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Abstract
Based on cavity QED of free atoms, we theoretically investigate the implementation
of a three-qubit quantum phase gate in which the three qubits are represented by the
photons in modes of the cavity. A single four-level atom in double-V type passing
through the high-Q cavity is used to implement the gate. We apply the theory of
multiphoton resonance and use two-level effective Hamiltonians to predict the proper
values for detunings, coupling constants, and interaction times. By the use of both the
density matrix approach and wave function method, the influence of the decoherence
processes is theoretically and numerically analyzed. Further, we address the effects
of deviation in detunings and coupling coefficients and find that the gate operation is
substantially insensitive to such variations. Finally, we show that the proposed scheme
here can be extended for the implementation of multiqubit quantum phase gates.

Keywords Quantum information processing · Multimode cavity QED · Multiphoton
process

1 Introduction

Over the last few decades, there has been great interest in quantum computing research,
and one of the most important focal points for the research groups in this field is the
construction of a quantum computer [1]. The aim in quantum computing is basically to
harness both the principle of superposition and coherent entanglement in applications.
It has been shown that quantum computing is one of the most promising applications
of quantum mechanics to technology [2] and computational power for particular tasks
can be dramatically improved by the use of quantum computing [3–5]. For the imple-
mentation of quantum computation, a physical system should possess the following
main requirements [6]: (i) Efficientmanipulationwhich includes the ability to initialize
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the state of the qubits and the ability to implement a universal set of quantum gates; (ii)
the capability to reliably measure the individual qubit’s state; (iii) a physical system
works in the strong coupling regime; in other words, the gate operation time is much
shorter than qubit decoherence times; and (iv) a physical system should be scalable
with well-characterized qubits. Since the initial formulation of these requirements,
several physical systems have been invented or developed further for the purpose of
quantum computation (see for example [7–13]).

Among physical systems proposed as candidates for quantum computing imple-
mentation, physical systems based on cavity QED offer a promising means as they
benefit from a long history of their advantage in entanglement generation and coherent
manipulation [11,14,15]. Focusing upon cavity QED of free atoms both in microwave
andoptical domains, in experiments inwhichRydberg atoms interactwith amicrowave
cavity QED, it has been demonstrated that the atoms and the cavity can be prepared in
pure states, the strong coupling conditions are readily fulfilled, atoms can be efficiently
detected by state-selective detection via field ionization, and the quantum systems can
be individually addressed as they are separated by centimeter-scale distances [11,16].
In the optical domain, high finesse Fabry–Perot microcavities have been successfully
used to realize a strong interaction between the mode of the cavity and cold atoms
falling from a magneto-optical trap into a cavity. In this experiment, the presence of
atom inside the cavity is detected in real time by high-efficiency measurement via
homodyne or heterodyne detection [17]. Generally, single atoms trapped in and cou-
pled to optical resonators hold great promise in applications in quantum networks
and quantum communication, as they provide an interface between computation and
communication [18–20].

A quantum logic gate is the basic element of a quantum computer. In a quantum
network, a set of entangling two-qubit gates with a one-qubit rotation gate is univer-
sal for quantum computation [21,22]. For the construction of quantum computation,
multiqubit quantum gates play an important role (e.g., they are useful in quantum
algorithms and in implementing quantum error correction protocols [23,24]). As the
decomposition of multiqubit gates into elementary gates results in a complexity of
the N -qubit gates (for instance, in [25] a three-qubit quantum phase gate should be
decomposed into five two-qubit quantum phase gates and four one-qubit gates), direct
implementation of multiqubit gates is therefore useful to reduce the complexity of
the physical realization of practical computation [26]. Several physical systems have
been proposed for direct implementations of multiqubit quantum phase gates (see for
example [7,11,27–33]).

In this paper, based on cavity QED of free atoms, we theoretically investigate
the direct implementation of a three-qubit phase gate in which a four-level atom in
a double-V configuration strongly interacts with a high-Q three-mode cavity. The
structure of the paper is as follows. In Sect. 2, we give the physical model, use the
multiphoton resonance theory for the implementation of a three-qubit quantum phase
gate, and then examine the robustness of the scheme to variations in significant param-
eters of the model. The variation in the gate fidelity due to decoherence processes is
presented in Sect. 3, and the possibility to extend the scheme to multiqubit phase gates
is discussed. Finally, we conclude the paper in Sect. 4 with a summary.
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Fig. 1 The schematic of
three-qubit phase gate, where a
four-level atom in a double-V
type interacts with a three-mode
high Q cavity. The cavity can
hold three modes of frequencies
ω1, ω2, and ω3. The atomic
levels are such that
ωe1g = ω1 + �1,
ωe2g = ω2 + �2, and
ωe3g = ω3 + �3

2 Three-qubit quantum phase gate

2.1 Model configuration

A scheme of a three-qubit phase gate is depicted in Fig. 1. This scheme consists of
a four-level atom in a double V -configuration of the energy levels (i.e., three excited
states |e1〉, |e2〉, and |e3〉 are each coupled to the ground state |g〉 via a dipole allowed
transition but not to each other) inside a three-mode high Q cavity. As shown in Fig. 1,
the cavity modes have the resonant frequencies ω1, ω2, and ω3 and the atomic levels
are such that ωe1g = ω1 + �1, ωe2g = ω2 + �2, and ωe3g = ω3 + �3.

In the scheme, by choosing photonic qubits to carry quantum information the cavity
has three qubits that are encoded in the Fock states |0〉 and |1〉. All the possible
states in the cavity field therefore are |01, 02, 03〉, |11, 02, 03〉, |01, 12, 03〉, |01, 02, 13〉,
|11, 12, 03〉, |11, 02, 13〉, |01, 12, 13〉, and |11, 12, 13〉. For a three-qubit phase gate with
phase φ, we define the operator Tφ that describes such a gate via

Tφ = |01, 02, 03〉〈01, 02, 03| + |11, 02, 03〉〈11, 02, 03|
+ |01, 12, 03〉〈01, 12, 03| + |01, 02, 13〉〈01, 02, 13|
+ |11, 12, 03〉〈11, 12, 03| + |11, 0213〉〈11, 0213|
+ |01, 12, 13〉〈01, 12, 13| + exp(iφ)|11, 12, 13〉〈11, 12, 13|, (1)

and by setting φ = π , a three-qubit quantum phase gate can be realized.
The atom is considered to be in the ground state |g〉 in and out the cavity. That is, we

assume a de-excited atom enters and then leaves the three-qubit cavity in its ground
state, such an advantage provides a simple error correction. On exit from the cavity, if
the atomic state is not detected to be in the ground state |g〉 the logic operation must
be aborted.

In this paper, we adopt the notation |a〉⊗|b1〉⊗|b2〉⊗|b3〉 ≡ |a, b1, b2, b3〉where,
respectively, |a〉(a = g, e1, e2, e3) represents atomic state while |bi 〉 (for i = 1, 2, 3)
denotes that cavity fields have b photon in mode i with (b ∈ 0, 1). For an atom in
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its ground state |g〉 moving through the cavity, the initial state therefore is |ψ(0)〉 =
|g, b1, b2, b3〉. It is obvious that the initial state |g, 01, 02, 03〉 does not evolve with
the time. The situation, however, is nontrivial for the initial cavity states other than
|01, 02, 03〉. In the following, we discuss a cavity QED implementation with the case
φ = π and all other cavity states are in their initial states.

In the Schrödinger picture and with the dipole and rotating-wave approximations,
the Hamiltonian describes the system in Fig. 1 can be written as

H = �

∑

i=g,e1,e2,e3

ωi σ̂i i + �

3∑

j=1

ω j â
†
j â j

+ �[g1â1σ̂e1g + g2σ̂ge2 â
†
2 + g3â3σ̂e3g + H.c.], (2)

where the coupling strengths are g j ( j = 1, 2, 3), the atomic operators σ̂e1g ≡ |e1〉〈g|,
σ̂ge2 ≡ |g〉〈e2|, and σ̂e3g ≡ |e3〉〈g|, and â j is the photon annihilation operator for the
cavity mode.

2.2 Effective Hamiltonian

We now apply the theory of multiphoton resonance developed by Shore in [34] so that
the three-qubit phase gate in Eq. (1) is implemented. This theory, in general, has been
used in earlier works [35,36] for the implementation of a set of universal gates. For a
detailed study of the multiphoton process in cavity QED see [37]. In this paper, we
actually improve and extend the method to the implementation of a three-qubit and
more generally a multiqubit quantum phase gate. Following Shore’s theory, we first
introduce two orthogonal projection operators P and Q where P + Q = 1, PP = P ,
QQ = Q, and PQ = QP = 0. Throughout this work, we assume the states of
interest to correspond the subsystem spanned by P , leaving the remaining states in the
Q subsystem. The cavity field frequenciesω1 andω2 (see Fig. 1) are assumed to be far
detuned from the energy differences of the ground state |g〉 and then the states |e1〉 and
|e2〉 are spanned by Q, but the cavity field frequency ω3 is appropriately detuned from
the energy difference of |g〉 and therefore a two-level behavior occurs between levels
|g〉 and |e3〉. The two-level effectiveHamiltonian describing the subsystem |ψ〉P can be
defined as Heff = H0−BA−1B† where H0 = PHI P , A = QHI Q, B = PHI Q, and
HI is the Hamiltonian describing a system in an interaction picture. In the following,
we will find that the logical states |11, 02, 03〉, |01, 12, 03〉, |01, 02, 13〉, |11, 12, 03〉
remain in their initial states as a result of choosing appropriate values for detunings,
the global phases, and the gate operation time. The interesting situations are, however,
when the initial states are |g, 11, 12, 13〉, |g, 11, 02, 13〉, and |g, 01, 12, 13〉. For such
initial states, we apply Shore’s method [34] to determine the proper values for the
resonance conditions so that the condition for Tφ is realized.
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2.2.1 Input state: |g, 11, 12, 13〉

For an atom with such a configuration (see Fig. 1) in its ground state |g〉 moving
through the cavity with three photons in its modes, the initial state then is |ψ(0)〉 =
|g, 11, 12, 13〉 and after interaction time t , the state of the system is given by

|ψ(t)〉 = β1(t)|g, 11, 12, 13〉 + β2(t)|e1, 01, 12, 13〉
+β3(t)|e2, 11, 02, 13〉 + β4(t)|e3, 11, 12, 03〉, (3)

and therefore the Hamiltonian describing this system in an interaction picture can take
the form (� = 1)

HI = �1|e1, 01, 12, 13〉〈e1, 01, 12, 13|
+�2|e2, 11, 02, 13〉〈e2, 11, 02, 13|
+�3|e3, 11, 12, 03〉〈e3, 11, 12, 03|
+ [g1|e1, 01, 12, 13〉〈g, 11, 12, 13|
+ g2|g, 11, 12, 13〉〈e2, 11, 02, 13|
+ g3|e3, 11, 12, 03〉〈g, 11, 12, 13| + H.c.], (4)

with�1 = [(ωe1 −ωg)−ω1],�2 = [(ωe2 −ωg)−ω2], and�3 = [(ωe3 −ωg)−ω3].
We consider the case in which |e1〉 and |e2〉 are always set to be far from res-

onance and the states of interest correspond to the subsystem |ψ〉P spanned by P ,
|ψ〉P = β1(t)|g, 11, 12, 13〉 + β4(t)|e3, 11, 12, 03〉. In this case, �1 and �2 � g j
with g j ( j = 1, 2, 3) are all of the coupling constants, whereas �3 to be small
and its proper value will be determined later to ensure resonance. We use the two-
level effective Hamiltonian defined by Heff = H0 − BA−1B† where H0 = PHI P ,
A = QHI Q, B = PHI Q, and HI is given by Eq. (4). For reasons of convenience,
the Hamiltonian in Eq. (4) is rewritten in the matrix framework. That is, in the basis
{|g, 11, 12, 13〉, |e1, 01, 12, 13〉, |e2, 11, 02, 13〉, |e3, 11, 12, 03〉} one can represent HI

as

HI =

⎡

⎢⎢⎣

0 g1 g2 g3
g1 �1 0 0
g2 0 �2 0
g3 0 0 �3

⎤

⎥⎥⎦ . (5)

Selecting states |g, 11, 12, 13〉 and |e3, 11, 12, 03〉 as our P space, one can then partition
HI into the matrices:

B =
[
g1 g2
0 0

]
, H0 =

[
0 g3
g3 �3

]
, A =

[
�1 0
0 �2

]
. (6)

Using these parts and after a trivial energy shift, the effective two-level Hamiltonian
is

123



12 Page 6 of 15 M. M. Alqahtani

Fig. 2 Populations for the four-state system (3) as a function of normalized detuning �/g, where the two-
level behavior of Eqs. (8) and (9) are used for parameters in the Hamiltonian (4). Parameters: the coupling
strengths gi (i = 1, 2, 3) are all set to g, the detunings �1 and �2 are set to �, and the value of �3
is determined by the resonance condition in Eq. (9). In this plot, solid line is |β1|2, |β2|2 and |β3|2 are
represented by dotted and dash-dot lines, and |β4|2 is the dashed line

Heff = geff (σ̂− + σ̂+) + �eff σ̂+σ̂−, (7)

where the operators σ̂− ≡ |g, 11, 12, 13〉〈e3, 11, 12, 03| and σ̂+ ≡ |e3, 11, 12, 03〉
〈g, 11, 12, 13|. The effective coupling geff and the resonance condition �3 (by setting
�eff = 0) are determined by

geff = g3, (8)

�eff = �3 + g21/�1 + g22/�2. (9)

The time evolution of the system for the states of interest is thus given by

|g, 11, 12, 13〉 �→ cos(geff t) |g, 11, 12, 13〉
− i sin(geff t) |e3, 11, 12, 03〉. (10)

By setting the time evolution to (|gefft | = π) a π shift for the state |11, 12, 13〉 is
introduced. In Fig. 2 and by numerically integrating the full Hamiltonian (4), we plot
the populations for the four-state system in Eq. (3) as a function in�/g with the use of
the parameters in Eqs. (8) and (9) at |gefft | = π . This plot shows the exact numerical
dynamics to the analytical behavior in Eq. (10).

2.2.2 Input states: |g, 11, 02, 13〉 and |g, 01, 12, 13〉

We now consider the situation in which the input states are |g, 11, 02, 13〉 and
|g, 01, 12, 13〉. For the system initially in the state |g, 11, 02, 13〉, the state of the system
at any time t is given by
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|ψ(t)〉 = ξ1(t)|g, 11, 02, 13〉 + ξ2(t)|e1, 01, 02, 13〉
+ ξ3(t)|e3, 11, 02, 03〉. (11)

The Hamiltonian that describes the system in Eq. (11) in an interaction picture can be
then given by

HI = �1|e1, 01, 02, 13〉〈e1, 01, 02, 13|
+�3|e3, 11, 02, 03〉〈e3, 11, 02, 03|
+ [g1|e1, 01, 02, 13〉〈g, 11, 02, 13|
+ g3|g, 11, 02, 13〉〈e3, 11, 02, 03| + H.c.], (12)

with �1 = [(ωe1 − ωg) − ω1] and �3 = [(ωe3 − ωg) − ω3].
Following the same procedure outlined in the previous section, the operator P projects
onto the states we select to be populated: |g, 11, 02, 13〉 and |e3, 11, 02, 03〉. The oper-
ator Q therefore projects onto the state |e1, 01, 02, 13〉. The Hamiltonian (12) can be
displayed as the matrix

HI =
⎡

⎣
0 g1 g3
g1 �1 0
g3 0 �3

⎤

⎦ , (13)

and then one can partition HI into the following operators:

B =
[
g1
0

]
, H0 =

[
0 g3
g3 �3

]
, A = �1. (14)

Using these parts and according to the definition of the two-state effectiveHamiltonian,
i.e., Heff = H0−BA−1B†, the effective coupling constant and the resonance condition
can be then determined by

geff = g3, (15)

�eff = �3 + g21/�1. (16)

Therefore, the two-level system |ψ(t)〉P = ξ1(t)|g, 11, 02, 13〉 + ξ3(t)|e3, 11, 02, 03〉
evolves in time as

|g, 11, 02, 13〉 �→ cos(gefft) |g, 11, 02, 13〉
− i sin(gefft) |e3, 11, 02, 03〉. (17)

Similarly, for the input state |g, 01, 12, 13〉 and after interaction time t , one finds
that this state evolves as

|ψ(t)〉 = λ1(t)|g, 01, 12, 13〉 + λ2(t)|e2, 01, 02, 13〉
+ λ3(t)|e3, 01, 12, 03〉, (18)
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and theHamiltonian describing this system in an interaction picture can be represented
as

HI = �2|e2, 01, 02, 13〉〈e2, 01, 02, 13|
+�3|e3, 01, 12, 03〉〈e3, 01, 12, 03|
+ [g2|e2, 01, 02, 13〉〈g, 01, 12, 13|
+ g3|g, 01, 12, 13〉〈e3, 01, 12, 03| + H.c.], (19)

with �2 = [(ωe2 − ωg) − ω2] and �3 = [(ωe3 − ωg) − ω3].
Selecting out the states |g, 01, 12, 13〉 and |e3, 01, 12, 03〉 to be close to resonance and
then to be spanned by P , the resultant operators B, H0, and A which are required for
constructing the effective Hamiltonian Heff = H0 − BA−1B† are

B =
[
g2
0

]
, H0 =

[
0 g3
g3 �3

]
, A = �2. (20)

The parameters of the effective coupling constant geff and the effective detuning�eff
for the resultant two-level behavior are

geff = g3, (21)

�eff = �3 + g22/�2. (22)

The dynamical evolution of the state |ψ(t)〉P = λ1(t)|g, 01, 12, 13〉 + λ3(t)|e3, 01,
12, 03〉 can be given then as

|g, 01, 12, 13〉 �→ cos(gefft) |g, 01, 12, 13〉
− i sin(gefft) |e3, 01, 12, 03〉. (23)

Choosing an interaction time (|gefft | = π) for both the state |g, 11, 02, 13〉 in Eq. (17)
and the state |g, 01, 12, 13〉 in Eq. (23), the logical states |11, 02, 13〉 and |01, 12, 13〉
remain unaffected (note that we can, in principle, consider a global phase such that
undesired phase factor is removed [38]). This completes the description of the three-
qubit phase gate Tφ .

To check the validity of our proposal,we numerically integrate the fullHamiltonians
in Eqs. (4), ( 12), and (19) and measure the variation of the fidelity of the gateTφ . For
different values of a detuning� = �i (with i = 1, 2), Fig. 3 shows the variation of the
fidelity for the systems (3), (11), and (18) for being in the qubit states |g, 11, 12, 13〉,
|g, 11, 02, 13〉, and |g, 01, 12, 13〉, respectively. It is clear that fidelities oscillate with
peak values close to F = 1 for the value of a detuning� � 4g.Moreover, in Fig. 4 and
for the same systems, we allow the values of �3 to vary slightly around the resonance
conditions in Eqs. (9), (16), and (22) and measure the variation in fidelity. The inset
in this figure shows the effect of the variation of the atom-field strength in order of
2%. It is apparent that these systems are reasonably insensitive to variations in such
parameters. Under the conditions �1,2 � �3, gi (for i = 1, 2, 3) and the interaction
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Fig. 3 Variation of the fidelity F versus normalized�/g. The procedure of the effective two-level Hamilto-
nian is utilized to measure the fidelity for the systems (3), (11), and (18). Parameters: all coupling constants
gi (for i = 1, 2, 3) are set to g, the detunings �1 and �2 are set to �. The values for �3 are determined by
the resonance conditions in Eqs. (9), (16), and (22) for the systems (3), (11), and (18), respectively. Zoom
shows the fidelity F in the region 0 < �/g ≤ 5 for the same parameters
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Fig. 4 Variation of the fidelity F for the systems (3), (11), and (18) as function of �3/g. Parameters: the
coupling strengths gi for (i = 1, 2, 3) are all set to g, the values of �1 and �2 are set to � with � = 25g,
and the value of �3 is determined by the resonance conditions (9), (16), and (22). The inset measures the
variation of F for the system (3) for the same parameters, when slightly deviation in the coupling constants
g is considered

time between the field and the atom (|gefft | = π), the other logical qubits |11, 02, 03〉,
|01, 12, 03〉, |01, 02, 13〉, |11, 12, 03〉 remain unaltered.

3 Effects of decoherence

Since decoherence is a strong limiting factor in the implementation of any quantum
gate operation, it is necessary to measure the robustness of the three-qubit gate Tφ

with a consideration of such a factor. In what follows, we measure the variation in the
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gate fidelity when the dissipative processes, namely via photonic and atomic decays,
need to be considered.We only give the detail analysis of the influence of decoherence
processes when the initial state is |g, 11, 12, 13〉.

For this purpose, we use two different treatments: the density matrix approach as
a numerical method and the wave function approach as an analytical method. Begin-
ning with the numerical treatment, we recall Liouville’s equation (or general master
equation) that can be written, in the density matrix framework, as

∂

∂t
ρ = −i[HI , ρ] + L ρ. (24)

The first term in Eq. (24) describes the atom-field coupling for the system HI in Eq. (4)
and the second term L ρ is known as Liouville’s operator and contains the effects of
dissipations. At zero temperature, the LiouvillianL ρ has the so-called Lindblad form
[39]

L ρ =
∑

i

ηi DiρD†
i − 1

2

∑

i

ηi (D†
i Diρ + ρD†

i Di ), (25)

where η represents the loss of population. In our case, we consider two dominant
channels for decoherence mechanisms, namely the spontaneous emission γ and the
cavity field rate κ . The operators D and D† are the corresponding system operators.
In Fig. 5, we use Liouville’s equation, and under the existence of atomic and photonic
decays, we numerically integrate the full Hamiltonian (4) to measure the impact of
dissipative processes on the gate fidelity. This figure shows that the gate fidelity remains
above 0.90 for the parameters κ = 0.003g and γ = 0.005g. In the view of recent cavity
QED experiments, the gate fidelity becomes F ∼ 1. For example, in the experiment
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Fig. 5 Variation of the fidelity F for the system (3) in the presence of atomic and photonic decays. Param-
eters: the coupling strengths gi for (i = 1, 2, 3) are all set to g, the values of �1 and �2 are set to �

with � = 25g, and the value of �3 is determined by the resonance condition (9). The inset measures the
deviations between theoretical and numerical results by calculating the relative fidelity RF as a function of
the fraction κ/g
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[40], where γ /g = 0.0001 and γ = 4κ , the gate fidelity is F > 0.999. The system,
therefore, is substantially insensitive to variations in such parameters.

We now seek to deeply understand the numerical results provided by the den-
sity matrix approach in Eq. (24) by deriving analytical solutions. To this end, we
use the wave function method in [41]. Applying the Lindblad Form in Eq. (25) on
the system (3) shows that this system is not closed and decay channels result in
the irreversible loss of population. The system for the states of interest |ψ(t)〉P =
cg|g, 11, 12, 13〉+ce3 |e3, 11, 12, 03〉, therefore, can be described by the non-Hermitian
Hamiltonian

H ′
eff = − i

2
(κ1 + κ2 + κ3)) σ̂−σ̂+ + geff (σ̂− + σ̂+)

+ (�eff − i

2
(γe3g + κ1 + κ2)) σ̂+σ̂−, (26)

where κi with (i = 1, 2, 3) and γe3g denote the cavity field and the atomic relaxations,
respectively, and the definitions of the operators σ− and σ+ can be found in Eq. (7).
One, thus, can propagate the state vector |ψ(t)〉P with the Schrödinger equation using
H ′
eff, which yields the following differential equations (with geff = g3 and assuming

exact resonance, �eff = 0)

∂

∂t
cg = −1

2
(κ1 + κ2 + κ3) cg − i g3 ce3 ,

∂

∂t
ce3 = −i g3 cg − 1

2
(γe3g + κ1 + κ2) ce3 . (27)

With initial conditions (cg(t = 0) = 1 and ce3(t = 0) = 0) and in the strong coupling
regime g3 > κ, γ (note that κi = κ (for i = 1, 2, 3) and γe3g = γ ), the solutions for
(cg(t) and ce3(t)) can be then given as

|ψ(t)〉P =
{ [

cos(g3t) + (γ − κ)

4g3
sin(g3t)

]
|g, 11, 12, 13〉

− i sin(g3t)|e3, 11, 12, 03〉
}
exp−

(
(γ + 5κ)

4
t

)
. (28)

The fidelity of the system |ψ(t = π/g3)〉P , therefore, decreases according to F ∼
e
− π

2 (
γ+5κ
g3

)
. In the presence of dissipation processes, the deviation between analytical

and numerical calculations is depicted in the inset in Fig. 5 and measured by the
quantity of relative fidelity RF , such a quantity can be defined as RF = |Fth −
Fnum|/Fnum where Fth is the fidelity calculated by Eq. (28) and Fnum is the system
fidelity given by the numerical integration of the full Hamiltonian (4). This plot clearly
indicates the agreement between the results provided by the use of the density operator
method and the wave function approach.

For the input states |g, 11, 02, 03〉, |g, 01, 12, 03〉,|g, 01, 02, 13〉, |g, 11, 12, 03〉,
|g, 11, 02, 13〉, and |g, 01, 12, 13〉 either density matrix treatment, wave function
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method or both can be used to study the effects of atomic and cavity decays on the
populations of these initial states. It is also observed that the system in each input state
is not closed and it decays via the atomic spontaneous emission with the rate γ and
via the cavity field relaxation with the rate κ . Moreover, we find that decay channels
in all these systems result in an irreversible loss of population. In what follows, we
measure, if necessary, the impact of the decoherence processes for these input states
by integrating Eq. (24).

We now discuss the feasibility of implementing the proposed scheme within recent
cavity QED techniques. Our scheme explicitly requires the cavity modes ω1 and ω2
to be far detuned from the atomic transition frequencies ωe1g and ωe2g, respectively,
and the cavity mode ω3 to be nearly resonant with ωe3g. The sharp value of �3 is
determined by the resonance conditions. These requirements demand high control of
the values of significant parameters such as couplings and detunings. Recently, this
kind of control has been demonstrated by numerous cavity QED experiments. For
example, it is illustrated in [40] that for Rb85 atoms passing through a microwave
cavity and by using pulsed velocity-selected samples, the atomic position is known
at any time and the atoms are set in resonance during a short time window at a well
defined position in the cavity. For the case where a multilevel atom interacting with a
multimode cavity, it is reported in [42] that cold atoms such as Rb87 were positioned
at the cavity center within 4µm.

The scheme proposed here also requires the atom–cavity interaction to be in a strong
coupling regime. The strong coupling realization has been achieved by various cavity
QED techniques. For instance, in an experiment performed by [40] circular Rydberg
atomswith radiative lifetimes of the order of Tat = 30ms enter amicrowave cavitywith
ultrahigh Q factor approaching 4.2 × 1010 and with a damping time Tc = 130 ms at
51GHz,where the coupling constant for the atom–cavity interaction system is g/2π =
47 kHz. This experiment certainly works in the strong coupling regime (i.e., g > γ, κ).
Considering such an experiment and as we have previously found for the three-qubit
quantum phase gate discussed here that the interaction time required to realize the
gate is gTint = π , the three relevant times are (Tint, Tat, Tc) ∼ (0.01, 30, 130) ms. It
is, therefore, apparent that the relaxation times Tat and Tc are much longer than the
atom–cavity interaction time of the present scheme (slow decoherence and fast gate
operation), and therefore, all requirements for implementing the scheme are satisfied.

It isworth noting thatwe can easily extend our scheme to realizemultiqubit quantum
phase gates. The theory of multiphoton resonance can generally be used to isolate two-
level behavior from the general N -level rotating-wave approximation Schrödinger
equation. By adding more transitions to the three-qubit phase gate configuration (see
Fig. 1) and by the use of multiphoton resonance theory, one can therefore actually
construct the two-level behavior between the initial state |g, 11, 12, . . . , 1N−1, 1N 〉
and the last state of a sequence |eN , 11, 12, . . . , 1N−1, 0N 〉. Building the effective
two-level Hamiltonians, we can then precisely determine the proper values for the
resonance conditions, the effective couplings, and the interaction time in which the
phase shift is induced on the initial state, and therefore, the gate operation can be
formed. Additionally, impacts of decoherence in the implementation of the resultant
multiqubit gate can be addressed by the use of both the density matrix approach and
wave function method, by following the same procedure described in Sec. 3.
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4 Conclusion

In summary,wehave presented a scheme for realizing a three-qubit quantumphase gate
in which a four-level double V -type atom strongly interacts with a high-Q three-mode
cavity. The technique of adiabatic elimination from atomic physics is utilized to define
the effective two-level Hamiltonians and then to locate the resonances. Some practical
considerations such as the effects of deviation in detunings �i (for i = 1, 2, 3) and
coupling constants g and the influence of the presence of decoherence processes have
all been addressed, showing that the proposed scheme is highly insensitive to such vari-
ations. We also find that the scheme can be easily extended for direct implementation
of multiqubit quantum phase gate.

In the scheme, we consider an interaction between a multilevel atom and a mul-
timode field simultaneously inside a high-Q cavity in the strong coupling regime.
Recently, there has been considerable interest in constructing experiments where a
strong coupling between a multilevel atom and a multimode cavity is realizable. This
kind of interaction is experimentally achievable with the current development in the
resonator systems (see for example [42,43]).

The scheme proposed here has the following important features: (i) In the scheme
the three qubits are encoded on three modes inside a cavity (each qubit is therefore
treated equally), making the scheme favored for the realization of typical quantum
algorithms; (ii) the scheme is reasonably insensitive to decoherence processes and the
variations in important parameters such as detunings and couplings, meaning that the
scheme has reached a practical compromise on sensitivity and gate speed; (iii) as the
atom is proposed to be always in the ground state in and out the cavity, this feature
forms a simple error correction; (iv) it is possible to theoretically analyze decoherence
effects on the system, which provides further details for the population decays from
the excited states and the quantum jump events in the system; and (v) the scheme is
easily extendable to multiqubit phase gates. In general, the present scheme has a high
feasibility with recent or near-future experimental technology, enabling numerous
applications in the area of quantum information processing.
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