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Abstract
The exact analytical solutions for the dynamics of the dissipative three-level V-type
and Λ-type atomic systems in the vacuum Lorentzian environments are presented.
Quantum interference between the spontaneous emissions of different decaying chan-
nels for the V-type atomic system is observed. For the dissipative Λ-type atomic
system, however, similar phenomenon of quantum interference does not exist. We
demonstrate that quantum interference can be used to protect effectively the quantum
entanglement and quantum coherence. The control of the transition from Markovian
to non-Markovian processes is discussed.

Keywords Non-Markovian dynamics · Quantum interference · Quantum
entanglement · Quantum coherence

1 Introduction

The evolution of open quantum systems can be divided into two basic types, i.e.,
Markovian and non-Markovian processes. The early researches usually involve only
the Markovian processes, which make use of the Born–Markov approximation to
neglect all thememory effects, leading to the Lindbladmaster equation [1,2]. Recently,
researchers are attracted deeply by the non-Markovian processes. Much attention has
been devoted to the study of non-Markovian process of open quantum systems, includ-
ing the measure of non-Markovianity [3–16], the positivity of dynamics [17–19], and
someother dynamical properties [20–29].Manypossible applications of the dynamical
non-Markovianity also have been discovered, including the applications in quantum
metrology [30–32], quantum communication [33–36], and quantum control [37].
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The dynamics of open quantum systems is very sophisticated, and only very rare
of them can be solved exactly. The case of a two-level atom dissipating in a vacuum
environment is one of the fewexamples that can be solved exactly.Duo to the advantage
of the exact analytical solution, the dissipative two-level system becomes the paradigm
for the investigation of non-Markovian dynamics. Multilevel open quantum systems,
especiallymultilevel dissipative systems, due to their complexity, are relatively seldom
involved. Though several works have already involved the study of dissipative three-
level systems [38,39], the exact analytical expression that relates the evolved state to
its initial state (or Kraus representation) has not yet been established explicitly. Due to
the potential applications such as the quantum cryptography [40,41], the fault-tolerant
quantum computation, and quantum error correction [42], it is very worthwhile to
pour more efforts into the study of dynamics of multilevel open quantum systems. In
this paper, we will present the exact analytical solutions for the dissipative three-level
V-type and Λ-type atoms in the vacuum Lorentzian environments, which would be
very helpful in the study of the non-Markovian dynamics of open quantum systems.

Quantum interference is a kind of unique phenomenon ofmultilevel atomic systems
different from two-level systems. The transitions from different channels may take
place interference, leading to many interesting physical phenomena, such as the well-
known electromagnetically induced transparency (EIT) [43], ultranarrow spectral lines
[44], and spontaneous emission cancelation [45]. Quantum entanglement and quantum
coherence are two important concepts of quantum theory, which are very useful in
quantum information processing. As the application of the exact analytical solutions,
we first use them to discuss the problem of quantum interference of the three-level
atomic systems in the process of spontaneous emissions. Then we further study the
applications of the quantum interference in the protection of quantum entanglement
and quantum coherence.

Thepaper is organized as follows. InSect. 2,we introduce the twodynamicalmodels
for the V-type and Λ-type atomic systems interacting with vacuum environments
and present the exact analytical solutions. In Sect. 3, we study the phenomenon of
quantum interference between different decaying channels for the two considered
models. In Sect. 4,we study the protective roles of quantum interference to the quantum
entanglement and quantum coherence, for the dissipative V-type atomic system. In
Sect. 5, we discuss the non-Markovianity of the two types of dynamical models as the
last application of the exact solutions. Finally, we give the conclusions in Sect. 6.

2 Dynamical models and their solutions

2.1 V-type three-level atom

Consider a V-type three-level atomwith transition frequenciesω1 andω2 (see Fig. 1a),
which is embedded in a zero-temperature bosonic reservoir modeled by an infinite
chain of quantum harmonic oscillators. The Hamiltonian for the whole system may
be written as
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Fig. 1 Schematic diagram of
energy level for a V-type atom
and b Λ-type atom

(a) (b)

HV = ω1|1〉〈1| + ω2|2〉〈2| +
∑

k

ωkb
†
kbk +

∑

k

[g1kbk |1〉〈0| + g2kbk |2〉〈0| + h.c.] ,

(1)
where we set the energy of level |0〉 to be zero and thus levels |1〉 and |2〉 have energies
ω1 and ω2 (� = 1), respectively, bk and b

†
k are the annihilation and creation operators

for the kth harmonic oscillator of the reservoir, and g1k and g2k are the coupling
strengths between reservoir and the two transition channels, respectively.

Suppose that the initial state of the whole system is

|Ψ (0)〉 = [c0(0)|0〉 + c1(0)|1〉 + c2(0)|2〉] ⊗ |0〉R, (2)

where |0〉R denotes the vacuum state of environment. Employing the conservativeness
of excitation numbers of Jaynes–Cummings model, the dynamical state at any time t
may be written as

|Ψ (t)〉 = [c0(t)|0〉 + c1(t)|1〉 + c2(t)|2〉] ⊗ |0〉R +
∑

k

ck(t)|0〉 ⊗ |1k〉R, (3)

where |1k〉R indicates that there is a photon in the kthmode of the environment. Tracing
over the environmental degrees of freedom, then the reduced state of the atom in its
natural bases is

ρs(t) =
⎡

⎣
1 − |c1(t)|2 − |c2(t)|2 c0(t)c∗

1(t) c0(t)c∗
2(t)

c∗
0(t)c1(t) |c1(t)|2 c1(t)c∗

2(t)
c∗
0(t)c2(t) c∗

1(t)c2(t) |c2(t)|2

⎤

⎦ (4)

The evolution of coefficients ci (t) is determined by the Schrödinger equation
i∂|Ψ (t)〉/∂t = HV |Ψ (t)〉, which satisfy the following set of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c0(t) = c0(0), (5a)

iċ1(t) = ω1c1(t) +
∑

k

g1kck(t), (5b)

iċ2(t) = ω2c2(t) +
∑

k

g2kck(t), (5c)

iċk(t) = ωkck(t) + g∗
1kc1(t) + g∗

2kc2(t). (5d)
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Without loss of generality, we assume in the following g1k and g2k to be real.
Formally integrating Eq. (5d) and plugging it into Eqs. (5b), (5c), by use of the con-
tinuum limitation of environmental modes

∑
k gikg jk → ∫

dωJi j (ω) with Ji j (ω)

(i, j = 1, 2) being the spectral density function, one obtains

ċ1(t) = −iω1c1(t) −
∫ t

0
dτ f11(t − τ)c1(τ ) −

∫ t

0
dτ f12(t − τ)c2(τ ), (6)

ċ2(t) = −iω2c2(t) −
∫ t

0
dτ f22(t − τ)c2(τ ) −

∫ t

0
dτ f21(t − τ)c1(τ ), (7)

where fi j (t − τ) = ∫
dωJi j (ω)e−iω(t−τ) is the two-point correlation function of

environment. In the above deduction, we have used the initial condition ck(0) = 0.
Denoting ci (p) and fi j (p) the Laplace transformation of ci (t) and fi j (t), respectively,
then Eqs. (7) and (8) lead to

c1(p) = [p + iω2 + f22(p)]c1(0) − f12(p)c2(0)

Q(p)
, (8)

c2(p) = [p + iω1 + f11(p)]c2(0) − f21(p)c1(0)

Q(p)
, (9)

with Q(p) = [p + iω1 + f11(p)][p + iω2 + f22(p)] − f12(p) f21(p). In principle,
the inverse Laplace transformation of these equations gives the time evolution of c1(t)
and c2(t).

To go further, we need to specify the spectral density of the environment. As an
exemplification, we choose the Lorentzian spectrum

Ji j (ω) = 1

2π
· γi jλ

2

(ω0 − ω)2 + λ2
, (10)

where ω0 is the central frequency and λ defines the spectral width. The parameter
γi i ≡ γi with i = 1, 2 describes the spontaneous emission rates of level |i〉, and γi j
with i �= j describes the correlation between the two transitions in Fig. 1a. When the
dipole moments of the two transitions are parallel, the relation γ12 = γ21 = √

γ1γ2 is
met. In this paper, we consider only this case.

For the Lorentzian spectrum, the correlation function becomes as fi j (t − τ) =
γi jλ

2 e−M(t−τ) and the corresponding Laplace transformation reads fi j (p) = Bi j/(p+
M) with Bi j = γi jλ/2 and M = λ + iω0. In the case that the dipole moments of the
two transitions are parallel, one also has B11B22 − B12B21 = 0. Taking these results
into consideration, Eqs. (8)–(9) become,

c1(p) = [(p + iω2)(p + M) + B22]c1(0) − B12c2(0)

p3 + h1 p2 + h2 p + h3
, (11)

c2(p) = [(p + iω1)(p + M) + B11]c2(0) − B21c1(0)

p3 + h1 p2 + h2 p + h3
, (12)
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where h1 = M + i(ω1 + ω2), h2 = B11 + B22 − ω1ω2 + iM(ω1 + ω2), h3 =
−ω1ω2M + i(ω1B22 + ω2B11).

Observing that the numerator and denominator of Eqs. (11)–(12) are the second- and
third-order polynomials of p, if the roots bi (i = 1, 2, 3) of the polynomial equation
p3 + h1 p2 + h2 p+ h3 = 0 are non-degenerate, then we can make the decomposition

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c1(p) =
3∑

i=1

Di

p − bi
, (13a)

c2(p) =
3∑

i=1

D′
i

p − bi
. (13b)

For the degenerate case, the decomposition has different forms which are discussed
in “Appendix A.” Noting that bi are determined by the atomic and environmental
structure parameters, the degenerative probability is very small and may be avoided
by adjusting these structure parameters. The parameters Di (D′

i ) are the residues of
c1(p) (c2(p)) at the points p = bi , which in our problem may be written as

{
Di = Eic1(0) + Fic2(0), (14a)

D′
i = Gic2(0) + Hic1(0), (14b)

with

Ei = (bi + iω2)(bi + M) + B22

3b2i + 2h1bi + h2
,

Fi = − B12

3b2i + 2h1bi + h2
,

Gi = (bi + iω1)(bi + M) + B11

3b2i + 2h1bi + h2
,

Hi = − B21

3b2i + 2h1bi + h2
.

Finally, the inverse Laplace transformation of Eqs. (13a)–(13b) gives

{
c1(t) = E(t)c1(0) + F(t)c2(0), (15a)

c2(t) = G(t)c2(0) + H(t)c1(0), (15b)

with

E(t) =
3∑

i=1

Eie
bi t ,

F(t) =
3∑

i=1

Fie
bi t ,
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G(t) =
3∑

i=1

Gie
bi t ,

H(t) =
3∑

i=1

Hie
bi t .

So far, we have completed the solving process of the open V-type three-level atom
and the exact analytical results are given by Eqs. (4), (5a), (15a), (15b). We can also
express this dynamical process as the map ε that satisfies,

ε(|0〉〈0|) = |0〉〈0|,
ε(|1〉〈1|) = [1 − |E(t)|2 − |H(t)|2]|0〉〈0| + |E(t)|2|1〉〈1| + |H(t)|2|2〉〈2|

+E(t)H∗(t)|1〉〈2| + E∗(t)H(t)|2〉〈1|,
ε(|2〉〈2|) = [1 − |F(t)|2 − |G(t)|2]|0〉〈0| + |F(t)|2|1〉〈1| + |G(t)|2|2〉〈2|

+F(t)G∗(t)|1〉〈2| + F∗(t)G(t)|2〉〈1|,
ε(|1〉〈0|) = E(t)|1〉〈0| + H(t)|2〉〈0|,
ε(|2〉〈0|) = F(t)|1〉〈0| + G(t)|2〉〈0|,
ε(|2〉〈1|) = [−F(t)E∗(t) − G(t)H∗(t)]|0〉〈0| + F(t)E∗(t)|1〉〈1|

+G(t)H∗(t)|2〉〈2| + F(t)H∗(t)|1〉〈2| + E∗(t)G(t)|2〉〈1|.

This map will be used in the following for studying the evolution of entanglement.

2.2 3-type three-level atom

Besides open V-type three-level atoms, the dynamics of an open Λ-type three-level
atom dissipating in a zero-temperature bosonic reservoir can also be solved exactly.
Figure 1b shows the energy-level structure of a Λ-type three-level atom with |1〉 and
|2〉 the ground and meta-stable states and |3〉 the excited state. The Hamiltonian for
the combined system of the atom and its environment reads

HΛ = −ω1|1〉〈1|−ω2|2〉〈2|+
∑

k

ωkb
†
kbk +

∑

k

[g1kbk |3〉〈1| + g2kbk |3〉〈2| + h.c.] .

(16)
Here ω1 and ω2 are, respectively, the frequencies of the transitions |1〉 ↔ |3〉 and
|2〉 ↔ |3〉, and we set the energy of level |3〉 to be zero. The meanings of other
symbols are the same as before.

Suppose that the initial state of the combined system is

|Υ (0)〉 = [c1(0)|1〉 + c2(0)|2〉 + c3(0)|3〉] ⊗ |0〉R, (17)
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with |0〉R the vacuum state of environment, then the dynamical state at any time t may
be written as

|Υ (t)〉 = [c1(t)|1〉 + c2(t)|2〉 + c3(t)|3〉] ⊗ |0〉R
+

∑

k

ck(t)|1〉 ⊗ |1k〉R +
∑

k

dk(t)|2〉 ⊗ |1k〉R . (18)

As before |1k〉R indicates the single-photon state of the kth mode of environment. The
reduced state of the atom in its natural bases now becomes

s (t) =
⎡

⎣
|c1(t)|2 + ∑

k |ck (t)|2 c1(t)c
∗
2(t) + ∑

k ck (t)d
∗
k (t) c1(t)c

∗
3(t)

c2(t)c
∗
1(t) + ∑

k dk (t)c
∗
k (t) |c2(t)|2 + ∑

k |dk (t)|2 c2(t)c
∗
3(t)

c3(t)c
∗
1(t) c3(t)c

∗
2(t) |c3(t)|2

⎤

⎦ . (19)

Here the evolution of coefficients is determined by following set of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

iċ1(t) = −ω1c1(t), (20a)

iċ2(t) = −ω2c2(t), (20b)

iċ3(t) =
∑

k

g1kck(t) +
∑

k

g2kdk(t), (20c)

iċk(t) = −ω1ck(t) + ωkck(t) + g∗
1kc3(t), (20d)

iḋk(t) = −ω2dk(t) + ωkdk(t) + g∗
2kc3(t). (20e)

Obviously, the solving process of this problem is more complex than the case of
V-type atom, because we need to know the evolution of ck(t) and dk(t), besides c1(t),
c2(t) and c3(t). The evolution of c1(t) and c2(t) can be easily obtained

{
c1(t) = c1(0)e

iω1t , (21a)

c2(t) = c2(0)e
iω2t . (21b)

To get the evolution of the other coefficients, we formally integrate Eqs. (20d), (20e)
in the condition ck(0) = dk(0) = 0 and get

⎧
⎪⎪⎨

⎪⎪⎩

ck(t) = −i
∫ t

0
dτg∗

1kc3(τ )ei(ω1−ωk )(t−τ), (22a)

dk(t) = −i
∫ t

0
dτg∗

2kc3(τ )ei(ω2−ωk )(t−τ). (22b)

By plugging them into Eq. (20c), in the continuum limitation
∑

k gikg jk →∫
dωJi j (ω) with i, j = 1, 2, we obtain

ċ3(t) = −
∫ t

0
dτ [ f1(t − τ) + f2(t − τ)]c3(τ ); (23)

here the correlation function is defined by f j (t − τ) = ∫
dωJ j j (ω)ei(ω j−ω)(t−τ).
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Nowwe also assume theLorentzian spectrumEq. (10)with γ j j ≡ γ j ( j = 1, 2) that
describes the spontaneous emissions of levels |3〉 to | j〉. Assume that the transitions
have parallel dipole moments so that γ12 = γ21 = √

γ1γ2. Under these conditions,

we have f j (t − τ) = γ jλ

2 e−Mj (t−τ) with Mj = λ + i(ω0 − ω j ). The solution of Eq.
(23) may be written as

c3(t) = ξ(t)c3(0), (24)

with ξ(t) = (D1eβ1t + D2eβ2t + D3eβ3t ). Here βi are the roots of equation R(p) =
p3 + (M1 + M2)p2 + (M1M2 + γ1λ

2 + γ2λ
2 )p + γ1λ

2 M2 + γ2λ
2 M1 = 0, which are

assumed non-degenerate. As the degenerative probability is very small and can always
be avoided by adjusting the structure parameters, we thus have no longer presented
the expresses in detail. The coefficients Di are given by

Di = (βi + M1)(βi + M2)

3β2
i + 2(M1 + M2)βi + M1M2 + γ1λ

2 + γ2λ
2

. (25)

Having c3(t) in hand, we can then obtain the evolution of ck(t) and ck(t). Equations
(22a), (22b), in transition to continuum limitation, lead to

∑

k

|ck(t)|2 =
∫ t

0
dτ

∫ t

0
dτ ′ f1(τ ′ − τ)c3(τ )c∗

3(τ
′), (26)

∑

k

|dk(t)|2 =
∫ t

0
dτ

∫ t

0
dτ ′ f2(τ ′ − τ)c3(τ )c∗

3(τ
′), (27)

and

∑

k

ck(t)d
∗
k (t) =

∫ t

0
dτ

∫ t

0
dτ ′

∫
dωJ12(ω)eiω(τ−τ ′)ei(ω1t−ω2t−ω1τ+ω2τ

′)c3(τ )c∗
3(τ

′)

= γ12λ

2
ei(ω1−ω2)t

∫ t

0
dτ

∫ t

0
dτ ′c3(τ )c∗

3(τ
′)e−λ|τ ′−τ |+i(δ1τ−δ2τ

′). (28)

where

f j (τ
′ − τ) =

∫
dωJ j j (ω) exp [i(ω j − ω)(τ ′ − τ)] = γ jλ

2
exp [−λ|τ ′ − τ | − iδ j (τ

′ − τ)],

δ j = ω0 − ω j , and we have used

∫
dωJ12(ω)eiω(τ−τ ′) = γ12λ

2
e−λ|τ ′−τ |−iω0(τ

′−τ)

in the second equality of Eq. (28).
The double integrals in Eqs. (26)–(28) can be further solved. Using

|τ ′ − τ | =
{

τ ′ − τ if τ ′ ≥ τ,

τ − τ ′ if τ ′ < τ,

123
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to divide the integral with respect to τ ′ into two parts, after tedious but straightforward
calculations, we finally obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

k

|ck(t)|2 = α1(t)|c3(0)|2, (29a)

∑

k

|dk(t)|2 = α2(t)|c3(0)|2, (29b)

∑

k

ck(t)d
∗
k (t) = Θ(t)|c3(0)|2, (29c)

where

α1(t) = γ1λ

2

3∑

j,l=1

D jD∗
l

{
Ω

jl
1 e(β j+β∗

l )t + Ω
jl
2 e(−λ+β j+iδ1)t

+Ω
jl
3 e(−λ+β∗

l −iδ1)t + Ω
jl
4

}
, (30)

Θ(t) = γ12λ

2

3∑

j,l=1

D jD∗
l {W jl

1 e(β j+β∗
l )t + W jl

2 e(−λ+β j+iδ2)t + W jl
3 e(−λ+β∗

l −iδ1)t

+W jl
4 ei(ω1−ω2)t }, (31)

with

Ω
jl
1 = 1

(−λ + β∗
l − iδ1)(λ + β j + iδ1)

− 2λ

(λ + β∗
l − iδ1)(−λ + β∗

l − iδ1)(β j + β∗
l )

,

Ω
jl
2 = 1

(λ − β j − iδ1)(λ + β∗
l − iδ1)

,

W jl
1 = 1

(−λ + β∗
l − iδ2)(λ + β j + iδ1)

− 2λ

(λ + β∗
l − iδ2)(−λ + β∗

l − iδ2)[β j + β∗
l + i(ω2 − ω1)] ,

W jl
2 = 1

(λ + β∗
l − iδ2)(λ − β j − iδ1)

.

The other four coefficients can be obtained through the following replacement

Ω
jl
1

−−−−−−−→
λ → −λ Ω

jl
4 , Ω

jl
2

−−−−−−−→
λ → −λ Ω

jl
3 ,

W jl
1

−−−−−−−→
λ → −λ W jl

4 , W jl
2

−−−−−−−→
λ → −λ W jl

3 .

In addition, the coefficient α2(t) in Eq. (29b) can be obtained by making the replace-
ment

α1(t)
−−−−−−−−−−−−−−→γ1 → γ2, ω1 → ω2 α2(t). (32)

123
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Finally, the reduced density matrix Eq. (19) can be written as

s(t) =
⎡

⎣
|c1|2 + α1(t)|c3|2 c1c∗

2e
i(ω1−ω2)t + Θ(t)|c3|2 T1(t)c1c∗

3
c2c∗

1e
i(ω2−ω1)t + Θ∗(t)|c3|2 |c2|2 + α2(t)|c3|2 T2(t)c2c∗

3
T ∗
1 (t)c3c∗

1 T ∗
2 (t)c3c∗

2 α3(t)|c3|2

⎤

⎦ ,

(33)
where

T1(t) = eiω1t

⎛

⎝
3∑

j=1

D∗
j e

β∗
j t

⎞

⎠ ,

T2(t) = eiω2t

⎛

⎝
3∑

j=1

D∗
j e

β∗
j t

⎞

⎠ ,

α3(t) =
∣∣∣∣∣∣

3∑

j=1

D je
β j t

∣∣∣∣∣∣

2

,

and α1(t), α2(t), Θ(t) are given by Eqs. (30)–(32). For simplicity, we use the abbre-
viation ci (0) ≡ ci with i = 1, 2, 3 in Eq. (33). This dynamics also can be expressed
in terms of a map Λ,

Λ(|1〉〈1|) = |1〉〈1|,
Λ(|2〉〈2|) = |2〉〈2|,
Λ(|3〉〈3|) = α1(t)|1〉〈1| + α2(t)|2〉〈2| + α3(t)|3〉〈3|

+Θ(t)|1〉〈2| + Θ∗(t)|2〉〈1|,
Λ(|1〉〈2|) = exp[i(ω1 − ω2)t]|1〉〈2|,
Λ(|1〉〈3|) = |1〉〈3|,
Λ(|2〉〈3|) = |2〉〈3|.

3 Quantum interference

Having the exact analytical solutions presented above, we may study various dynami-
cal properties of the open three-level systems, whether Markovian or non-Markovian
processes. In this section, we use the solutions to demonstrate the phenomenon of
quantum interference of the spontaneous emissions.

For the open V-type three-level atom involved above, by observing the structure of
E(t), F(t),G(t), H(t) in Eqs. (15a), (15b), we know that the boundedness of |C1(t)|2
and |C2(t)|2 in the limit t → ∞ requires that each of the roots bi (i = 1, 2, 3) of
the equation p3 + h1 p2 + h2 p + h3 = 0 should have non-positive real part. When
one or more of the roots have zero real parts (i.e., pure imaginary roots), |C1(t)|2 and
|C2(t)|2 may have nonzero asymptotic values. Otherwise, the asymptotic values are
zero. The occurrence of the nonzero asymptotic values can be regarded as the result of
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quantum interference between the transitions |1〉 → |0〉 and |2〉 → |0〉, as explained
in the following.

By setting the ansatz p = iχ into the equation p3 + h1 p2 + h2 p + h3 = 0, we
find that the necessary condition of pure imaginary root is ω1 = ω2. This is just the
necessary condition of optical interference. Under this condition, can one observe the
quantum interference really?

In Fig. 2, we plot the time evolution of the populations |c1(t)|2 and |c2(t)|2 under the
interference condition, where we set ω1 = ω2 = ω0 = 20γ , λ = 2γ . In Fig. 2a, b, we
choose γ1 = γ2 ≡ γ and c1(0) = −c2(0) (Fig. 2a) or c1(0) = c2(0) (Fig. 2b).We find
that the populations |c1(t)|2 and |c2(t)|2 keep almost unchanged when c1(0) and c2(0)
have opposite signs, and reduce quickly to nearly zero when they have same signs.
This is actually the result of destructive interference and constructive interference. The
opposite signs between c1(0) and c2(0) mean opposite phases between the transitions
|1〉 → |0〉 and |2〉 → |0〉, leading to destructive interference of the transitions which
prohibits the decaying of the populations |c1(t)|2 and |c2(t)|2. On the contrary, same
signs between c1(0) and c2(0) lead to constructive interference which speeds up the
decaying of the populations.

In Fig. 2c, d, we let γ1 �= γ2 but satisfying γ1|c1(0)|2 = γ2|c2(0)|2 (where γ1 = γ

and γ2 = 2γ, 3γ, 4γ for the blue, red, black lines, respectively). It is shown similar
results: The populations |c1(t)|2 and |c2(t)|2 keep almost unchanged when c1(0) and
c2(0) have opposite signs, and reduce quickly when they have same signs. This can
be explained as follows: Though the decaying rates of the two excited states γ1 and
γ2 are different, the condition γ1|c1(0)|2 = γ2|c2(0)|2 guarantees that the decaying
strengths from the two transitions are same. Thus, the destructive interference in Fig. 2c
is complete and the populations can maintain unchanged. On the contrary, for the
case of γ1|c1(0)|2 �= γ2|c2(0)|2 (Fig. 2e, f, where γ1 = γ and γ2 = 3γ, 4γ, 2γ
for the blue, red, black lines, respectively), the difference of the decaying strengths
from the two transitions gives rise to incompletely destructive interference, leading
to the change of populations. The light emitted from the higher-strength decaying
channel has excess part which can excite in turn the lower-strength channel, leading
to the increase in asymptotic population that corresponds to lower-strength decaying
channel (Fig. 2e). In addition, for the constructive interference, as the decaying rates
γ1 and γ2 in Fig. 2b are small, the energy lost in the environment spreads out timely,
leading to the monotonic decrease in the populations. However, in Fig. 2d, f, with the
increase in γ2, the energy lost in the environment cannot spread out timely, leading to
the re-excitation of the populations. This is actually the commonly so-called memory
effect.

We can also discuss in a similar way the quantum interference of Λ-type atom
in the process of spontaneous emissions. From Eq. (24), we see that the necessary
condition for nonzero asymptotic population of the upper-level state is that the real
parts of βi must be zero. By setting ansatz p = iχ into the equation R(p) = p3 +
(M1 + M2)p2 + (M1M2 + γ1λ

2 + γ2λ
2 )p + γ1λ

2 M2 + γ2λ
2 M1 = 0, one obtains
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Fig. 2 Evolution of the populations versus dimensionless time γ t for the open V-type atomwith initial state
given by Eq. (2), where ω1 = ω2 = ω0 = 20γ , λ = 2γ . The solid lines denote |c1(t)|2, and dash lines
denote |c2(t)|2. The curves with different colors correspond to, respectively, the initial states with the same
colors. a and b γ1 = γ2 = γ ; c and d γ1|c1(0)|2 = γ2|c2(0)|2; e and f γ1|c1(0)|2 �= γ2|c2(0)|2

Fig. 3 Time evolution of the
population of the upper-level
state for the Λ-type atom, where
we set γ1 = γ2 = γ and the
other parameters are λ = 0,
ω0 = 91γ , ω1 = ω2 = 90γ for
the red dot-dash line; λ = 0.5γ ,
ω1 = ω2 = ω0 = 90γ for the
blue dash line; λ = γ ,
ω1 = 90γ , ω2 = 92γ ,
ω0 = 91γ for the black solid
line (Color figure online) 0 5 10 15
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2χ2 + (δ1 + δ2)χ − λ

2
(γ1 + γ2) = 0, (34a)

χ3 + (δ1 + δ2)χ
2 −

[
λ2 − δ1δ2 + λ

2
(γ1 + γ2)

]
χ − λ

2
(γ1δ2 + γ2δ1) = 0.

(34b)

Though there are several adjustable structure parameters γ j , δ j and λ, this set of
equations have no real root for χ when λ �= 0 (see the proof in “Appendix B”). Thus,
the asymptotic population of the upper-level statemust be zerowhen t → ∞. Note that
when λ = 0 the set of equations have real roots χ = 0 and χ = −δ1, with the former
valid for any structure parameters and the latter valid for δ1 = δ2. In fact, when λ = 0,
the correlation functions f j (t−τ) ( j = 1, 2) inEq. (23) are zero.Thus, |c3(t)|2 remains
its initial value unchanged. We plot the time evolution of the population |c3(t)|2 as
in Fig. 3 for several different sets of structure parameters. The oscillation of the blue
dash line originates from the non-Markovian effect. This analysis suggests that there
is no quantum interference between the two decaying channels when a Λ-type atom
takes place spontaneous emission in the realistic Lorentzian environment (λ �= 0).
Due to the absence of the quantum interference for the spontaneous emission of the
Λ-type atom, we will in the following section take the V-type atom as an exemplum
for investigation so as to highlight the roles of quantum interference.

4 Protection of quantum entanglement and quantum coherence

Entanglement and coherence describe the two different aspects of a quantum state–
quantum correlation and purity. Both of them are the important resource in quantum
information processing. We will find that the quantum interference of the open V-
type atom system has good protective roles to both the quantum entanglement and
coherence.

We employ the notion of entanglement negativity as the description of quantum
entanglement. For a bipartite system state ρAB, entanglement negativity is defined as
[46,47]

N (ρAB) =
∑

k

|ηTA(−)
k | =

∑
k |ηTAk | − 1

2
, (35)

where η
TA(−)
k and η

TA
k are, respectively, the negative and all eigenvalues of the partial

transpose of ρAB with respect to subsystem A.
Now assume that two V-type atoms are initially in a Werner-like state [48],

ρε = (1 − ε)

9
I + ε|Ψ AB〉〈Ψ AB|, (36)

where I denotes the three-dimensional identity matrix and |Ψ AB〉 = 1√
3
(|00〉+|11〉+

|22〉) is the maximally entangled state of the two atoms. The Werner-like state is
separable for 0 ≤ ε ≤ 1/4 and entangled for 1/4 < ε ≤ 1.

123



378 Page 14 of 23 H.-S. Zeng et al.

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

γ t γ t

N

(a)

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

N

(b)

Fig. 4 Evolution of entanglement negativity versus dimensionless time γ t for the open V-type atom with
initial Werner-like state of Eq. (36), where the red, black and blue lines correspond to ε = 1, 0.7, 0.5,
respectively. The dash lines correspond to the case of quantum interference with ω1 = ω2 = ω0 = 90γ ,
and the solid lines correspond to the case without quantum interference with ω1 = 90γ , ω2 = 92γ ,
ω0 = 91γ . Other parameters are chosen as γ1 = γ2 = γ , λ = 2γ . a Corresponds to unilateral environment
and b corresponds to bilateral environment

Obviously, for studying the evolution of entanglement, the key step is to obtain
the evolved state ρε(t). This can be reached by using the dynamical map presented
in Sect. 2. We discuss the problem in two cases: unilateral environment and bilateral
environment. The former means that only the atom A is influenced by the noisy envi-
ronment but atom B keeps noise-free; the latter means that both of the two atoms are
influenced by noises. In Fig. 4, we show the time evolution of the entanglement neg-
ativity of the Werner-like state for these two cases. It is shown that the entanglement
negativity for both unilateral environment and bilateral environment has similar decay-
ing behaviors. An interesting phenomenon is that the entanglement negativity reduces
to zero in the case without quantum interference (solid lines), but to a nonzero asymp-
totic value in the case with quantum interference (dash lines). This result demonstrates
that the quantum interference has good protective roles on quantum entanglement. The
reason for this protection is readily comprehensible:Without quantum interference, all
the population decays to the ground level of the V-type atom so that the entanglement
disappears.When quantum interference exists, the two upper levels can sustain certain
population and thus the entanglement is preserved effectively.

Quantum coherence is a very important notion in quantum physics, but a rigorous
quantification of it has been lacked. Up to very recently, Baumgratz, Cramer and
Plenio [49] established a rigorous framework for the quantification of coherence from
the point of resource theory. Two typical measures, i.e., the l1 norm of coherence
and the relative entropy of coherence (REC) in the framework, were presented. In
a reference basis {|i〉}i=1,...,d of a d-dimensional quantum system, the l1 norm of
coherence is simply defined as the sum of the absolute value of all the off-diagonal
elements of the system density matrix,

Cl1(ρ) =
∑

i, j |i �= j

|ρi, j |. (37)
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Obviously, this is a very simple and intuitive definition. The REC is defined as

Crel (ρ) = S
(
ρdiag

) − S (ρ) , (38)

where S is the von Neumann entropy function and ρdiag denotes the state obtained
from ρ by deleting all off-diagonal elements. Note that quantum coherence is basis-
dependent, and in the following we will use the atomic energy levels as the reference
bases.

Figure 5 gives the time evolution of the two measures of coherence for the Werner-
like state Eq. (36) of the V-type atomic system. It is shown that though the coherence
disappears quickly in the case without quantum interference, it has large asymptotic
value in the case of quantum interference. This asymptotic value is even much larger
than its initial value. This is to say that quantum interference can protect or even
enhance the coherence of quantum states. The physical explanation to this issue is
similar to that of the protection of entanglement: Quantum interference sustains pop-
ulation in the upper levels of the V-type atom, and thus, coherence may be preserved.
Otherwise, the population decays to the ground level and coherence disappears.

Another result revealed by Fig. 5 is that the two measures of coherence are not
always compatible. For example, in the beginning stage of Fig. 5b, the blue dash line
increases, but the red dash line decreases; Also, the blue solid line increases firstly
and then decreases, but the red solid line drops directly. Figure 5d also reveals distinct
difference of the two kinds of measure. This is to say the two measures of coherence
may be incompatible in some situations, though both of them satisfy the requirements
of the resource theory.

5 Non-Markovianity

The exact solutions for the open three-level atomic systems presented in Sect. 2 are
very suitable for the study of non-Markovian dynamics, because any approximation
may erase the non-Markovianity of quantum processes. We have already mentioned
the effect of non-Markovianity in Sect. 3. Now let us further discuss the problem for
both the V-type and Λ-type atomic systems.

One typical method for quantifying non-Markovianity of open quantum processes
is the entanglement-based measure [5], which is actually equivalent to the evolution
of entanglement for a maximal entangled state in the unilateral environment. In Fig. 6,
we show, respectively, the time evolution of entanglement negativity for the open V-
type andΛ-type atomic systems in the case of unilateral environment, where the initial
states are 1√

3
(|00〉+|11〉+|22〉) and 1√

3
(|11〉+|22〉+|33〉), respectively.We see from

the oscillation of the curves that the non-Markovianity decreases with the increase in
λ, and the transition from Markovian to non-Markovian dynamics can be realized by
controlling the spectral width λ. Note that the asymptotic entanglement for the V-type
atom vanishes, because all the populations on the two upper levels decays ultimately
into the single lower level; however, the asymptotic entanglement for theΛ-type atom
will not vanish in general, because the populations on the two lower levels can produce
entanglement.
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Fig. 5 Time evolution of quantum coherence for the open V-type atom with initial Werner-like state, where
γ1 = γ2 = γ ,λ = 2γ . aUnilateral environment and ε = 1;b unilateral environment and ε = 0.5; c bilateral
environment and ε = 1; d bilateral environment and ε = 0.5; The blue lines correspond toCl1 , and red lines
correspond to REC. Dash lines correspond to the case of quantum interference withω1 = ω2 = ω0 = 90γ ,
and solid lines to the case without quantum interference with ω1 = 90γ , ω2 = 92γ , ω0 = 91γ (Color
figure online)
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Fig. 6 Time evolution of entanglement negativity for the unilateral environment for different spectral
widths. a V-type atom with initial state 1√

3
(|00〉 + |11〉 + |22〉) and b Λ-type atom with initial state

1√
3
(|11〉 + |22〉 + |33〉), where γ1 = γ2 = γ , ω1 = 90γ , ω2 = 92γ , ω0 = 91γ
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Fig. 7 Time evolution of quantum coherence: a and b for V-type atom with initial state 1√
3
(|0〉+|1〉+|2〉),

c and d for Λ-type atom with initial state 1√
3
(|1〉 + |2〉 + |3〉), where γ1 = γ2 = γ , ω1 = 90γ , ω2 = 92γ ,

ω0 = 91γ

In Fig. 7, we show the time evolution of the l1-norm coherence and the REC for the
single V-type and Λ-type atomic systems, respectively, where the initial states are set
to be a uniform superposition of the three levels. For comparison, we choose the same
parameters as in Fig. 6. The non-Markovianity and the transition from Markovian
to non-Markovian dynamics are visibly seen from the oscillation of the curves. The
evolutional rules of the l1-norm coherence and the REC are similar; both of them
have more visible oscillations compared with the evolution of entanglement, in the
same parameter conditions (compare with Fig. 6). This implies that the measure of
non-Markovianity-based coherence is more sensitive than that based on entanglement
for the considered dynamics. In the same reason as in the evolution of entanglement,
here the asymptotic coherence for the Λ-type atom will not vanish in general, due to
the coherent population on the two lower levels.

One point needs to be noted: For theΛ-type atomic system, though the entanglement
and coherence drop more rapidly as the spectral width λ increases, their asymptotic
values may become larger (compare the black lines with the blue and purple lines in
Figs. 6b, 7c, d). The physical mechanism for this phenomenon is worthwhile to be
found.
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6 Conclusions

In conclusion, we have presented the exact analytical solutions for the dynamics of the
dissipative three-level V-type and Λ-type atomic systems in the vacuum Lorentzian
environments. On this basis, we have discussed the phenomenon of quantum interfer-
ence and demonstrated its protective role to the quantum entanglement and quantum
coherence. The control of the non-Markovianity for the two types of dynamical pro-
cesses has also been discussed.

Starting from the property of the asymptotic populations, we have verified that
quantum interference only takes place in the dissipative process of the V-type atomic
system, but does not exist in the dissipativeΛ-type atomic system.We have derived the
necessary condition of the quantum interference between the two decaying transitions
of the V-type atom, which are completely consistent with the interference condition
of classical light. Further analysis demonstrated that the quantum interference can be
distinguished as the destructive and constructive one. We believe that these results
will be valuable to the theory of quantum interference of the spontaneous emission
processes.

Quantum entanglement and coherence are very important notions in quantum
mechanics. Both of them are important physical resources in quantum information
processing. We have demonstrated that the quantum interference for the dissipative
V-type atomic system can be used to protect effectively the quantum entanglement and
coherence. Based on the notations of entanglement and coherence, we have discussed
the non-Markovianity for both the V-type and Λ-type atomic dynamics and revealed
the transition fromMarkovian to non-Markovian processes by controlling the spectral
width of the environment.

It is worthwhile to point out that the interference condition ω1 = ω2 of the spon-
taneous emission derived from the exact solution is different from the usual result
derived from the approximation approaches [44,45]. The underlying explanation to
this point needs to be explored further. In practice, due to the broadening of atomic
level, the condition ω1 = ω2 only can be met approximately.
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Appendix A: The inverse Laplace transformation of Eqs. (11), (12) for
the degenerate cases

If the polynomials p3 + h1 p2 + h2 p + h3 = 0 have a twofold root b1 and a single
root b3, then the decomposition of Eqs. (11) and (12) becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1(p) = D̂2

(p − b1)2
+ D̂1

p − b1
+ D̂3

p − b3
, (A.1a)

c2(p) = D̂′
2

(p − b1)2
+ D̂′

1

p − b1
+ D̂′

3

p − b3
, (A.1b)

123



Non-Markovian dynamics and quantum interference in open… Page 19 of 23 378

where

{
D̂i = Êi c1(0) + F̂i c2(0), (A.2a)

D̂′
i = Ĝi c2(0) + Ĥi c1(0), (A.2b)

with

Ê1 = b21 − (2b1 + M + iω2)b3 − iω2M − B22

(b1 − b3)2
,

F̂1 = B12

(b1 − b3)2
,

Ê2 = (b1 + iω2)(b1 + M) + B22

b1 − b3
,

F̂2 = − B12

b1 − b3
,

Ê3 = (b3 + iω2)(b3 + M) + B22

(b1 − b3)2
,

F̂3 = − B12

(b1 − b3)2
,

and

Ĝ1 = b21 − (2b1 + M + iω1)b3 − iω1M − B11

(b1 − b3)2
,

Ĥ1 = B21

(b1 − b3)2
,

Ĝ2 = (b1 + iω1)(b1 + M) + B11

b1 − b3
,

Ĥ2 = − B21

b1 − b3
,

Ĝ3 = (b3 + iω1)(b3 + M) + B11

(b1 − b3)2
,

Ĥ3 = − B21

(b1 − b3)2
.

The inverse Laplace transformation of Eqs. (A.1a) and (A.1b) gives the evolution

{
c1(t) = Ê(t)c1(0) + F̂(t)c2(0), (A.3a)

c2(t) = Ĝ(t)c2(0) + Ĥ(t)c1(0), (A.3b)

with

Ê(t) = (Ê1 + Ê2t)e
b1t + Ê3e

b3t ,
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F̂(t) = (F̂1 + F̂2t)e
b1t + F̂3e

b3t ,

Ĝ(t) = (Ĝ1 + Ĝ2t)e
b1t + Ĝ3e

b3t ,

Ĥ(t) = (Ĥ1 + Ĥ2t)e
b1t + Ĥ3e

b3t .

If the polynomials p3 + h1 p2 + h2 p+ h3 = 0 have only one threefold root b, then
Eqs. (11) and (12) become

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1(p) = Ď3

(p − b)3
+ Ď2

(p − b)2
+ Ď1

p − b
, (A.4a)

c2(p) = Ď′
3

(p − b)3
+ Ď′

2

(p − b)2
+ Ď′

1

p − b
, (A.4b)

where

Ď3 = [(b + iω2)(b + M) + B22]c1(0) − B12c2(0),

Ď2 = (2b + M + iω2)c1(0),

Ď1 = 2c1(0),

Ď′
3 = [(b + iω1)(b + M) + B11]c2(0) − B21c1(0),

Ď′
2 = (2b + M + iω1)c2(0),

Ď′
1 = 2c2(0).

The inverse Laplace transformation of Eqs. (A.4a) and (A.4b) gives

{
c1(t) = Ě(t)c1(0) + F̌(t)c2(0), (A.5a)

c2(t) = Ǧ(t)c2(0) + Ȟ(t)c1(0), (A.5b)

with Ě(t) = { 12 [(b + iω2)(b + M) + B22]t2 + (2b + M + iω2)t + 2}ebt , F̌(t) =
− 1

2 B12t2ebt , Ǧ(t) = { 12 [(b + iω1)(b + M) + B11]t2 + (2b + M + iω1)t + 2}ebt ,
Ȟ(t) = − 1

2 B21t2ebt .

Appendix B: Proof of no real root of Eqs. (34a), (34b)

If λ �= 0, then χ �= 0. Multiplying Eq. (34a) by χ/2 and then subtracting Eq. (34b),
one has

(δ1 + δ2)χ
2 −

[
2λ2 − 2δ1δ2 + λ

2
(γ1 + γ2)

]
χ − λ(γ1δ2 + γ2δ1) = 0 (B.1)

If δ1 + δ2 �= 0, multiplying Eq. (34a) by (δ1 + δ2)/2 and then subtracting Eq. (B.1),
one gets

χ = λγ1(3δ2 − δ1) + λγ2(3δ1 − δ2)

8λ2 + 2(δ1 − δ2)2 + 2λ(γ1 + γ2)
. (B.2)
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Plugging it into Eq. (34a), we can obtain the quadratic equation with respect to ω0,

aω2
0 + bω0 + c = 0 (B.3)

where a = 4λ2(u + v)2 + 4λn(u + v), b = −8λ2(u + v)(ω1u + ω2v) − 2λn[(3ω1 +
ω2)u + (3ω2 + ω1)v] and c = 4λ2(ω1u + ω2v)2 + 2λn(ω1 + ω2)(ω1u + ω2v) +
1
2λn

2(u+v), with u = γ1−3γ2, v = γ2−3γ1 and n = 2(ω1−ω2)
2+8λ2+2λ(γ1+γ2).

The discriminant of Eq. (B.3) is

Δ = b2 − 4ac

= −256λ2n2[γ1γ2(ω1 − ω2)
2 + λ2(γ1 + γ2)

2] < 0,

which implies that ω0 is a complex number.
If δ1 + δ2 = 0, then Eqs. (34a) and (B.1) reduce, respectively, to

4χ2 − λ(γ1 + γ2) = 0, (B.4)

[4λ2 + 4δ21 + λ(γ1 + γ2)]χ − λδ1(γ1 − γ2) = 0. (B.5)

Combining them to eliminate χ , we get the quadratic equation with respect to δ1

± √
(γ1 + γ2)λδ21 − λ(γ1 − γ2)δ1 ±

√
(γ1 + γ2)λ5 ± 1

4
[(γ1 + γ2)λ]3/2 = 0. (B.6)

This equation also leads to δ1 only having complex roots.
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