , 0)T , Ah−1

−→y T = (0, . . . , 0)T

have two solutions −→x = (x1, x2, . . . , xh−1),
−→y = (y0, y1, . . . , yh−2) ∈ (F∗

q)
h−1.

From h < q + 1, there exists λ ∈ F
∗
q \ { x1y1 , . . . ,

xh−2
yh−2

} such that −→u = (0,−→x ) −
λ(

−→y , 0) ∈ (F∗
q)

h . Then, it implies

A−→u T =
(

0
A0

−→x T

)
− λ

(
Ah−1

−→y T

0

)
= (0, 0, . . . , 0)T .

Therefore, the result has been proved. ��
We choose

−→a 1 = (1, δ, . . . , δl−1, g, gδ, . . . , gδl−1, . . . , gh−1, gh−1δ, . . . , gh−1δl−1)

and

−→v 1 = (v0, v0δ, . . . , v0δ
l−1, v1, v1δ, . . . , v1δ

l−1, . . . , vh−1, vh−1δ, . . . , vh−1δ
l−1),

where v
q+1
k = uk (0 ≤ k ≤ h − 1) and −→u = (u0, u1, . . . , uh−1) satisfies (8).

Lemma 4.2 The identity

〈−→a qi+ j
1 ,−→v q+1

1 〉 = 0
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holds for all 0 ≤ i, j ≤ � s+h
2 � · q+1

s − 3.

Proof Similarly as Lemma 3.2, we only need to consider the case l | qi + j + q + 1.
From Lemmas 2.2 (i) and 4.1, we deduce that

〈−→a qi+ j
1 ,−→v q+1

1 〉 = 〈−→a μl−q−1
1 ,−→v q+1

1 〉 = l ·
h−1∑

k=0

gk(μl−q−1)v
q+1
k = 0.

Therefore, for all 0 ≤ i, j ≤ � s+h
2 � · q+1

s − 3,

〈−→a qi+ j
1 ,−→v q+1

1 〉 = 0.

��
The vectors −→a 2 and

−→v 2 are the same as in Sect. 3.

Theorem 4 Let n = lh + mr − q2−1
st · hr, where odd s | q + 1, even t | q − 1, t ≥ 2,

l = q2−1
s , m = q2−1

t , h ≤ s−1 and r ≤ t . Assume that q−1 >
q2−1
st ·hr, then for any

1 ≤ d ≤ min{� s+h
2 � · q+1

s − 2, q+1
2 + q−1

t − 1}, there exists an [[n, n − 2d, d + 1]]q
quantum MDS code.

Proof Similarly as Theorem 3, we also let A = {gαδi |0 ≤ α ≤ h − 1, 0 ≤ i ≤ l − 1},
B = {gβθ j |0 ≤ β ≤ r − 1, 0 ≤ j ≤ m − 1}, A1 = A − B and B1 = B − A. Define

f1 : A → F
∗
q , f1(gαδi ) = (vαδi )q+1,

f2 : B → F
∗
q , f2(gβθ j ) = θ j · q+1

2 .

Let

−→a = (
−→a A1 ,

−→a B1 ,
−→a A∩B),

where −→a S = (a1, . . . , ak) for S = {a1, . . . , ak} and
−→v q+1 = ( f1(

−→a A1), λ f2(
−→a B1), f1(

−→a A∩B) + λ f2(
−→a A∩B)),

where λ ∈ F
∗
q is chosen such that all the coordinates of f1(

−→a A∩B)+λ f2(
−→a A∩B) are

nonzero and f j (
−→a S) = ( f j (a1), . . . , f j (ak)) with S = {a1, . . . , ak} for j = 1, 2.

According to Lemmas 3.3 and 4.2, similarly as the proof of Theorem 3,
GRSd(

−→a ,−→v ) is Hermitian self-orthogonal. As a consequence, by Theorem 1, there

exists [[n, n− 2d, d + 1]]q quantumMDS code, where n = lh+mr − q2−1
st · hr with

odd h and 1 ≤ d ≤ min{� s+h
2 � · q+1

s − 2, q+1
2 + q−1

t − 1}. ��

Remark 4.1 Similarly as Remark 3.1, theminimumdistance can reach q
2 +

√
q
2 approx-

imately.
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5 QuantumMDS codes of length n = lh+mr

In this section, s is even, h ≤ s
2 and r ≤ t

2 and quantum MDS codes with length
n = lh + mr will be constructed. Similarly as the previous constructions, we also
divide the vectors −→a and −→v into two parts. However, in this case, coordinates of
these two parts in the vector −→a have no duplication. Therefore, the quantum MDS
codes in this section have largerminimumdistances than the codes in previous sections.

The proof of the next result is similar to that of Lemma 4.1, and we omit the details.

Lemma 5.1 The following system of equations

h−1∑

k=0

g(2k+1)(μl−q−1)uk = 0 (12)

has a solution denoted by −→u = (u0, u1, . . . , uh−1) ∈ (F∗
q)

h for all � s−h
2 � + 1 ≤ μ ≤

� s+h
2 � − 1.

Here, we choose

−→a 1 = (g, gδ, . . . , gδl−1, g3, g3δ, . . . , g3δl−1, . . . , g2h−1, g2h−1δ, . . . , g2h−1δl−1)

and

−→v 1 = (v0, v0δ, . . . , v0δ
l−1, v1, v1δ, . . . , v1δ

l−1, . . . , vh−1, vh−1δ, . . . , vh−1δ
l−1),

where v
q+1
k = uk (0 ≤ k ≤ h − 1) and −→u = (u0, u1, . . . , uh−1) is a solution of (12).

Lemma 5.2 The identity

〈−→a qi+ j
1 ,−→v q+1

1 〉 = 0

holds for all 0 ≤ i, j ≤ � s+h
2 � · q+1

s − 3.

Proof The result follows from Lemmas 2.2 (i) and 5.1. ��
Now, we construct the second part of coordinates in −→a and −→v . We choose

−→a 2 = (1, θ, . . . , θm−1, g2, g2θ, . . . , g2θm−1, . . . , g2r−2, g2r−2θ, . . . , g2r−2θm−1)

and

−→v 2 = (1, g
t
2 , . . . , g(m−1)· t2 , 1, g

t
2 , . . . , g(m−1)· t2 , . . . , 1, g

t
2 , . . . , g(m−1)· t2 ).

Then, we have the following lemma.
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Lemma 5.3 The identity

〈−→a qi+ j
2 ,−→v q+1

2 〉 = 0

holds for all 0 ≤ i, j ≤ q+1
2 + q−1

t − 2.

Proof By Lemma 2.3,

〈−→a qi+ j
2 ,−→v q+1

2 〉 =
r−1∑

k=0

m−1∑

ν=0

(g2kθν)qi+ j · θν· q+1
2

=
r−1∑

k=0

g2k(qi+ j)
m−1∑

ν=0

θν(qi+ j+ q+1
2 )

= 0.

(13)

��
Since both s and t are even, it is clear that all coordinates of −→a 1 are nonsquares

and all coordinates of−→a 2 are squares. Thus, there exists no duplication between these
two parts. Choose −→a = (

−→a 1,
−→a 2) and

−→v = (−→v 1,
−→v 2).

Theorem 5 Let n = lh+mr, where even s | q+1, even t | q−1, t ≥ 2, l = q2−1
s , m =

q2−1
t , h ≤ s

2 and r ≤ t
2 . Then for any 1 ≤ d ≤ min{� s+h

2 � · q+1
s −2, q+1

2 + q−1
t −1},

there exists an [[n, n − 2d, d + 1]]q quantum MDS code.

Proof The vectors −→a and −→v are defined as above. According to Lemmas 5.2 and 5.3,
it takes

〈−→a qi+ j ,−→v q+1〉 = 〈−→a qi+ j
1 ,−→v q+1

1 〉 + 〈−→a qi+ j
2 ,−→v q+1

2 〉 = 0,

for any 0 ≤ i, j ≤ d − 1. Therefore, by Theorem 2, the code GRSd(
−→a ,−→v ) is

Hermitian self-orthogonal. ByTheorem1, there exists an [[n, n−2d, d+1]]q quantum
MDS code, where n = lh +mr and 1 ≤ d ≤ min{� s+h

2 � · q+1
s − 2, q+1

2 + q−1
t − 1}.

��
Remark 5.1 When h approaches to s

2 and t = 4, both � s+h
2 �· q+1

s −2 and q+1
2 + q−1

t −1
approach to 3

4q. So the minimum distance of the quantumMDS code can approach to
3
4q.

Example 5.1 When q ≡ 9 (mod 20), applying Theorem 5 with (s, h, t, r) =
(10, 4, 4, 1), there exist q-ary quantum MDS codes with parameters

[[
13

20
(q2 − 1),

13q2 − 28q + 79

20
,
7q − 13

10

]]

q
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Table 1 Some of new
[[n, n − 2d, d + 1]]37 quantum
MDS codes

n n − 2d d + 1

588 544 23

624 580 23

660 614 24

696 650 24

702 658 23

732 684 25

738 694 23

768 720 25

774 728 24

804 756 25

810 764 24

816 772 23

840 792 25

846 798 25

852 808 23

882 834 25

918 868 26

954 904 26

whose minimal distance is approximately 0.7q when q is large. In general, the length
satisfies 13

20 (q
2−1) �≡ 0, 1 (mod q±1). Therefore, this class of quantumMDS codes

are new.

Example 5.2 When q ≡ 29 (mod 60), applying Theorem 5 with (s, h, t, r) =
(30, 14, 4, 1), there exist quantum MDS codes with parameters

[[
43

60
(q2 − 1),

43q2 − 88q + 229

60
,
11q − 19

15

]]

q

whose minimal distance is approximately 11q/15 ≈ 0.733q when q is large. Also,
the length satisfies 43

60 (q
2 − 1) �≡ 0, 1 (mod q ± 1) and these quantum MDS codes

are new.

6 Conclusion

Applying Hermitian construction and GRS codes, we construct several new classes of
quantum MDS codes over Fq2 through Hermitian self-orthogonal GRS codes. Some
of these quantumMDS codes can have minimum distance bigger than q

2 +1. Since the
lengths are chosen up to two variables h and r , this makes their lengths more flexible
than previous constructions. Using our results, we can produce many new quantum
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MDS codes with new lengths which have not appeared in previous works. We give an
example.

Example 6.1 Choose q = 37. Utilizing the results in this paper, there are 438 new
[[n, n − 2d, d + 1]]37 quantum MDS codes with minimum distance d + 1 ≥ q

2 + 1,
which were not reported in previous papers. We list some of new [[n, n−2d, d+1]]37
quantum MDS codes in Table 1.

For a fixed q, it is expected to have [[n, n−2d, d+1]]q quantumMDS codes for any
length of q +1 < n ≤ q2 +1 and minimum distance q

2 +1 ≤ d +1 ≤ min{ n2 , q +1}.
But summing up all the results, such quantum MDS codes are still very sparse. It is
expected that more quantumMDS codes with large minimal distance will be explored.
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