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Abstract
Morphological image processing is a relatively mature image processing method in
classical image processing. However, in quantum image processing, the related results
are still quite scarce. In this paper, we first design the quantum circuits of the two
basic operations of dilation and erosion for binary images and grayscale images. On
this basis, for binary image, the quantum circuits of three morphological algorithms
(noise removal, boundary extraction and skeleton extraction) are designed in detail.
For grayscale image, the quantum circuits of three morphological algorithms (i.e.,
edge detection, image enhancement and texture segmentation) are also designed. In
the design of these circuits, the parallelism of quantum computation is considered. The
analysis of the circuits complexity shows that all the six morphological algorithms can
speed up their classic counterparts.

Keywords Quantum image processing · Quantum morphological dilation · Quantum
morphological erosion · Quantum morphological algorithm design

1 Introduction

In 1982, Feynman had pointed out that there seemed to be essential difficulties in sim-
ulating quantum mechanical systems on the classical computers and suggested that
building computers based on the principles of quantum mechanics would allow us to
avoid those difficulties. Motivated by the suggestion, in 1985, Deutsch was naturally
led to consider computing devices based upon the principles of quantum mechanics.
These remarkable suggestions taken by Feynman and Deutsch were studied in the
subsequent decade by many people, culminating in Peter Shor’s [1] demonstration
that two enormously important problems—the problem of finding the prime factors of
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an integer and the so-called discrete logarithm problem—could be solved efficiently
on the a quantum computer [1]. Further evidence for the power of quantum computers
came in 1996 when Lov Grover showed that another important problem—the problem
of conducting a search through some unstructured search space—could also be sped
up on a quantum computer [2]. While Grover’s algorithm did not provide as spec-
tacular a speedup as Shor’s algorithms, the widespread applicability of search-based
methodologies has excited considerable interest in Grover’s algorithm. With the birth
of these two famous algorithms, quantum computing and quantum informatics have
quickly become an international research hot spot.

Quantum image processing is an emerging interdisciplinary subject based on quan-
tum physics and integrated into computer science and classical image processing.
Based on the principles of quantum mechanics, it studies the basic theory and method
of image processing on quantum computer. In 2003, the concept of quantum image
processing was first proposed in Ref. [3], marking the birth of this new discipline.
The development of quantum image processing was described in detail in Ref. [4].
For quantum image processing, it is first necessary to convert a classic image into its
quantum version, so quantum image description is the first step in quantum image
processing. The qubit lattice representation [5] and the real ket representation [6] are
two earlymodels. Although these twomodels do notmake full use of the superposition
of quantum states, they lay the foundation for future development. The FRQI (flexible
representation of quantum images) representation proposed in 2010 has led to the
rapid development of quantum image processing, which used the quantum superposi-
tion state to store pixel positions for the first time [7]. Several subsequent models, such
as SQR (simple quantum representation of infrared images) [8] and MCRQI (multi-
channel representation for quantum images) [9,10], can be seen as modifications and
extensions of the representation model. The NEQR (novel enhanced quantum repre-
sentation) proposed in 2013 is awidely used quantum image descriptionmodel [11]. In
this model, the position and color of the pixels are represented by the quantum basis
state, which overcomes the shortcoming that the color value of the pixels in FRQI
model cannot be obtained accurately by performing a finite number of measurements.

Although the classical theory and technology of digital image processing have been
perfected, quantum image processing is still in its infancy. Because of the essential
difference between quantum computing and classical computing, all classical image
processing algorithms cannot be simply transplanted into quantum image processing,
but must be redesigned. At present, the content touched by quantum image processing
mainly includes image scrambling [12–17], image encryption [18–27], image water-
marking [28–39], image steganography [40–48], quantummovie [49], quantum audio
[50], image matching [51], image location [52], geometric transformation [53], color
processing [54], feature extraction [55] and image segmentation [56], morphological
image processing [57–59], etc. Most of these studies have focused on quantum image
encryption, watermarking, steganography, transformation, and so on, while the quan-
tummorphology research is relatively rare. Reference [57] is the first reference to study
image processing of quantummorphology,which focuses on the dilation and erosion of
quantum binary images and grayscale images. Later, Zhou Rigui studied morphologi-
cal dilation and erosion, and morphological gradient based on binary images [58] and
grayscale images [59], respectively. So far, many other methods in classical morpho-
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logical image processing such as opening, closing, top-hat transformation, bottom-hat
transformation and skeleton extraction have no corresponding quantum version. Based
on the above situation, in this work, we design the corresponding quantum circuits
for several basic operations of morphological image processing, including dilation,
erosion, opening, closing, top-hat transformation, bottom-hat transformation,morpho-
logical gradient, etc., and apply these circuits to noise removal, boundary extraction,
skeleton extraction, edge detection, image enhancement and texture segmentation of
quantum images.Different from the classicalmethod, using the parallelismof quantum
computing, these quantum methods designed can operate on a superposition of quan-
tum states representing pixels in the input image, which can significantly accelerate
their classical counterparts.

The remainder of this paper is organized as follows. Section 2 briefly introduces the
NEQRmodel, and the morphology dilation and erosion of classical images. Section 3
presents the designmethod of quantum circuits formorphological dilation and erosion,
and several quantum morphological processing methods are introduced in Sect. 4.
Section 5 analyzes the complexity of the designed quantum circuits. Some simulations
on classical computer are presented inSect. 6. InSect. 7,weoffer a concluding remarks.

2 Preliminaries

2.1 NEQRmodel of representing quantum image

Considering that the morphological image processing involves a lot of grayscale value
calculation, this paper represents the quantum image usingNEQRmodelwhich ismore
suitable for grayscale value operation.

For a grayscale image, NEQR encodes q bits of binary grayscale values into q
qubits. In NEQR, a grayscale image of size 2n × 2n has representation,

|Q〉 = 1

2n

2n−1∑

y=0

2n−1∑

x=0

| f (y, x)〉|yx〉 = 1

2n

2n−1∑

y=0

2n−1∑

x=0

|cq−1
yx cq−2

yx . . . c0yx 〉|yx〉, (1)

where cq−1
yx , cq−2

yx , . . . c0yx ∈ {0, 1}, and f (y, x) ∈ {0, 1, . . . , 2q − 1}.
It is clear from Eq. (1) that NEQR needs q + 2n qubits to represent a 2n × 2n

grayscale image. Taking n = 1 and q = 8 as an example, a 2× 2 grayscale image and
its NEQR representation are shown in Fig. 1.

2.2 Morphological erosion and dilation for classical binary images

Erosion and dilation are fundamental to morphological processing. In fact, many of
the morphological algorithms discussed in this paper are based on these two primitive
operations. In general, let A denote a binary image and B denote a structuring element.
In the binary image morphology operation, both the binary image and the structuring
element are regarded as a set. The basic operation of binary image morphology is
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Fig. 1 A 2 × 2 grayscale image
and its NEQR representation

Fig. 2 Examples of structuring.
The dots denote the centers of
the structuring elements

the operation defined on these two sets. Normally, the binary image morphology
operation is performed on the pixel region having a value of 1 in the binary image A
using the structuring element B. For ease of understanding, we first give the concept
of structuring element.

Generally speaking, structuring elements are small sets or subimages used to probe
an image under study for properties of interest. Figure 2 shows several examples of
structuring elements where each shaded square denotes a member of the structuring
element. In addition to a definition of which elements are members of the structuring
element, the origin of a structuring element also must be specified. The origins of the
various structuring elements in Fig. 2 are indicated by a black dot. (Although placing
the center of an structuring element at its center of gravity is common, the choice of
origin is problem dependent in general.) When the structuring element is symmetric
and no dot is shown, the assumption is that the origin is at the center of symmetry.

It is worth noting that although the size and shape of the structuring elements are
not unique, the square structuring elements with the size of 3× 3 are the most widely
used. Therefore, unless otherwise specified, the square structuring elements of size
3 × 3 are used in this paper.

2.2.1 Erosion

With A and B as sets in Z2, the erosion of A by B is defined as

A � B = {z|(B)z ⊆ A}. (2)

In other words, this equation indicates that the erosion of A by B is the set of all
points z such that B, translated by z, is contained in A. In the following discussion,
set B is assumed to be a structuring element. Because the statement that B has to

123



Quantum circuit design for several morphological image… Page 5 of 35 364

be contained in A is equivalent to B not sharing any common elements with the
background, we can express erosion in the following equivalent form:

A � B = {z|(B)z ∩ Ac = ∅}, (3)

where Ac is the complement of A and ∅ is the empty set.

2.2.2 Dilation

With A and B as sets in Z2, the dilation of A by B is defined as

A ⊕ B = {
z|(B̂)

z ∩ A 	= ∅}
. (4)

This equation is based on reflecting B about its origin, and shifting this reflection
by z. The dilation of A by B then is the set of all displacements, z, such that B̂ and
A overlap by at least one element. Based on this interpretation, Eq. (4) can be written
equivalently as

A ⊕ B = {z|[(B̂)z ∩ A] ⊆ A}. (5)

As before, we assume that B is a structuring element and A is the set (image objects)
to be dilated.

Equations (4, 5) are not the only definitions of dilation currently in use. However,
the preceding definitions have a distinct advantage over other formulation in that they
aremore intuitivewhen the structuring element B is viewed as a convolutionmask. The
basic process of flipping (rotating) B about its origin and then successively displacing
it so that it slides over set (image) A is analogous to spatial convolution. However,
that dilation is based on set operations and therefore is a nonlinear operation, whereas
convolution is a linear operation.

2.3 Morphological erosion and dilation for classical grayscale images

Morphological erosion and dilation operations of binary images can be extended to
grayscale images. Structuring elements in grayscale morphology perform the same
basic functions as their counterparts: They are used as “probes” to examine a given
image for specific properties.

2.3.1 Erosion

The erosion of image f by a flat structuring element b at any location (x, y) is defined
as the minimum value of the image in the region coincident with b when the origin of
b is at (x, y). In equation form, the erosion at (x, y) of an image f by a structuring
element b is given by

[ f � b](x, y) = min
(s,t)∈b{ f (x + s, y + t)}, (6)
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where x and y are incremented through all values required so that the origin of b visits
every pixel in f . This is, to find the erosion of f by b, we place the origin of the
structuring element at every pixel location in the image. The erosion at any location is
determined by selecting the minimum value of f from all the values of f contained
in the region coincident with b. For example, if b is a square structuring element of
size of 3×3, obtaining the erosion at a point requires finding the minimum of the nine
values of f contained in the 3× 3 region defined by b when its origin is at that point.

Nonflat structuring elements have grayscale values that vary over their domain of
definition. The erosion of image f by nonflat structuring element, bN , is defined as

[ f � bN ](x, y) = min
(s,t)∈bN

{ f (x + s, y + t) − BN (s, t)}. (7)

Here, we actually subtract values from f to determine the erosion at any point. This
means that, unlike Eq. (6), erosion using a nonflat structuring element is not bounded in
general by the value of f , which can present problems in interpreting results. Nonflat
structuring elements are seldomused in practice because of this, in addition to potential
difficulties in selecting meaningful elements for BN , computational burden was added
when compared with Eq. (6).

2.3.2 Dilation

Similarly, the dilation of f by a flat structuring element b at any location (x, y) is
defined as the maximum value of the image in the window outlined by b̂ when the
origin of b̂ is at (x, y). That is,

[ f ⊕ b](x, y) = max
(s,t)∈b{ f (x − s, y − t)}, (8)

where b̂ is the reflection of b on its origin, i.e., b̂ = b(−x,−y). The explanation of
this equation is identical to the explanation in the morphological erosion of grayscale
images, but using the maximum, rather than the minimum, operation and keeping
in mind that the structuring element is reflected about its origin, which we take into
account by using (−s,−t) in the argument of the function. This is analogous to spatial
convolution.

In a similarmanner as erosion, dilation using a nonflat structuring element is defined
as

[ f ⊕ bN ](x, y) = max
(s,t)∈bN

{ f (x − s, y − t) + bN (s, t)}. (9)

The same comments made in the previous grayscale erosion are applicable to dila-
tion with nonflat structuring elements. When all the elements of bN are constant (i.e.,
the structuring element is flat), Eqs. (7) and (9) reduce to Eqs. (6) and (8), respectively,
within a scalar constant equal to the amplitude of the structuring element.
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3 Quantum circuits for morphological dilation and erosion

3.1 Quantum circuits for some auxiliary modules

Before giving the quantum circuits for dilation and erosion of binary images, several
submodules of quantum circuits which will be used later are introduced, including
Comparator, Copy, Modulo Plus 1 and Modulo Minus 1, Swap, Sort and Min–Max
Calculation modules.

1. Comparator module

The Comparatormodule plays an important role in the design of quantum circuits for
morphological image processing, and it is used to compare pixel positions between
different images. Here, we use the quantum Comparator designed in [60], and its
quantum circuit is shown in Fig. 3.

The Comparator compares x and y, where x = xn−1xn−2 . . . x0, y =
yn−1yn−2 . . . y0, xi , yi ∈ {0, 1}, i = n−1, n−2, . . . , 0. Qubits e1 and e0 are outputs.
If e1e0 = 10, then x > y; if e1e0 = 01, then x < y; and if e1e0 = 00, then x = y.

2. Copy module

For a known n-bit quantum state, by using n controlled-NOT (CNOT) gates, it can
be stored in another n-bit quantum register with an initial state of |0〉⊗n . The specific
quantum circuit is shown in Fig. 4. It is worth pointing out that this operation does
not violate the conclusion that the quantum state cannot be accurately replicated,
because the conclusion is for quantum states with unknown states. However, in the
Copy module herein, the quantum state is fully known.

In the symbol of the Copymodule, the side on which the control qubits are located
is marked with solid bars.

Fig. 3 Quantum circuit of Comparator. (Figure adapted from [60])

Fig. 4 Quantum circuit of Copy
module
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3. Modulo Plus 1 and Modulo Minus 1 modules

These two modules used in this paper are derived from [55]. For an n-qubit unsigned
integer x , these two modules can be used to, respectively, to implement x + 1 and
x − 1 modulo 2n , and their quantum circuits are shown in Fig. 5.

4. Swap module

Thismodule can be used to exchange the stored contents between two n-qubit quantum
registers. In this module, the information carried by each pair of qubits in two quantum
registers can be exchanged by three CNOT gates, and its quantum circuit is shown in
Fig. 6.

5. Sort module

The module can achieve ascending order of two n-qubit numbers. For two n-qubit
numbers x and y, first compare them with a quantum Comparator and then, when
a > b, use the Swap module to exchange the two numbers. The specific quantum
circuit is shown in Fig. 7.

6. Min–Max Calculation module

This module is used to calculate the minimum andmaximum of nine q-qubit numbers.
Firstly, nine numbers are sorted in ascending order by bubble sorting principle. For
nine sorted numbers, the first is theminimum and the last is themaximum. The specific
quantum circuit is shown in Fig. 8.

(a) (b)

Fig. 5 Quantum circuits ofModulo Plus 1 andModulo Minus 1. (Figure adapted from [55])

Fig. 6 Quantum circuits of Swap module

Fig. 7 Quantum circuits of Sort module
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Fig. 8 Quantum circuits ofMin–Max Calculation module

3.2 Quantum circuits of dilation and erosion for binary image

From the definition of binary image dilation in Sect. 2.2, it is known that the set
generated by the dilation of the set A with the structuring element B is a set of origin
positions of B when the flip and translation set of B and the set A have at least
one nonzero element. For the convenience of design, this paper neglects the flip of
structuring element and only considers the translation of structuring element. In fact,
all the structuring elements used in this paper are symmetric, and there is no change
after flipping, and so, this neglect is also feasible.

3.2.1 Quantum circuit of dilation

The dilation operation of binary image is similar to the spatial convolution using
structuring element as convolution mask. In order to avoid the sliding of structuring
element on binary image andmake full use of the parallelism of quantum computation,
this paper uses a method called “Translation, Stacking, logic AND, logic OR.” The
method is specifically explained as follows.

The binary image is first translated by one unit or multiple units (depending on
the size of the structuring element) in eight directions (i.e., top-left, top, top-right,
left, right, bottom-left, bottom, bottom-right). Then, the translated images and the
original image are stacked in a fixed order. In these stacked images, the pixels in
the same position are those in the original image that are covered by the structuring
element. Finally, in the stacked images, for those pixels with the same position, the
logical “AND” operation is performed, respectively, with the corresponding pixels in
the structure element, and then the logical “OR” operation is performed on the results
of all the logical “AND” operations; thus, the dilation result of the binary image can
be obtained. The advantage of this approach is that with the parallelism of quantum
computing, all pixels in the same position in the stacked images can be processed
simultaneously, and then, the classical computing can be accelerated.

Based on the above method, taking the 3 × 3 structuring element with origin at
the center as an example, the quantum circuit for binary image dilation designed in
this paper is shown in Fig. 9. In this figure, the subfigure (a) represents the quantum
circuit of the dilation operation, the subfigure (b) is the symbol of subfigure (a), for
the sake of brevity, ignoring the auxiliary qubits, and subfigure (c) represents a 3 × 3
structuring element with an origin at the center.
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(a) (b)

(c)

Fig. 9 Quantum circuits for morphological dilation of binary image

In Fig. 9, based on NEQR, the binary image A and the structuring element B can
be, respectively, represented as

|A〉 = 1

2n

2n−1∑

y22=0

2n−1∑

x22=0

|c22〉|y22〉|x22〉, (10)

|B〉 = 1

3

⎛

⎝
|b11〉|00〉 + |b12〉|01〉 + |b13〉|02〉
+|b21〉|10〉 + |b22〉|11〉 + |b23〉|12〉
+|b31〉|20〉 + |b32〉|21〉 + |b33〉|22〉

⎞

⎠ . (11)
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The quantum circuit shown in Fig. 9a consists of three parts. The first part is the
circuit in the red dotted frame, and it is used to generate nine binary images as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|I11〉 = 1
2n

∑2n−1
y11=0

∑2n−1
x11=0 |c11〉|y11〉|x11〉,

|I12〉 = 1
2n

∑2n−1
y12=0

∑2n−1
x12=0 |c12〉|y12〉|x12〉,

|I13〉 = 1
2n

∑2n−1
y13=0

∑2n−1
x13=0 |c13〉|y13〉|x13〉,

|I21〉 = 1
2n

∑2n−1
y21=0

∑2n−1
x21=0 |c21〉|y21〉|x21〉,

|I23〉 = 1
2n

∑2n−1
y23=0

∑2n−1
x23=0 |c23〉|y23〉|x23〉,

|I31〉 = 1
2n

∑2n−1
y31=0

∑2n−1
x31=0 |c31〉|y31〉|x31〉,

|I32〉 = 1
2n

∑2n−1
y32=0

∑2n−1
x32=0 |c32〉|y32〉|x32〉,

|I33〉 = 1
2n

∑2n−1
y33=0

∑2n−1
x33=0 |c33〉|y33〉|x33〉,

| Î 〉 = 1
2n

∑2n−1
ŷ=0

∑2n−1
x̂=0 |ĉ〉|ŷ〉|x̂〉.

(12)

where the first eight images (i.e., |I11〉, |I12〉, |I13〉, |I21〉, |I23〉, |I31〉, |I32〉, |I33〉) are
identical to the binary image |A〉, and the last | Î 〉 is a binary image with all the pixel
values of 1.

The specific method is that, firstly, the position qubits and the grayscale value
qubits of the nine images are initialized to |0〉, and then some Hadamard gates are
used to convert the position qubits into equilibrium superposition states, and nine
empty images can be obtained. Some Comparators and some Copy modules are used
to assign the pixel values of the binary image |A〉 to the first eight empty images,
making them the exact same image as |A〉. For the empty image | Î 〉, a NOT gate acts
on its pixel value qubit |ĉ〉 to make it a binary image with all the pixel values of 1.

The second part is the circuit in the middle blue dotted frame. It is used to translate
the eight images (i.e., |I11〉, |I12〉, |I13〉, |I21〉, |I23〉, |I31〉, |I32〉, |I33〉) generated in the
first part to eight directions, respectively, which is realized by changing the pixel
position of eight images withModulo Plus 1 and Modulo Minus 1 modules.

The third part is the circuit in the green dotted frame on the right side. It is used to
stack the input image |A〉 and 8 shifted images generated in the second part, and further
calculate the dilation result of binary image |A〉. Specifically, first, the 18Comparators
are used to determine those pixels in the same position in the ten images, and then,
the nine Toffoli gates with a target qubit of |0〉 are used to implement a logical “AND”
operation between the pixel value |ci j , 〉 and the |bi j 〉 (i, j = 1, 2, 3) in the structuring
element, respectively. A nine-controlled-NOT gate is used to perform logical “OR”
operation on the results of the above nine “AND” operations, wherein the target qubit
of each Toffoli gate is used as the control qubit, and the pixel value qubit |ĉ〉 of the
binary image | Î 〉 is used as the target qubit. At this time, the binary image | Î 〉 is an
dilation image of input image |A〉. Finally, a Swap module is used to exchange the
pixel value qubit of |A〉 and | Î 〉. At this time, the input image |A〉 becomes its own
dilated image.
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3.2.2 Quantum circuit of erosion

Erosion and dilation are duals of each other with respect to set complementation and
reflection. This is,

(A � B)c = Ac ⊕ B̂c, (13)

(A ⊕ B)c = Ac � B̂c. (14)

Equation (13) indicates that erosion of A by B is the complement of the dilation of Ac

by B̂, and vice versa. The duality property is useful particularly when the structuring
element is symmetric with respect to its origin (as often is the case), so that B̂ = B.
Then, we can obtain the erosion of an image by B simply by dilating its background
(i.e., dilating Ac) with the same structuring element and complementing the result.
Similar comments apply to Eq. (14).

We proceed to prove formally the validity of Eq. (13) in order to illustrate a typical
approach for establishing the validity of morphological expressions. Starting with the
definition of erosion, it follows that

(A � B)c = {z|(B)z ⊆ A}c. (15)

If set (B)z is contained in A, then (B)z ∩ Ac = ∅, in which case the proceeding
expression becomes

(A � B)c = {z|(B)z ∩ Ac = ∅}c. (16)

But the complement of the set of z′s that satisfy (B)z ∩ Ac = ∅ is the set of z′s such
that (B)z ∩ Ac 	= ∅. Therefore,

(A � B)c = {z|(B)z ∩ Ac 	= ∅} = Ac ⊕ B̂, (17)

where the last step follows from Eq. (4).
According to the duality Eq. (13) of the erosion and dilation of the binary image,

the quantum circuit for performing the binary image erosion operation is as shown in
Fig. 10, in which the structuring elements are the same as those in dilation operation.

(a) (b)

Fig. 10 Quantum circuits for morphological erosion of binary image
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3.3 Quantum circuit of morphological dilation and erosion for grayscale image

Because nonflat structuring elements are seldom used in the morphological dilation
and erosion operations of grayscale images, this paper only studies the design method
of quantum circuits for dilation and erosion using flat structuring elements. For ease
of description, we take a 3 × 3 flat structuring element as an example to study the
design method of quantum circuits for dilation and erosion.

From the definitions of the morphological erosion and dilation, Eqs. (6) and (8),
for flat structuring elements, these two operations correspond to the maximum and
minimum filtering, respectively, in which the flat structuring elements are used for the
filter masks. In order to make full use of the parallelism of quantum computing, the
quantum circuits of grayscale image dilation and erosion designed in this paper are
shown in Figs. 11 and 12, respectively.

These two circuits are very similar, they are all made up of three parts and the first
two parts are identical, only slightly different in the third part. Specific explanations
are given below.

The first part is the circuit in the red dotted frame, and it is used to generate
eight grayscale images (i.e., |I11〉, |I12〉, |I13〉, |I21〉, |I23〉, |I31〉, |I32〉, |I33〉) exactly
the same as the input image |I 〉 = 1

2n
∑2n−1

y=0
∑2n−1

x=0 |cq−1cq−2 . . . c0〉|y〉|x〉. The
method of generating these images can be seen from the explanation given in the
dilation circuit of the binary image.

The second part is the circuit in the middle blue dotted frame. It is used to translate
the eight images (i.e., |I11〉, |I12〉, |I13〉, |I21〉, |I23〉, |I31〉, |I32〉, |I33〉) generated in the

(a) (b)

Fig. 11 Quantum circuits for morphological dilation of grayscale image
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(a) (b)

Fig. 12 Quantum circuits for morphological erosion of grayscale image

first part to eight directions, respectively, which is realized by changing the pixel
position of eight images withModulo Plus 1 and Modulo Minus 1 modules.

The third part is the circuit in the green dotted frame on the right side. It is used to
stack the input image |I 〉 and eight shifted images generated in the second part, and
further calculate the dilation or erosion result of input image |I 〉. Specifically, first, the
16 Comparators are used to determine those pixels in the same position in the nine
images, and then, a Min–Max Calculation module is used to compute the maximum
(for dilation) or minimum (for erosion) of the pixel value |ci j , 〉, (i, j = 1, 2, 3). At
this time, the grayscale image |I33〉 is an dilation image of input image |I 〉, and the
grayscale image |I11〉 is an erosion image of input image |I 〉. Finally, a Swap module
is used to exchange the pixel value qubits of |I 〉 and |I33〉 (or the pixel value qubits
of |I 〉 and |I11〉). At this time, the input image |I 〉 becomes its own dilated or eroded
image.

4 Quantum circuit design of several morphological image processing
algorithms

4.1 Quantum circuits for some auxiliary modules

1. Adder module

As in classical computation, it is important to construct quantum circuits for perform-
ing elementary operations. Explicit constructions for several operations, including
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(a) (e)

(c)

(d)

(b)

Fig. 13 Quantum circuits of quantum Adder. (Figure adapted from [61])

(a) (b)

(c) (d)

Fig. 14 Quantum circuits of Image Adder and Image Subtractor

plain addition, modular addition and modular exponentiation, can be found in [61].
Here, we employ only the plain addition of two n-bit integers x and y (in binary
representation, x = xn−12n−1 + xn−22n−2 + · · · + x0 ≡ xn−1xn−2 . . . x0 and analo-
gously for y ≡ yn−1yn−2 . . . y0). The quantum circuits implementing plain addition
are shown in Fig. 13. If we reverse the action of the above Adder (i.e., if we apply
each gate of the adder in the reversed order), we can get a quantum Subtractor. For a
detailed explanation of these circuits, interested readers can refer to Ref. [61].

2. Image Adder and Image Subtractor modules

Considering that the addition and subtraction between two images are often involved in
grayscale imagemorphological processing, the quantum circuits to realize the addition
and subtraction of two grayscale images designed in this paper are shown in Fig. 14.
The principle of the circuit is very simple. First, the positions of the pixels between two
images are compared. When the positions are the same, the corresponding grayscale
values of the pixels are added or subtracted.
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(a) (b)

Fig. 15 Quantum circuits of Image Copy module

(a) (b)

(c) (d)

Fig. 16 Quantum circuits of Opening and Closing modules

3. Image Copy module

Inmorphological processing of quantum image, a frequently encountered requirement
is to generate another identical image from the current image. Therefore, this paper
also specifically designed the quantum circuit to achieve image replication, as shown
in Fig. 15. In this circuit, |I 〉 = 1

2n
∑2n−1

y=0
∑2n−1

x=0 |c〉|yx〉 is the input image. Firstly,
2n Hadamard gates are used to change the quantum basis state |ŷ x̂ = |0〉⊗n into
an equilibrium quantum superposition state. At this time, an empty image | Î 〉 =
1
2n

∑2n−1
ŷ=0

∑2n−1
x̂=0 |ĉ〉|ŷ x̂〉 can be obtained (all grayscale values are 0), and then the

comparator is used to compare the pixel positions between the two images |I 〉 and | Î 〉.
When the position is the same, the Copy module is used to copy the grayscale value
from |c〉 to |ĉ〉.
4. Opening and Closing modules

Opening andClosing are two basic operations in binarymorphological image process-
ing. The Opening operation is a cascade of erosion and dilation, which is denoted as
A◦B and defined as A◦B = (A�B)⊕B. While theClosing operation is a cascade of
dilation and erosion, which is denoted as A • B and defined as A • B = (A⊕ B)� B.
The specific quantum circuits are shown in Fig. 16.

5. Login “AND” and logic “OR” modules

For two binary images of size 2n × 2n , |I 〉 = 1
2n

∑2n−1

y=0
∑2n−1

x=0 |cyx 〉|yx〉, and | Î 〉 =
1
2n

∑2n−1

ŷ=0
∑2n−1

x̂=0 |ĉŷ x̂ 〉|ŷ x̂〉, the quantum circuits implementing logical “AND” and
“OR” are shown in Fig. 17.
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(a) (b)

(c) (d)

Fig. 17 Quantum circuits of logic “AND” and logic “OR”

For the logical “AND” operation of two binary images, a 2n × 2n empty image

| Ĩ 〉 = 1
2n

∑2n−1

ỹ=0
∑2n−1

x̃=0 |c̃ỹ x̃ 〉|ỹ x̃〉 is first generated by using 2n Hadamard gates. Then,
two comparators are used to compare the pixel positions between the three images,
|I 〉, | Î 〉 and | Ĩ 〉. When the positions are the same, the Toffoli gate is used to implement
the “AND” operations of |cyx 〉 and |ĉŷ x̂ 〉, and the results are stored in |c̃ỹ x̃ 〉. Finally,
when the pixel positions of | Î 〉 and | Ĩ 〉 are the same, the values of |ĉŷ x̂ 〉 and |c̃ỹ x̃ 〉 are
exchanged by the Swap module. At this time, | Î 〉 is the result image of the logical
“AND” operation of |I 〉 and | Î 〉.

According to the duality of logic “AND” and logic “OR” operation, the quantum
circuit which performs logical “OR” operation between two binary images can be
obtained by applying only three quantum NOT gates to the input and output ends of
the logic “AND” module.

4.2 Quantum circuit of morphological algorithm for binary image

For binary image, this section introduces the design method of quantum circuits for
three morphological processing algorithms, namely noise removal, boundary extrac-
tion and skeleton extraction. Without loss of generality, the structuring element of size
3 × 3 is used in these methods.

4.2.1 Noise removal

The combination of opening and closing operations is a simple image denoising
method. Let A denote a binary image and B denote a structuring element, and the
denoising process generally performs an opening operation first and then performs a
closing operation, which can be expressed as
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Fig. 18 Quantum circuits of noise removal from binary image

Fig. 19 Quantum circuits of boundary extraction for binary image

Ã = (A � B) ⊕ B, (18)

where Ã is the image after denoising.
The combination of opening and closing operationswill affect the original boundary

and shape of the target. Particularly, when the scale of the target itself is small, the
denoising process can easily destroy the details of the boundary. Therefore, thismethod
is not recommended for complex images. Quantum circuit for noise removal from
binary image is shown in Fig. 18.

4.2.2 Boundary extraction

The erosion effect of structuring element B on set A is to shrink the target area. The
difference set between set A and set A � B is the target boundary element removed
by the erosion operation. These elements are just the boundary set of A. The process
of boundary extraction can be expressed as

β(A) = A − (A � B) = A ∩ (A � B)c, (19)

where β(A) represents the boundary set of A. The quantum circuit for boundary
extraction from binary image is shown in Fig. 19.

In Fig. 19, |I 〉 = 1
2n

∑2n−1
y=0

∑2n−1
x=0 |c〉|yx〉 is the input image. Firstly, a 2n × 2n

empty image |I ′〉 = 1
2n

∑2n−1
y′=0

∑2n−1
x ′=0 |c′〉|y′x ′〉 is generated by using 2n Hadamard

gates, and an image | Î 〉 = 1
2n

∑2n−1
ŷ=0

∑2n−1
x̂=0 |ĉ〉|ŷ x̂〉 which is identical to the input

image |I 〉 is obtained by an Image Copymodule. Then, an Erosionmodule and a quan-
tum NOT-gate are applied on the input image |I 〉 successively, and the complement
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of the |I 〉’s eroded image is obtained. From Eq. (19), when the pixel positions of the
three images, |I 〉, | Î 〉 and |I ′〉 are the same, by employing |c〉 and |ĉ〉 as control qubits
and |c′〉 as target qubit, the boundary of binary image |I 〉 can be obtained by a Toffoli
gate. At this point, the boundary image of |I 〉 is stored in binary image |I ′〉.

4.2.3 Skeleton extraction

Skeleton refers to the use of thin lines with a single pixel width to represent a target
without changing its topological structure. Let A denote the target set and B denote
the structuring element. A morphological skeleton calculation method is given in the
following equation:

S(A) =
K⋃

k=0

Sk(A). (20)

The above equation shows that the skeleton S(A) of set A is the union of skeleton
subset Sk(A). The skeleton subset Sk(A) is defined on the basis of the combination of
erosion and opening operation, and its calculation formula is given by the following
equation:

Sk(A) = (A � kB) − (A � kB) ◦ B, k = 0, 1, . . . , K , (21)

where A � kB represents the continuous k-times erosion of structuring element B to
set A, which can be expressed as

A � kB = (A � (k − 1)B) � B = (· · · ((A � B)�) � · · · ) � B, (22)

where K is the calculation number of skeleton subsets, and itsmathematical expression
is

K = max{k|A � kB 	= ∅}. (23)

The above equation shows that K represents the maximum number of iterations
before structuring element B erodes set A into an empty set. In other words, over K
iterations, structuring element B erodes set A to an empty set.

The quantum circuit designed in this paper for skeleton extraction of binary image
is shown in Fig. 20. The binary image |I 〉 = 1

2n
∑2n−1

y=0
∑2n−1

x=0 |c〉|yx〉 is an input

image, and the | Î 〉 = 1
2n

∑2n−1
ŷ=0

∑2n−1
x̂=0 |ĉ〉|ŷ x̂〉 is a skeleton extraction result image,

which is generated by some iterations, and its initial value is an empty image.
From Eq. (21), when k = 0, the skeleton subset S0 = A − A ◦ B = A ∩ (A ◦ B)c.

The quantum circuit for skeleton subset S0 is shown in the red dotted frame on the left
side of Fig. 20c. The quantum circuit in the green dotted frame on the right side of
Fig. 20c performs some continuous iteration. The number of iterations is determined
by the pixel value qubit |c〉 of the input image |I 〉. If there are 1-valued pixels in
|I 〉, the iteration will continue, otherwise the iteration will terminate. Each iteration
produces a skeleton subset; for example, the k-th iteration produces the skeleton subset
Sk, k = 1, 2, . . . , K , and the design method of the iterative circuit is shown in Fig. 20a
and b.
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(a) (b)

(c)

Fig. 20 Quantum circuits of skeleton extraction for binary image

4.3 Quantum circuit of morphological algorithm for grayscale image

4.3.1 Edge detection

In grayscale image morphological processing, edge detection algorithm is designed
based on morphological gradient. Morphological gradient is defined as the difference
between gray dilation image and gray erosion image, which can be expressed as

g = ( f ⊕ b) − ( f � b), (24)

where g represents the morphological gradient image, f represents the input image
and b represents the structuring element.

The edge is between adjacent regions of different gray levels in the image, and
image gradient is a measure to detect the change of local gray levels in the image.
Grayscale dilation can expand the bright areas of the image, and grayscale erosion
can shrink the bright areas of the image, and the difference between them highlights
the edges in the image. As long as the size of the structuring element is appropriate,
the uniform area will not be affected due to the offset of the subtraction operation.
According to Eq. (24), the quantum circuit for grayscale image edge detection is shown
in Fig. 21.

In this circuit, the Image Copymodule is first used to generate an image | Î 〉 identical
to the input image |I 〉, and then the Dilation and Erosion operations are performed
on the |I 〉 and | Î 〉, respectively, and the morphological gradient is obtained using the
Image Subtractor. Finally, the obtained image edge is stored in the image |I 〉 by using
the Swap module, and at this time, the input image becomes its own edge image.
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4.3.2 Image enhancement

Grayscale image enhancement algorithm is designed with morphological top-hat and
bottom-hat. The morphological top-hat and bottom-hat transformations are defined
on the basis of grayscale opening and closing operations. The top-hat transformation
of the structuring element b on the grayscale image f is defined as the difference
between f and its grayscale opening operation f ◦ b, which can be expressed as

htop = f − ( f ◦ b). (25)

The bottom-hat transformation of the structuring element b on the grayscale image
f is defined as the difference between the grayscale closing operation f • b and f
itself, which can be expressed as

hbot = ( f • b) − f . (26)

The top-hat transform retains the bright details in the image, while the bottom-hat
transform retains the gray details in the image. Adding the top-hat to the original image
while subtracting the bottom-hat can enhance the contrast of the original grayscale
image. The quantum circuit for grayscale image enhancement is shown in Fig. 22.

In Fig. 22, the circuit in the red dotted frame implements the top-hat transformation,
and the circuit in the green dotted frame implements the bottom-hat transformation.
The rightmost Image Adder and Image Subtractor implement the final enhancement.

Fig. 21 Quantum circuits of edge detection for grayscale image

Fig. 22 Quantum circuits of image enhancement for grayscale image
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Fig. 23 Quantum circuits of texture segmentation for grayscale image

4.3.3 Texture segmentation

Themorphological texture segmentation of grayscale imagementioned in this paper is
relatively simple. It is a kind of region segmentation, which is suitable for segmenting
the region composed of different-size blobs. The quantum circuit is shown in Fig. 23.

In Fig. 23, the Image Copy module is first used to generate an image, | Î 〉, identical
to the input image |I 〉, and then, on the image | Î 〉, five operations ofDilation, Erosion,
Erosion, Dilation and Morphological Gradient are performed successively. At this
time, the image | Î 〉 becomes the demarcation line of the two textures in the input
image |I 〉. Finally, an Image Adder is used to add this demarcation line to the input
image |I 〉, which can realize the segmentation of two texture regions in the input
image.

5 Complexity analysis

5.1 Computational complexity of multibit-controlled-U gate

For ease of description, we begin by introducing some notation. For any single-qubit
unitary operationU andm ∈ {0, 1, 2, . . .}, define the (m+1)-bit (2(m+1)-dimensional)
gate ∧m(U ) as

∧m(U )(|x1, . . . , xm, y〉)

=
{
uy0|x1, . . . , xm, 0〉 + uy1|x1, . . . , xm, 1〉 if ∧m

k=1 xk = 1
|x1, . . . , xm, y〉 if ∧m

k=1 xk = 0

for all x1, . . . , xm, y ∈ {0, 1}. (In more ordinary language, ∧m
k=1xk denotes the AND

of the Boolean variables {xk}). Note that ∧0(U ) is equated with U [62].
Adriano Barenco [62] showed that a set of gates that consists of the∧0(U ) gate and

the∧1(U ) gate (U is an arbitrary single-qubit unitary gate) is universal in the sense that
all unitary operations on arbitrarily many qubits n can be expressed as compositions of
these gates. In quantum computing, each reversible gate has a cost associated with it
called quantum cost. For quantum implementation, the cost of∧1(U ) gates far exceeds
the cost of ∧0(U ) gates. Hence, the quantum cost of ∧0(U ) gates is usually ignored
in the presence of ∧1(U ) implementations [63]. The quantum cost of all reversible
∧1(U ) gates is usually taken as unity, and so, the quantum cost of a quantum circuit
is the number of ∧1(U ) gates required in designing it [64]. Next, we first give the
complexity of ∧2(U ) and ∧n(U ). Let V 2 = U . As can be seen from Ref. [62], the
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(a)

(b)

Fig. 24 Implementation of multiqubit-controlled-U gates. (Figure adapted from [62])

implementation of∧2(U ) is shown in Fig. 24a.With (n−2) auxiliary qubits |0〉⊗(n−2),
the implementation of∧n(U )(n ≥ 3) is shown in Fig. 24b.As can be seen fromFig. 23,
the complexity of∧2(U ) is O(5), and∧n(U ) can be decomposed into 2(n−2) ∧2(σx )

and 1 ∧2(U ), here, σx =
(
0 1
1 0

)
. If U = σx , then ∧n(σx ) can be constructed from

(2n−3) ∧2(σx ). Hence, the complexity of∧n(U ) is O((2n−3)×5) = O(10n−15).
Next, we analyze the complexity of the quantum circuits designed in this paper.

For ease of description, we first give the complexity of some basic modules, which
are submodules for further design of complex circuits.

5.2 Complexity of some basic modules

1. Comparator and Copy modules

As can be seen from Fig. 3, the Comparator circuit consists of 4 ∧2(σx ), 4 ∧4(σx ),
. . ., 4 ∧2n(σx ). Since each ∧k(σx ) can be decomposed into (2k − 3) ∧2(σx ) and
the complexity of the ∧2(σx ) is O(5), the complexity of the entire Comparator is
O(40n2 − 20n). According to Fig. 4, the Copy module only includes n ∧1(σx ), and
so, its complexity is O(n).

2. Modulo Plus 1 and Modulo Minus 1 modules

From Fig. 5, both modules are composed of ∧0(σx ), ∧1(σx ), . . ., ∧n−1(σx ), and so,
their complexity does not exceed O(5n2 − 20n + 21).

3. Swap, Sort, and Min–Max Calculation modules

The Swap module consists of 3n ∧1(σx ), so its complexity is O(3n).
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The Sortmodule is composed ofComparator and∧2(Swap). In fact, the∧2(Swap)
is equivalent to 3n ∧3(σx ), and its complexity is O(45n). Hence, the complexity of
Sort module is O(40n2 + 25n).

From Fig. 8, Min–Max Calculation modules consists of 36 Sort modules, each of
which has a complexity of O(40q2 + 25q), so the complexity of the whole module is
O(1440q2 + 900q).

4. Dilation and Erosion for binary images

The complexity of these two quantum circuits is the same. We only analyze the com-
plexity of Dilation circuits. From Fig. 9, we can see that the module composition of
the Dilation circuit is as shown in Eq. (27).

Dilation Circuit ⇐⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

34 Comparators
6 Modulo Plus 1s
6 Modulo Minus 1s
8 ∧4 (Copy) ⇐⇒ 8 ∧5 (σx )

9 ∧2 (σx )

1 ∧45 (σx )

1 ∧36 (Swap) ⇐⇒ 3 ∧37 (σx ).

(27)

For binary images, the pixel values are described by only one qubit. Hence, 1
∧4(Copy) is equivalent to 1∧5(σx ), 1∧36(Swap) is equivalent to 3∧37(σx ) and their
complexity is O(35) and O(1065), respectively. The complexity of ∧45(σx ) is ((2 ×
45−3)×5) = O(435). The complexity of the entireDilation circuit is O(34×(40n2−
20n)+12×(5n2−20n+21)+8×35+9×5+435+1065) = O(1420n2−920n+2077).
By ignoring constant terms, the complexity is approximately O(1420n2 − 920n).

5. Dilation and Erosion for grayscale images

The complexity of these two quantum circuits is also the same. We only analyze the
complexity ofDilation circuits. From Fig. 11, we can see that the module composition
of the Dilation circuit is as shown in Eq. (28).

Dilation circuit ⇐⇒⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

32 Comparators
6 Modulo Plus 1s
6 Modulo Minus 1s
8 ∧4 (Copy) ⇐⇒ 8q ∧5 (σx )

1 ∧32 (Min−Max Calculation)⇐⇒36 ∧32 (Sort)

⇐⇒
{
36 ∧32 (Comparator)
36 ∧34 (Swap)⇐⇒108q ∧35 (σx )

1 ∧32 (Swap) ⇐⇒ 3q ∧33 (σx ).

(28)

For grayscale images, the pixel values are described byq qubits.Hence, 1∧4(Copy)
is equivalent to q ∧5(σx ), and 1 ∧32(Swap) is equivalent to 3q ∧33(σx ). In addition,
each∧32(Comparator) consists of 4∧34 (σx ), 4∧36 (σx ), . . . , 4∧2q+32 (σx ), and so,
its complexity is O(40q2+1260q). Hence, the complexity of the entireDilation circuit

123



Quantum circuit design for several morphological image… Page 25 of 35 364

is O(32× (40n2 −20n)+12× (5n2 −20n+21)+8q×35+36× (40q2 +1260q)+
108q×335+3q×315) = O(1340n2−880n+1440q2+82765q+252). Considering
that q is a constant independent of image size, the complexity is approximately equal
to O(1340n2 − 880n).

6. Adder, Image Adder, Image Subtractor and Image Copy modules

From Fig. 13, the Adder consists of (2n − 1) Carry, n Sum and 1 ∧1(σx ). It is easy to
know that the complexity of modules Carry and Sum is O(11) and O(2), respectively,
and so, the complexity of Adder is O(24n − 1).

The Image Adder and the Image Subtractor have the same complexity. We only
analyze the complexity of Image Adder circuits. From Fig. 14, we can see that the
module composition of the Image Adder circuit is as shown in Eq. (29):

Image Adder circuit ⇐⇒⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 Comparators

1 ∧4 (Adder) ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

(2q − 1) ∧4 (Carry) ⇐⇒
{

(4q − 2) ∧6 (σx )

(2q − 1) ∧5 (σx )

q ∧4 (Sum) ⇐⇒ 2q ∧5 (σx )

1 ∧5 (σx ).

(29)

According to Eq. (29), the complexity of the Image Adder is O(2(40n2 − 20n) +
(4q − 2)((2 × 6 − 3) × 5) + 4q((2 × 5 − 3) × 5)) = O(80n2 − 40n + 320q − 90).

FromFig. 15, the ImageCopymodule includes oneComparator and one∧2(Copy),
and so, its complexity is equal toO(40(2n)2−20×2n+15q) = O(160n2−40n+15q).

7. Opening and Closing modules

These two modules have the same complexity. We only analyze the complexity of
Opening circuits. From Fig. 16a, the Opening operation is a cascade of Erosion and
Dilation, and so, its complexity is no more than O(2(1420n2 − 920n + 2077)) =
O(2840n2 − 1840n + 4154).

8. AND and OR modules

These twomodules also have the same complexity. We only analyze the complexity of
AND circuits. From Fig. 17a, the AND includes two Comparators, 1∧4 (Tof f oli) =
1∧6 (σx ) and 1∧2 (Swap) = 3∧3 (σx ). Hence, the complexity of AND is O(2(40 ∗
(2n)2 − 20 × 2n) + (2 × 6 − 3)5 + 3(2 × 3 − 3) × 5) = O(320n2 − 80n + 90).

5.3 Complexity of proposedmorphological processing circuits

For the sake of simplicity, for the three binary image processing approaches, we only
analyze the complexity of the skeleton extraction circuit, and for the three grayscale
image processing approaches, we only analyze the complexity of the texture segmen-
tation circuit.

The following discussions are based on a (2n × 2n)-sized image with a total of
(2n + q) qubits, of which 2n qubits represent the position of the pixel and q qubit
represents the grayscale value of the pixel, for binary images, q = 1.
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5.3.1 Time complexity of skeleton extraction circuit

FromFig. 20, although this circuit is slightly complex, it containsErosion, ImageCopy,
Opening, logic “AND,” logic “OR” modules. According to the complexity given in the
previous introduction of each submodule, the complexity of skeleton extraction circuit
is not more than O((K +1)(1420n2−920n+2077+160n2−40n+15q+2840n2−
1840n+4154+2(320n2−80n+90))) = O((K+1)(5060n2−2960n+15q+6411)).
By ignoring constant terms, the complexity of skeleton extraction circuit is no more
than O((K + 1)(5060n2 − 2960n)).

5.3.2 Time complexity of texture segmentation circuit

From Fig. 23, this circuit only contains five modules: Image Copy, Dilation, Ero-
sion, Image Adder and Morphological Gradient. The complexity of the first four
modules has been given before. The complexity of Morphological Gradient is dis-
cussed below. From Fig. 21, it consists of six modules: Image Copy,Dilation, Erosion,
Image Subtractor, Comparator and ∧2(Swap), and so, its complexity is O(2960n2 −
1860n + 1440q2 + 83145q + 414). Finally, the complexity of texture segmentation
circuit is O((160n2 − 40n + 15q) + 4(1340n2 − 880n + 1440q2 + 82765q + 252)
+(2960n2 − 1860n + 1440q2 + 83145q + 414) +(80n2 − 40n + 320q − 90)) =
O(8560n2 − 5460n + 7200q2 + 166245q + 1332). By ignoring constant terms, the
complexity of texture segmentation circuit is no more than O(8560n2 − 5460n).

In summary, the time complexity of some basic modules and two morphological
processing circuits is shown in Table 1, where U = σx .

5.3.3 Comparison with the complexity of their classic counterparts

In summary, the computational complexity of the proposed schemes is only the second-
order polynomial function of image size n. However, for the corresponding classic
schemes, all morphological operations must be performed pixel by pixel, so the com-
plexitymust contain factor 22n . In terms of this factor alone, the complexity of classical
schemes is necessarily the exponential function of the image size n. Therefore, the
proposed schemes can accelerate the classic counterparts, and the larger the image
size n, the more obvious the acceleration effect.

5.3.4 Spatial complexity of proposed morphological processing circuits

The spatial complexity of quantum circuits mainly refers to the size of auxiliary qubits
employed in the circuits. Firstly, the number of auxiliary qubits used by the basic
modules is listed in Table 2, where “Au_qubits” denotes the “Auxiliary qubit.”

Table 2 shows that the number of auxiliary qubits in all basic modules is a linear
function of image size n. Although∧n(σx ) is widely used, it can be seen from Fig. 24b
that all (n − 2) auxiliary qubits have been restored to their initial states at the output,
so these auxiliary qubits can be reused. Therefore, the auxiliary qubits of six quantum
circuits constructed by these basic modules for morphological processing must also
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Table 2 Number of auxiliary qubits used by the basic modules

No. Module Au_qubits No. Module Au_qubits

(1) ∧n(U ) n − 2 (11) Dilation(Gray) 80n + 80q

(2) Comparator 2n (12) Erosion(Gray) 80n + 80q

(3) Copy 0 (13) Adder n + 1

(4) Modulo Plus 1 0 (14) Image Adder 4n + q + 1

(5) Modulo Minus 1 0 (15) Image Subtractor 4n + q + 1

(6) Swap 0 (16) Image Copy 2n

(7) Sort n − 2 (17) Opening 168n + 34

(8) Min–Max Calculation 72n (18) Closing 168n + 34

(9) Dilation(Binary) 84n + 17 (19) AND 6n + 1

(10) Erosion(Binary) 84n + 17 (20) OR 6n + 1

be linear functions of image size n. That is, the spatial complexity of the quantum
circuits designed in this paper is O(cn) by ignoring some constant terms, where the
coefficient c is a constant.

6 Simulation on classical computer

Herein, wemake several simulations ofmorphological processingmethods on a classi-
cal computer due to the condition that the physical quantumcomputer is not in our grasp
right now. The simulations are demonstrated with a classical computer with Intel(R)
Core(TM) i5-3470 CPU @ 3.20 GHz, 4.00 GB RAM and 32-bit operating system.
The realization of all quantum schemes in simulation is designed by linear algebra
with complex vectors as quantum states and unitary matrices as unitary transforms
with calculations performed using MATLAB 7.8.0(R2009a). All images used in the
experiment are from following Web site: http://www.prenhall.com/gonzalezwoods.

6.1 Morphological processing of binary image

6.1.1 Noise removal

Figure 25a shows a binary image of a simple target with size 512 × 512. There are
isolated foreground noise in the background and holes in the target area. According to
the shape and size of the target, the square structuring element with a size of 15 × 15
and an origin at the center is selected as shown in Fig. 25b.

The opening operation is performed first, and then the closing operation is per-
formed on the original image. Figure 25c is the result of opening operation, and
Fig. 25d is the result of further closing operation in Fig. 25c. It can be seen from
Fig. 25d that through this morphological denoising process, the isolated foreground
noise is removed and the small holes in the target area are filled to obtain a clean binary
image.
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(a) (b) (c) (d)

Fig. 25 Example of image denoising

(a) (b) (c) (d)

Fig. 26 Example of boundary extraction

6.1.2 Boundary extraction

Figure 26a is a binary image of a single target with a size of 512 × 512, in which the
white area represents the target and the black area represents the background.

This example uses a (3 × 3)-sized rhombic structuring element with an origin at
the center shown in Fig. 26b to extract the eight-link boundary with a single pixel
width for the target area of the original image. Figure 26c is the erosion image of the
original image, and Fig. 26d is the extracted eight-link boundary with a single pixel
width.

6.1.3 Skeleton extraction

Figure 27a is a binary image of a maple leaf with a size of 256 × 256 (denoted as set
A). It has the characteristics of large target area and simple boundary. The skeleton of
maple leaf image is extracted by using the rhombic structuring element with the center
at the origin and the size of 3 × 3 (denoted as set B) as shown in Fig. 27b. After 78
iterations, there are 5 1-value pixels in the set (A�78B) and no 1-value pixel in the set
(A � 79B) , so there are 79 skeleton subsets, which are S0, S1, . . . , S78, respectively.
The number of 1-value pixels in the set (A� kB) varies with iteration step k as shown
in Fig. 27c. The final extracted skeleton is shown in Fig. 27d.
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(a) (b) (c) (d)

Fig. 27 Example of morphological skeleton extraction

(a) (b) (c) (d)

Fig. 28 Example of edge detection

6.2 Morphological processing of grayscale image

6.2.1 Edge detection

Figure 28a is a grayscale image of size 1024×1024, and Fig. 28b and c is the results of
gray dilation and gray erosion of the image shown in Fig. 28a by using a 3× 3 square
structuring element, respectively. The grayscale image shown in Fig. 28c is subtracted
from the grayscale image shown in Fig. 28b, thereby producing a morphological
gradient image as shown in Fig. 28d. As can be seen from Fig. 28d, the image edges
are clearly represented as gradient images based on difference.

6.2.2 Image enhancement

Figure 29a shows a (512 × 512)-sized grayscale image. In this example, the square
structuring element of size 21 × 21 is used to perform the opening operation, the
closing operation, the top-cap transformation and the bottom-cap transformation on
the image shown in Fig. 29a. The operation results are shown in Fig. 29b–e. The top-
hat transform preserves the bright detail in the image, and the bottom-cap transform
preserves the dark details in the image. In the original image, first add the top-hat
transform and then subtract the bottom-cap transform; the resulting image is shown
in Fig. 29f. Such processing enhances the contrast of the original image.
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(a) (b) (c)

(d) (e) (f)

Fig. 29 Example of image enhancement

(a) (b) (c) (d) (e)

Fig. 30 Example of texture segmentation

6.2.3 Texture segmentation

Figure 30a shows a noisy image of dark blobs superimposed on a light background.
The image has two textural regions: a region composed of large blobs on the right and
a region on the left composed of smaller blobs. The objective is to find a boundary
between the two regions based on their textural content.

If a closed operation is performed on the input image with a structuring element
larger than the small blobs, these small blobs will be removed. The result in Fig. 30b,
obtained by closing the input image using a square structuring element with a size of
55 × 55, shows that indeed this is the case. (The radius of the blobs is approximately
25 pixels.) If we open this image in Fig. 30b using a structuring element that is large
relative to the separation between these blobs, the net result should be an image in
which the light patches between the blobs are removed, leaving the dark blobs and
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now equally dark patches between these blobs. Figure 30c shows the result obtained
using a square structuring element with a size of 95 × 95.

Performing amorphological gradient on this image with a 3×3 structuring element
of 1swill give us the boundary between the two regions as shown inFig. 30d. Figure 30e
shows the boundary obtained from themorphological gradient operation superimposed
on the original image. All pixels to the left of this boundary are said to belong to the
texture region characterized by large blobs, and conversely for the pixels on the left
of the boundary.

7 Conclusions

The morphological concepts and techniques constitute a powerful set of tools for
extracting features of interest in an image. One of the most appealing aspects of
morphological image processing is the extensive set-theoretic foundation from which
morphological techniques have evolved. A significant advantage in terms of imple-
mentation is the fact that dilation and erosion are primitive operations that are the basis
for a broad class of morphological algorithm. Although various morphological algo-
rithms are quite mature in classical image processing, the research on quantum version
of them is just beginning. In this paper, we focus on several simple quantum versions of
morphological processing operations and study their implementation methods based
on quantum computing, including noise removal, edge extraction, skeleton extraction
of binary images; and edge detection, image enhancement, texture segmentation of
grayscale images. At the heart of these efforts is the designmethod of quantum circuits
for the two basic morphological operations of dilation and erosion. The main contri-
butions of this paper are as follows: Firstly, for binary image and grayscale image,
the quantum circuits of dilation and erosion are designed, respectively; secondly, for
binary image and grayscale image, three quantum versions of morphological methods
are designed, respectively. Although these works are relatively simple, they can pro-
vide a valuable reference for the further development of quantummorphological image
processing. The quantum implementation of more complex morphological processing
methods, such as convex hulls, hole filling and connected component extraction, is the
next issue we will continue to study in depth.
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