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Abstract
We derive the weak limit theorem for a class of long-range-type quantumwalks. To do
it, we analyze spectral properties of a time evolution operator and prove that modified
wave operators exist and are complete.
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1 Introduction

Quantum walks have been introduced as a quantum counter part of classical random
walks. Several prototypes of quantum walks have been introduced (for example, see
e.g., [1,17,24]). In a view point of quantum information theory, Grover [16] and Shor
[35] introduced algorithms based on quantum mechanics related to database search-
ing and prime factorization, respectively. After that, Ambainis et al. [2] considered
discrete time quantum walks based on quantum information theory. It is thought that
their contribution is a trigger that quantum walks are paid attention by various field
researchers.

Quantum walks are roughly divided into two types, discrete time and continuous
time. In continuous-time cases, time evolution is governed by the Laplacian on graphs
which is a self-adjoint operator. On the other hand, in discrete-time cases, time evo-
lution is governed by a unitary operator. One of the typical unitary operators is an
Ambainis type [2] which is a product of a shift operator and a coin operator. Espe-
cially, in discrete-time cases, a generator of time evolution operator is unknown in
general. In these aspects, generators of a class of discrete time quantum walks are
studied by Segawa and Suzuki [33]. However, in order to know some properties of
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discrete time quantum walks, we need technical treatment for unitary operators them-
selves. A relation between continuous time and discrete time is studied in [6,34,36].
Unitary equivalent classes between two discrete time quantum walks are investigated
in [26,27].

It is known that discrete-time quantum walks have remarkable properties which
are not seen in classical random walks. One of these properties appears in a “weak
limit theorem.” In [19], Konno firstly derived the limit distribution of quantum walks.
He also revealed that the shape of limit distribution is quite different from the nor-
mal distribution. Limit distribution of various types of quantum walks is investigated
[7,8,10–12,15,21,22,30,40]. Second feature is a “localization.” Localization is a phe-
nomenon that the existence probability of a quantum walker is strictly positive after
infinitely many time evolutions on some positions. An occurrence of localization is
deeply connected to the existence of eigenvalues of time evolution operators. One-
dimensional one defect models are precisely considered in [5] by using the CGMV
method. Konno [20] also considered a one-dimensional one defect model. He showed
the existence of new types of localization. Localization is also considered in other
models [13,14,18,25]. Third feature is “quantum tunneling.” In [23], it is shown that a
quantumwalker can tunnel through a double well under some conditions. It is believed
that this phenomenon corresponds to “resonances.” However, studies related to reso-
nances on quantum walks are few. Other properties of quantum walks are summarized
in [38] and references therein.

From now, we explain some results related to weak limit theorem in detail. First,
we briefly introduce a mathematical framework of quantum walks. The Hilbert space
is

H := l2(Z; C
2) =

{
� : Z → C

2|
∑
x∈Z

‖�(x)‖2
C2 < ∞

}
,

and time evolution operator is U := SC where

(S�)(x) =
[
�(1)(x + 1)
�(2)(x − 1)

]
, (C�)(x) = C(x)�(x), � ∈ H, x ∈ Z,

and {C(x)}x∈Z ⊂ U (2). Let �0 ∈ H (‖�‖ = 1) be an initial state of a quantum
walker. Then, the quantum state after time t ∈ Z is given by Ut�0.

For �0 ∈ H with ‖�0‖ = 1 and t ∈ Z, Xt be a Z-valued random variable whose
probability distribution is given by P(Xt = x) = ‖(Ut�0)(x)‖2

C2 . Our interest is to
find the random variable V such that Xt with a suitable scaling converges to V as
t → ∞. Konno considered space-homogeneous quantum walks in one dimension. It
means that C(x) = C0 (x ∈ Z) for some C0 ∈ U (2). He assumes that the initial state
�0 ∈ H has a form of
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�(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
α

β

]
x = 0,

[
0

0

]
otherwise,

(|α|2 + |β|2 = 1).

Then, he showed that the existence of R-valued random variable V such that Xt/t →
V as t → ∞ in a weak sense through combinatorial arguments [19]. After that,
Grimmett et al. gave a simple proof for Konno’s result, extended to d-dimensional
space-homogeneous quantum walks and removed the assumption related to initial
states [15]. Their proof is based on an application of the discrete Fourier transform. A
crucial contribution is to find the self-adjoint operator V̂0 which induces the random
variable V . V̂0 is called an “asymptotic velocity operator.” To find the limit distribution
of Xt/t as t → ∞, it suffices to find a suitable asymptotic velocity operator. Recently,
a nonlinear quantum walk is considered in [22].

If we allow a coin operator C to be depend on x ∈ Z, it becomes difficult to
obtain the weak limit theorem since the discrete Fourier transform does not work. To
overcome this difficulty, Suzuki [37] introduced the idea of spectral scattering theory
for quantumwalks. Here, we introduce the notion of short-range-type and long-range-
type conditions:

Definition 1.1 A coin operator C satisfies a short (resp. long) range-type condition if
there exists C0 ∈ U (2), κ > 0, and γ > 1 (resp. 1 ≥ γ > 0) such that

‖C(x) − C0‖B(C2) ≤ κ(1 + |x |)−γ , x ∈ Z,

where ‖ · ‖B(C2) is the operator norm on C
2.

We assume that C satisfies the short-range-type condition. We set U0 := SC0. Then,
the following wave operator

W± := s- lim
t→±∞U−tU t

0�ac(U0)

exist and are complete (i.e., RanW± = Hac(U )). It means that the quantum stateUt�

is approximated byUt
0�± for some�± ∈ H as t → ±∞. Moreover, we can show the

absence of singular continuous spectrum ofU byMourre theory [4,29]. We denote the
asymptotic velocity operator of U0 by V̂0. Suzuki showed that the limit distribution
of Xt/t as t → ∞ is derived from a sum of the orthogonal projection onto the set of
eigenvectors of U and the spectral measure of W ∗+V̂0W+.

On the other hand, in the long-range-type condition, wave operators do not exist in
general [39]. It means that the quantum stateUt� cannot be approximated by a vector
whose form isUt

0�+ for some�+ ∈ H as t → ∞. In the short-range-type case, a coin
operator C(x) converges to C0 sufficiently fast. Thus, it is assumed that a quantum
walker far from origin is approximately driven by not U = SC but U0 = SC0.
However, in the long-range-type case, a coin operator C(x) slowly converges to C0.
Thus, it is assumed that a quantum walker still gets a influence of C(x) even though a
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quantum walker is in a position far from origin. In this sense, it is not trivial problem
how to get the limit distribution of Xt/t .

In scattering theory for quantum mechanics, it is known that we have to introduce
modified wave operators instead of wave operators. There are lots of results related
to long-range-type scattering theory [9,28]. To introduce modified wave operators, it
is important to introduce a suitable “modifier” induced by the Hamiltonian. However,
it is difficult to introduce a modifier in a context of quantum walks straightforwardly
since the Hamiltonian corresponds to U = SC is unknown in general.

To overcome the difficulty mentioned in above, we consider a suitable unitary
transform J such that the difference of U and Ũ0 := JU0 J−1 behaves like the short-
range-type condition. We assume that J is a multiplication operator and coin operator
C has a form of

C(x) =
[
e−iξ(x) 0

0 eiξ(x)

]
C0 =

[
ae−iξ(x)eiα be−iξ(x)eiβ

−beiξ(x)e−iβ+iδ a∗eiξ(x)e−iα+iδ

]
,

for some ξ : Z → R and C0 ∈ U (2). For details, see Sect. 2. Since only phases of
components of C(x) are position dependent, transition probabilities that a quantum
walker moves to right or left are essentially same as the case ofC0. In this sense, a time
evolution operator U = SC can be regarded as a simple perturbation of U0 = SC0.
However, we can not apply straightforwardly results in [37] if ξ(x) slowly converges
to 0.

Under an additional assumption for ξ(x), we can choose a suitable unitary operator
J and derive the weak limit theorem. As far as we know, this is the first result related
to long-range-type quantum walks. To derive the weak limit theorem, it is important
to show the absence of singular continuous spectrum of U and existence of modified
wave operators. We apply commutator theory for unitary operators under two Hilbert
space settings established by Richard et al. [29] and Kato–Rosenblum-type theorem
established by Suzuki [37].

Contents of this paper are as follows. In Sect. 2, we give a definition of a model in
quantum walks and some fundamental properties are explained. In Sect. 3, some facts
in the commutator theory are introduced. In Sect. 4, we show the absence of singular
continuous spectrum of U by applying the commutator theory explained in Sect. 3.
In Sect. 5, we derive the weak limit theorem which is a main result in this paper. In
Sect. 6, we give comments for future problem as a conclusion of this paper.

2 Definition of a model

In this section, we review some notations and fundamental results for quantum walks.
The Hilbert space is given by

H := l2(Z; C
2) =

{
� : Z → C

2
∣∣∣∑
x∈Z

‖�(x)‖2
C2 < ∞

}
, (2.1)
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where ‖ · ‖C2 is the norm on C
2. We denote its inner product and norm by 〈·, ·〉H

(linear in the right vector) and ‖ · ‖H, respectively. If there is no danger of confusion,
then we omit the subscriptH of them. We introduce the following dense subspace of
H:

Hfin := {� ∈ H|∃N ∈ N such that �(x) = 0 for all |x | ≥ N }. (2.2)

Next, we introduce two unitary operators U and U0. The shift operator S is defined
by

(S�)(x) :=
[
�(1)(x + 1)
�(2)(x − 1)

]
, � ∈ H x ∈ Z. (2.3)

Let C0 be a 2 × 2 unitary matrix. We introduce the coin operator C as follows:

(C�)(x) := C(x)�(x), C(x) :=
[
e−iξ(x) 0

0 eiξ(x)

]
C0, x ∈ Z, (2.4)

where ξ is a real-valued function on Z. Throughout in this paper, we identify C0 as a
unitary operator on H such that (C0�)(x) = C0�(x), x ∈ Z. We set U := SC and
U0 := SC0.

Next, we recall spectral properties of U0 = SC0. We denote the discrete Fourier
transform which is unitary fromH to K := L2([0, 2π), dk/2π; C

2) and

(Fφ)(k) := φ̂(k) =
∑
x∈Z

φ(x)e−ikx , k ∈ [0, 2π), φ ∈ Hfin.

We set Û0 := FU0F−1. It is seen that Û0 is a U (2)-valued multiplication operator
given by

Û0(k) =
[
eik 0
0 e−ik

]
C0, k ∈ [0, 2π).

Note that C0 has a form of

C0 =
[

aeiα beiβ

−be−iβ+iδ ae−iα+iδ

]
,

where a, b ∈ [0, 1] with a2 + b2 = 1, α, β ∈ [0, 2π) and eiδ (δ ∈ [0, 2π)) is
the determinant of C0. We denote an eigenvalue and a corresponding normalized
eigenvector by λ j (k) and u j (k) ( j = 1, 2), respectively.

Let B be a unitary or self-adjoint operator on H. The sets σ(B), σp(B), σc(B),
σess(B) and σac(B) are called spectrum, pure point spectrum, continuous spectrum,
essential spectrum and absolutely continuous spectrum of B, respectively.

Proposition 2.1 [29, Lemma 4.1]
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(1) If a = 0, then

λ1(k) = ieiδ/2, λ2(k) = −ieiδ/2,

and

σ(U0) = σp(U0) = {ieiδ,−ieiδ}.

(2) If 0 < a < 1, then

λ j (k) = eiδ/2(τ (k) + i(−1) j−1η(k)), j = 1, 2,

where τ(k) := a cos(k + α − δ/2) and η(k) := √
1 − τ(k)2. Moreover, it follows

that

σ(U0) = σc(U0) = {eit |t ∈ [δ/2 + ζ, π + δ/2 − ζ ] ∪ [π + δ/2 + ζ, 2π + δ/2 − ζ ]},

where ζ := arccos(a).
(3) If a = 1, then

λ1(k) = ei(k+α), λ2(k) = e−i(k+α−δ),

and

σ(U0) = σc(U0) = T := {eit |t ∈ [0, 2π)}.

In what follows, we assume that a ∈ (0, 1] (C0 is not off-diagonal) to avoid a trivial
case.

For a given coin operatorC defined in (2.4), we introduce an important assumption:

Assumption 2.1 Let ξ : Z → R be a function such that lim
t→±∞ ξ(x) = 0. Then, there

exists θ : Z → R such that{∣∣ξ(x) − {
θ(x + 1) − θ(x)

}∣∣ ≤ κ(1 + |x |)−1−ε0 ,∣∣ξ(x) − {
θ(x) − θ(x − 1)

}∣∣ ≤ κ(1 + |x |)−1−ε0 ,
x ∈ Z,

with some constants κ > 0 and ε0 > 0.

Example 2.1 If ξ(x) = (1 + |x |)−1, x ∈ Z. Then, we choose θ as follows:

θ(x) =
{
log(1 + x), if x ≥ 0

− log(1 − x), if x < 0

Then, there exists κ > 0 such that{∣∣ξ(x) − {
θ(x + 1) − θ(x)

}∣∣ ≤ κ(1 + |x |)−2,∣∣ξ(x) − {
θ(x) − θ(x − 1)

}∣∣ ≤ κ(1 + |x |)−2,
x ∈ Z.
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Example 2.2 We can consider a generalization of Example 2.1. For 0 < p < 1, we set
ξ(x) = (1 + |x |)−p, x ∈ Z. Then, we choose θ as

θ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1

1 − p
(1 + x)1−p, if x ≥ 0,

− 1

1 − p
(1 − x)1−p, if x < 0

Then, there exists κ > 0 such that{∣∣ξ(x) − {
θ(x + 1) − θ(x)

}∣∣ ≤ κ(1 + |x |)−1−p,∣∣ξ(x) − {
θ(x) − θ(x − 1)

}∣∣ ≤ κ(1 + |x |)−1−p,
x ∈ Z.

In what follows, we assume the existence of θ which satisfies Assumption 2.1. We
introduce the U (2)-valued multiplication operator J as follows:

(J�)(x) := J (x)�(x), J (x) =
[
eiθ(x) 0
0 eiθ(x)

]
, x ∈ Z, � ∈ H. (2.5)

It is obvious that J is unitary onH. We set Ũ0 := JU0 J−1. Then, we can express Ũ0
as Ũ0 = SC̃0, where C̃0 := S−1 J SC0 J−1.

Proposition 2.2 C̃0 is a U (2)-valued multiplication operator on Z such that

C̃0(x) =
[
e−i{θ(x)−θ(x−1)} 0

0 ei{θ(x+1)−θ(x)}
]
C0, x ∈ Z.

Proof Since J−1 andC0 commute, it suffices to consider the form of (S−1 J S J−1)(x).
For any � ∈ H, it is seen that

(J S J−1�)(x) =
[
ei{θ(x)−θ(x+1)}�(1)(x + 1)
ei{θ(x)−θ(x−1)}�(2)(x − 1)

]
.

Moreover, it follows that

(S−1 J S J−1�)(x) =
[
(J S J−1�)(1)(x − 1)
(J S J−1�)(2)(x + 1)

]

=
[
e−i{θ(x)−θ(x−1)}�(1)(x)
ei{θ(x+1)−θ(x)}�(2)(x)

]

=
[
e−i{θ(x)−θ(x−1)} 0

0 ei{θ(x+1)−θ(x)}
] [

�(1)(x)
�(2)(x)

]

Thus, the desired result follows. ��

By proposition 2.2 and |eis −1| ≤ |s| for s ∈ R, we have the following proposition:
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Proposition 2.3 For any x ∈ Z, it follows that

∥∥∥C(x) − C̃0(x)
∥∥∥B(C2)

≤ 2κ(1 + |x |)−1−ε0 ,

where ‖ · ‖B(C2) is the operator norm on C
2.

We introduce “modified wave operators” as follows:

W±(U ,U0, J ) := s- lim
t→±∞U−t JU t

0�ac(U0),

where �ac(U0) is the orthogonal projection onto the absolutely continuous subspace
of U0.

Theorem 2.1 W±(U ,U0, J ) exist and are complete.

Proof From Proposition 2.3, we can show that C − C̃0 is trace class [37, Lemma 2.1].
Thus, U − Ũ0 is trace class. Then, it is seen that

W±(U , Ũ0) := s- lim
t→±∞U−t Ũ t

0�ac(Ũ0)

exist and are complete (RanW± = Hac(U )) [37, Theorem 2.3]. Since Ũ t
0 = JUt

0 J
−1

and �ac(Ũ0) = J�ac(U0)J−1, it is seen that

s- lim
t→±∞U−t JU t

0�ac(U0) = s- lim
t→±∞U−t JU t

0 J
−1 J�ac(U0)J

−1 J

= s- lim
t→±∞U−t Ũ t

0�ac(Ũ0)J

= W±(U , Ũ0)J .

This implies the existence ofW±(U ,U0, J ). SinceW±(U , Ũ0) are complete, we have
Ran(W±(U , Ũ0)) = Hac(U ). Since U0 has purely absolutely continuous spectrum
(see Proposition 4.1 below), J mapsHac(U0) toHac(Ũ0). Thus, the completeness of
W±(U ,U0, J ) follows. ��
Proposition 2.4 It follows that

σess(U ) = σess(U0)

=
{

{eit |t ∈ [δ/2 + ζ, π + δ/2 − ζ ] ∪ [π + δ/2 + ζ, 2π + δ/2 − ζ ]}, if 0 < a < 1,

T if a = 1.

Proof From Proposition 2.3, C − C̃0 is a compact operator. This implies that the
compactness of U − Ũ0 = S(C − C̃0). By Lemma 2.2 of [25] and unitary invariance
of essential spectrum, we have σess(U ) = σess(Ũ0) = σess(U0). The last equality
follows from Proposition 2.1. ��
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3 Commutator theory

In this section, we recall some definitions and notations related to commutator theory.
We mainly refer [2,29]. We denote the set of bounded linear operators from a Hilbert
space H0 to H by B(H0,H) and B(H) := B(H,H). Moreover, we denote the set of
compact operators fromH0 toH by K(H0,H) and K(H) := K(H,H).

Let T ∈ B(H) and let A be a self-adjoint operator on H. We say that T ∈ Ck(A)

(k ∈ N) if a B(H)-valued map R � t �→ e−i t AT eit A belongs to Ck class strongly.
Especially in the case where k = 1, it is known that T ∈ C1(A) if and only if a
following form

D(A) � φ �→ 〈Aφ, Tφ〉 − 〈φ, T Aφ〉

can be continuously extended to the form on H. We denote the operator corresponds
to continuous extension of the above form by [A, T ].

Here, we introduce three regularity conditions which are stronger than T ∈ C1(A).
T ∈ C1,1(A) means that T ∈ C1(A) and

∫ 1

0
‖e−i t AT eit A + eit AT e−i t A − 2S‖B(H)

dt

t2
< ∞.

T ∈ C1+0(A) means that T ∈ C1(A) and

∫ 1

0
‖e−i t A[A, S]eit A − [A, S]‖B(H)

dt

t
< ∞.

T ∈ C1+ε for some ε > 0 means that T ∈ C1(A) and

‖e−i t A[A, S]eit A − [A, S]‖B(H)‖ ≤ Const.tε for all t ∈ (0, 1).

For above conditions, following inclusion relation holds [2, Sect. 5.2.4]:

C2(A) ⊂ C1+ε(A) ⊂ C1+0(A) ⊂ C1,1(A) ⊂ C1(A).

Next, we introduce two functions which are useful to consider the commutator
theory for unitary operators which is introduced in [29]. For self-adjoint cases, see
e.g., [2, Sect. 7.2]. We assume that U ∈ C1(A). For T , S ∈ B(H), we write T � S
if there exists a compact operator K ∈ K(H) such that T + K ≥ S. For θ ∈ T and
ε > 0, we set

�(θ, ε) := {θ ′ ∈ T||arg(θ − θ ′)| < ε}, EU (θ; ε) := EU (�(θ; ε)).

where, EU (·) is the spectral measure of U . Under above preparations, we introduce
functions ρA

U : T �→ (−∞,∞] and ρ̃A
U : T �→ (−∞,∞] by

ρA
U (θ) := sup{a ∈ R|∃ε such that EU (θ; ε)U−1[A,U ]EU (θ; ε) ≥ aEU (θ; ε)},
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and

ρ̃A
U (θ) := sup{a ∈ R|∃ε > 0 such that EU (θ; ε)U−1[A,U ]EU (θ; ε) � aEU (θ; ε)}.

General facts related to commutator theory for unitary operators in one Hilbert space
are considered in [29, Sect. 3.3]. The following fact is important to show the absence
of singular continuous spectrum:

Theorem 3.1 [29, Theorem 3.6] Let U be a unitary operator and A be a self-adjoint
operator on H. We assume either that U has a spectral gap and U ∈ C1,1(A) or
U ∈ C1+0(A). Moreover, we also assume that there exists an open set � ⊂ T, a > 0,
and an operator K ∈ K(H) such that

EU (�)U−1[A,U ]EU (�) ≥ aEU (�) + K .

Then, U has at most finitely many eigenvalues in�, each one of finite multiplicity, and
U has no singular continuous spectrum in �.

To showTheorem3.1, in addition,we introduce the commutator theory in a twoHilbert
space setting. We consider an another triple (H0, U0, A0) in addition to (H,U , A),
where H0 is a Hilbert space, U0 is a unitary operator on H, and A0 is a self-adjoint
operator onH0. We also introduce a identification operator J ∈ B(H0,H). Following
general result is important:

Theorem 3.2 [29, Theorem 3.7] We assume that

1. U0 ∈ C1(A0) and U ∈ C1(A),
2. JU−1

0 [A0,U0]J ∗ −U−1[A,U ] ∈ K(H),
3. JU0 −U J ∈ K(H0,H),
4. For each f ∈ C(C, R), f (U )(J J ∗ − 1) f (U ) ∈ K(H).

Then, it follows that ρ̃A
U ≥ ρ̃

A0
U0

To apply the commutator theory for time evolution operator U introduced in Sect. 2,
in what follows, we consider two triples (H,U , J A0 J ∗) and (H,U0, A0). A follow-
ing fact is useful to check the condition U ∈ C1(A) and the second condition in
Theorem 4.2:

Theorem 3.3 [29, Corollary 3.11, Corollary 3.12] Let U0 ∈ C1(A0). Suppose that
J A0 J ∗ is essentially self-adjoint on a set D, and assume that

BA0 � D(A0) ∈ B(H), B∗A0 � D(A0) ∈ K(H),

where B := JU0 − U J0 and B∗ := JU∗
0 − U∗ J . Then, U ∈ C1(J A0 J ∗) and

JU−1
0 [A0,U0]J ∗ −U−1[J A0 J ∗,U ] ∈ K(H).
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4 Spectral analysis for quantumwalks

In this section, we show the absence of singular continuous spectrum of U . First, we
introduce the asymptotic velocity operator of U0 = SC0 by

V̂0ψ(k) =
∑
j=1,2

iλ j (k)

λ j (k)
〈u j (k), ψ̂(k)〉C2u j (k), x ∈ [0, 2π), ψ ∈ H.

Note that V0 is bounded and self-adjoint on H.
Let C([0, 2π); C

2) be the set of C
2-valued continuous functions on [0, 2π).

For anyψ, φ ∈ C([0, 2π); C
2),we introduce theoperator |ψ〉〈φ| : C([0, 2π); C

2) →
C([0, 2π); C

2) by

(|ψ〉〈φ| f )(k) := 〈ψ(k), f (k)〉C2φ(k), f ∈ C([0, 2π; C
2), k ∈ [0, 2π).

This operator can be continuously extended to a bounded operator on H. Moreover,
we introduce the self-adjoint operator P in K as follows:

D(P) := { f ∈ K| f is absolutely continuous , f ′ ∈ K, and f (0) = f (2π)},
(P f ) := −i f ′, f ∈ D(P).

Under above notations, we introduce the operator X by

X̂ f (k) := −
∑
j=1,2

(|u j 〉〈u j |P − i |u j 〉〈u′
j |) f , f ∈ FHfin.

X is essentially self-adjoint [29, Lemma 4.3], and we denote the closure of X by the
same symbol. Moreover, we introduce the following operator:

A0 := 1

2
(XV0 + V0X).

A0 is self-adjoint and essentially self-adjoint on Hfin.

Proposition 4.1 [29, Proposition 4.5] Following properties hold:

1. U0 ∈ C1(A0) and U
−1
0 [A0,U0] = V 2

0 .

2. ρ
A0
U0

= ρ̃
A0
U0

and

(a) if a ∈ (0, 1), then ρ̃
A0
U0

(θ) > 0 for θ ∈ Int(σ (U0)), ρ̃
A0
U0

(θ) = 0 for θ ∈ ∂σ(U0),

and ρ̃
A0
U0

(θ) = ∞ otherwise,

(b) if a = 1, then ρ̃
A0
U0

(θ) = 1 for all θ ∈ T.

3. If a ∈ (0, 1), then U0 has purely absolutely continuous spectrum and

σ(U0) = σac(U0) = {eiγ |γ ∈ [δ/2 + ζ, π + δ/2 − ζ ] ∪ [π + δ/2 + ζ, 2π + δ/2 − ζ ]}
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4. If a = 1, then U0 has purely absolutely continuous spectrum and σ(U0) =
σac(U0) = T.

In what follows, we set A := J A0 J ∗. We show conditions in Theorem 3.2 for two
triples (H,U , A) and (H,U0, A0).

Lemma 4.1 It follows that U ∈ C1(A) and JU−1
0 [A0,U0]J ∗ −U−1[A,U ] ∈ K(H).

Proof FromProposition 4.1,we knowU0 ∈ C1(A0).Moreover, J A0 J−1 is essentially
self-adjoint on D = Hfin since J is unitary and JHfin = Hfin. Now, we check two
conditions in Theorem 4.3. We note that A0 has a following form on Hfin:

A0 = QK + i

2
H0

for some K , H0 ∈ B(H), where Q is the position operator defined by

D(Q) :=
{

ψ ∈ H|
∑
x∈Z

x2‖ψ(x)‖C2 < ∞
}

, (Qψ)(x) := xψ(x), x ∈ Z.

For more details, see the proof of [12, Lemma 4.10]. OnHfin, it follows that

BA0 = (JU0 J
∗ −U )J

(
QK + i

2
H0

)
= (Ũ0 −U )QJK + i

2
(Ũ0 −U )H0

= S(C̃0 − C)QJK + i

2
(Ũ0 −U )H0,

wherewe used the commutativity of J and Q. FromProposition 2.3, we see that C̃0−C
is a compact operator and (C̃0 − C)Q can be extended to a compact operator on H.
Thus, we have BA0 � D(A0) ∈ K(H) ⊂ B(H). By the similar manner, it follows on
Hfin that

B∗A0 = (JU∗
0 J

∗ −U∗)J
(
QK + i

2
H0

)

= (C̃∗
0 − C∗)SJ QF−1KF + i

2
(Ũ0 −U )∗ J H0

= (C̃0 − C)∗QSJ K + (C̃0 − C)∗(SQ − QS)J K + i

2
(Ũ0 −U )∗ J H0

Since (C̃0 − C)∗ and (Ũ0 − U )∗ are compact, (C̃0 − C)∗Q can be extended to a
compact operator on H and SQ − QS can be extended to a bounded operator on H,
we have B∗A0 � D(A0) ∈ K(H). An application of Theorem 3.3 implies the desired
result. ��
Since J is unitary, J J ∗ = 1 holds. Moreover, JU0 − U J = (JU0 J − U )J =
(Ũ0 − U )J ∈ K(H) since Ũ0 − U is compact. Therefore, we checked conditions
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in Theorem 4.2. We introduce the set of threshold of U by τ(U ) := ∂σ(U0), where
∂σ(U0) is the set of boundary of σ(U0) in T. We note that τ(U ) contains at most 4
values.

Proposition 4.2 We have ρ̃A
U ≥ ρ̃

A0
U0

. In particular, if θ ∈ σ(U0)\τ(U ), then ρ̃
A0
U0

(θ) >

0.

Proof ρ̃A
U ≥ ρ̃

A0
U0

follows by an application of Theorem3.2. The latter assertion follows
from Proposition 4.1. ��
To apply Theorem 3.1, we have to check a regularity of U more detail.

Lemma 4.2 For any ε ∈ (0, 1)with ε ≤ ε0, U ∈ C1+ε0(A). Here, ε0 > 0 is a constant
introduced in Assumption 2.1.

Proof This proof is a slight modification of [29, Lemma 4.13]. In the proof of Propo-
sition 4.5 of [29], we see that U0 ∈ C2(A0). Since J is unitary, it follows that
Ũ0 ∈ C2(A) ⊂ C1+ε(A). We decompose U as U = Ũ0 + (U − Ũ0). Thus, it
suffices to show that U − Ũ0 ∈ C1+ε(A). We see that

D0 := A(U − Ũ0) − (U − Ũ0)A

onHfin can be extended to a bounded operator onH. We denote it by the same symbol.
According to [2, p. 325–328] or [29, Lemma 4.13], following estimate holds:

‖e−i t AD0e
it A − D0‖B(H) ≤ Const.(‖ sin(t A)D0‖B(H) + sin(t A)D∗

0‖B(H))

≤ Const.(‖t A(t A + i)−1D0‖B(H) + ‖t A(t A + i)−1D∗
0‖B(H)).

We set At := t A(t A + i)−1 and �t := t〈Q〉(〈Q〉 + i)−1 with 〈Q〉 := √
Q2 + 1. We

note that A〈Q〉−1 ∈ B(H). Then, it follows that

At = (At + i(t A + i)−1A〈Q〉−1)�t .

Since At + i(t A + i)−1A〈Q〉−1 is bounded, it suffices to show that

‖�t D0‖B(H) + ‖�t D
∗
0‖B(H) ≤ Const. tε t ∈ (0, 1).

We have to show that operators 〈Q〉εD0 and 〈Q〉εD0 defined on the form sense on
Hfin extended to a bounded operator on H. We note that 〈Q〉1+ε(C − C̃0) ∈ B(H)

and 〈Q〉−1A0 defined in the form sense on Hfin extend to a bounded operator on H.
This implies that 〈Q〉εD0 and 〈Q〉εD∗

0 defined in the form sense on Hfin extend to
bounded operators on H. Thus, the proof is completed. ��
By Theorem 3.1, Proposition 4.2 and Lemma 4.2, we have the following result.

Theorem 4.1 Forany closed set� ⊂ T\τ(U ), the operatorU hasatmost finitelymany
eigenvalues in �, each one of finite multiplicity, and U has no singular continuous
spectrum in �.

Recall that τ(U ) is a finite set. From Theorem 4.1, U has no singular continuous
spectrum.
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5 Derivation of weak limit theorem

We set Q0(t) := U−t
0 QUt

0.

Theorem 5.1 [37, Theorem 4.1] It follows that

s- lim
t→∞ eiξQ0(t)/t = eiξV0 , ξ ∈ R.

Let Xt be a random variable which describes the position of a quantum walker with
U and an initial state �0 at time t ∈ Z. The probability distribution of Xt is given by

P({Xt = x}) = ‖(Ut�0)(x)‖2C2 , x ∈ Z.

Moreover, we also introduce the characteristic function of the average velocity Xt/t
of a quantum walker by

E[eiξ Xt/t ] := 〈�0, e
it Q(t)/t�0〉, ξ ∈ R,

where Q(t) := U−t QUt . Our interest is the limit of Xt/t in a weak sense.

Theorem 5.2 We set V+
J := W+(U ,U0, J )V0W+(U ,U0, J )∗. Then, for any ξ ∈ R,

it follows that

s- lim
t→∞ eiξQ(t)/t = �p(U ) + eiξV

+
J �ac(U ),

where �p(U ) is the orthogonal projection onto a subspace generated by eigenvectors
of U.

Proof Since U have no continuous spectrum, we can decompose that

s- lim
t→∞ eiξQ(t)/t = s- lim

t→∞
(
eiξQ(t)/t�p(U ) + eiξQ(t)/t�ac(U )

)
.

By [37, Theorem 4.2], we have s- limt→∞ eiξQ(t)/t�p(U ) = �p(U ). For the abso-
lutely continuous part, we consider the following decomposition:

eiξQ(t)/t�ac(U ) − eiξV
+
J �ac(U )

= U−t eiξQ/tU t�ac(U ) − W+(U ,U0, J )eiξV0W+(U ,U0, J )∗�ac(U )

= U−t JU t
0(U

−t
0 eiξQ/tU t

0)U
−t
0 J−1Ut�ac(U )

− W+(U ,U0, J )eiξV0W+(U ,U0, J )∗�ac(U )

= U−t JU t
0e

iξQ0(t)/t
(
U−t
0 J−1Ut�ac(U ) − W+(U ,U0, J )∗

)
�ac(U )

+U−t JU t
0

(
eiξQ(t)0/t − eiξV0

)
W+(U ,U0, J )∗�ac(U )

+ (
U−t JU t

0 − W+(U ,U0, J )
)
eiξV0W+(U ,U0, J )∗�ac(U ),
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where we used the strong commutativity of Q and J . We note that W+(U ,U0, J )∗
mapsHac(U ) toHac(U0) and V0 leavesHac(U0) invariant. By Theorem 5.1, it is seen
that s- limt→∞ eiξQ0/t = eiξV0 . By taking a limit t → ∞, the desired result follows.

��
Theorem 5.3 Let �0 ∈ H be an initial state with ‖�0‖ = 1 and V be the random
variable whose probability distribution is given by

μV (dv) := ‖�p(U )�0‖2δ0dv + ‖E+
VJ

(·)�ac(U )�0‖2dv,

where δ0 is the Dirac measure for the point 0 and EV+
J
(·) is the spectral measure of

V+
J . Then, it follows that

lim
t→∞ E[eiξQ(t)/t ] = E[eiξV ], ξ ∈ R.

Proof The proof is quite similar to [37, Corollary 2.4]. We omit the proof. ��

6 Conclusion

In this paper, we derived the weak limit theorem for a class of discrete time quantum
walks which partially include long-range types. Recall that the support of limit distri-
bution of C0 is determined by |a| the absolute value of a diagonal component of C0.
For any x ∈ Z, it is seen that

C(x) =
[
e−iξ(x) 0

0 eiξ(x)

] [
aeiα beiβ

−be−iβ+iδ a∗e−iα+iδ

]

=
[

ae−iξ(x)eiα be−iξ(x)eiβ

−beiξ(x)e−iβ+iδ a∗eiξ(x)e−iα+iδ.

]

Thus, absolute values of diagonal components of C(x) are position independent. It
is expected that the shape of limit distribution of U = SC is quite similar to that
of U0 = SC0. It may be an interesting problem to reveal a relationship between a
difference of two coin operators and a difference of a shape of limit distribution.

In this paper, we could not treat a following type of coin operator:

C ′(x) = 1√
2

[√
1 + 〈x〉−ε

√
1 − 〈x〉−ε√

1 − 〈x〉−ε −√
1 + 〈x〉−ε

]
, x ∈ Z.

C ′(x) converges to CH as x → ±∞ the Hadamard coin which is a quantum version
of symmetric classical random walks:

CH = 1√
2

[
1 1
1 −1

]
.
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Since absolute values of diagonal components of C ′ are position dependent, it is
expected that long-time behavior of a quantum walker under U ′ = SC ′ is more
complicated. Our next problem is to establish a method of construction of a modifier
for U ′ = SC ′ to derive the weak limit theorem.
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