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Abstract
Entanglement-assisted quantum error-correcting (EAQEC) codes can be obtained
from arbitrary classical linear codes, based on the entanglement-assisted stabilizer
formalism. However, how to determine the required number of shared pairs is chal-
lenging. In this paper, we first construct three classes of classical linear MDS codes
over finite fields by considering generalized Reed–Solomon codes and calculate the
dimension of their Hermitian hulls. By using these MDS codes, we then obtain three
new classes of EAQEC codes and EAQEC MDS codes, whose maximally entangled
states can take various values. Moreover, these EAQEC codes have more flexible
lengths.

Keywords Entanglement-assisted quantum error-correcting (EAQEC)codes ·
MDS codes · Hermitian hull · Generalized Reed–Solomon (GRS)codes

1 Introduction

Quantum error-correcting codes play a key role in quantum information processing
and quantum computation [1,2]. As we know, quantum error-correcting codes can be
constructed from classical linear error-correcting codes with certain dual-containing
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properties [3]. In other words, a classical linear code without the dual-containing con-
dition cannot be used to construct quantum error-correcting codes. For more details
on the construction of quantum MDS codes, please refer to [4–8]. The development
of EAQEC codes theory is a breakthrough in the area of quantum error correction.
Hsieh et al. [9] proposed amore general framework called entanglement-assisted stabi-
lizer formalism. The framework allows arbitrary classical linear error-correcting codes
without the dual-containing constraint to transform into EAQEC codes if shared entan-
glement is available between the sender and receiver. For more details on EAQECCs,
we refer the reader to [10–16]. Recently, using arbitrary classical linear codes without
the dual-containing condition to construct EAQEC codes has become an important
area of study [17–32]; more and more scholars have been encouraged to construct
EAQEC codes with good parameters (much larger minimum distances or code rates).

However, it is challenging to determine the number of pre-shared maximally entan-
gled states for constructing an EAQEC code. By using algebraical methods, many
EAQEC codes with good parameters have been constructed in [17–19]. Fan et al.
provided a construction of EAQEC MDS codes with a small number of pre-shared
maximally entangled states in [20]. Li et al. proposed the concept of decomposition
of the defining set of cyclic codes in [21,22]. According to the concept, they trans-
formed the problem of calculating the number of share pairs to determine a special
subset of the defining set of a cyclic code and then constructed some EAQEC codes
with good parameters. Their method was generalized to apply in negacyclic codes and
constacyclic codes and yieldedmany EAQEC codes with good parameters [23–28]. Li
et al. [29] constructed some EAQECMDS codes by using generalized Reed–Solomon
codes. Guenda et al. [18] proved that the required number of shared pairs was related
to the dimension of the hull of a classical linear code. Via following the fact, Luo et
al. [30] and Luo and Cao [31] constructed several new infinite classes of EAQECMDS
codes by determining the Euclidean hull of (extended) GRS codes. Fang et al. [32]
obtained several classes of EAQEC MDS codes by determining the Hermitian hull of
(extended) GRS codes. These works showed that (extended) GRS codes are a good
source for producing EAQEC MDS codes.

In this paper, we first construct someMDS codes fromGRS codes and calculate the
dimension of their Hermitian hulls and then obtain three new classes of q-ary EAQEC
codes and EAQEC MDS codes with these constructed MDS codes as follows:

(1) Let q be a prime power. If q+1 < n ≤ 2(q−1) and n−q < k ≤ � n
2 �, then there

exist [[n, k−l, n−k+1; n−k−l]]q EAQECcodes and [[n, n−k−l, k+1; k−l]]q
EAQEC MDS codes, where 1 ≤ l ≤ k + q − n.

(2) Let q = pm ≥ 3 be a prime power and e be a positive integer with e|m. Assume
that N = tpez with 1 ≤ t ≤ pe and 1 ≤ z ≤ 2m

e − 1 and n is an integer such

that 1 < n < N . If 1 < k ≤ � N+q−1
q+1 � and n + k > N + 1, then there exist

[[n, k− l, n− k+1; n− k− l]]q EAQEC codes and [[n, n− k− l, k+1; k− l]]q
EAQEC MDS codes, where 1 ≤ l ≤ n − N + k − 1.

(3) Let q = pm ≥ 3 be a prime power and n
′ = ml be some divisor of q2 − 1 with

l|q + 1 and gcd(n
′
, q − 1) = m. Assume that N = tn

′
with 1 ≤ t ≤ q−1

m and n is

an integer such that 1 < n < N . If 1 < k ≤ � N+q
q+1 � and n+k > N +1, then there
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exist [[n, k−l, n−k+1; n−k−l]]q EAQECcodes and [[n, n−k−l, k+1; k−l]]q
EAQEC MDS codes, where 1 ≤ l ≤ n − N + k − 1.

Note that the above EAQEC codes are new in the sense that their parameters are
different from all previously known ones.Moreover, the three classes of EAQEC codes
and EAQEC MDS codes have more flexible parameters not only on shared pairs but
also on lengths.

The manuscript is organized as follows: In Sect. 2, we review some basic notations
and results on Hermitian hull, GRS codes and EAQEC codes. Section 3 constructs
three new classes of EAQEC codes and EAQECMDS codes with more flexible shared
pairs and lengths by using GRS codes. Section 4 summarizes this paper.

2 Preliminaries

In this section, some basic notations and results on Hermitian hull, generalized
Reed–Solomon codes and entanglement-assisted quantum error-correcting codes are
reviewed, which will be frequently used later.

Let q be a prime power and Fq2 be the finite fieldwith q
2 elements. For anyα ∈ Fq2 ,

we denote as α the conjugation of α. Let A = (ai j )k×n be some k × n matrix, where
ai j ∈ Fq2 . We denote the conjugation of the matrix A = (ai j )k×n by A = (ai j )k×n

and the conjugate transpose of A over Fq2 by A† = A
�
.

2.1 Hermitian hull

Any k-dimensional vector subspace of Fn
q2

with minimum Hamming distance d is
said to be an [n, k, d]q2 linear code C . Moreover, C is called a maximum distance
separable (MDS) code, if its parameters attain the Singleton bound, i.e., k = n−d+1.
The Euclidean dual code of C is defined as

C⊥E = {x ∈ Fn
q2 : 〈x, y〉E = 0,∀ y ∈ C},

where 〈x, y〉E = ∑n
i=1 xi yi is the Euclidean inner product of x and y. The Euclidean

hull of C is defined as C ∩ C⊥E , which was first proposed in [33]. Obviously, the
Euclidean hull of a linear code C is also a linear code.

Similarly, the Hermitian dual code of C is defined as

C⊥H = {x ∈ Fn
q2 : 〈x, y〉H = 0,∀ y ∈ C},

where〈x, y〉H = ∑n
i=1 xi y

q
i is the Hermitian product of x and y. The Hermitian hull

of a linear code C over Fq2 is C ∩ C⊥H , denoted by Hullh(C). It is obvious that
Hullh(C) is also a linear code over Fq2 .

123



366 Page 4 of 16 L. Li et al.

2.2 Generalized Reed–Solomon codes

Let Fq2 [x]k = { f (x) ∈ Fq2 [x]|deg( f (x)) ≤ k − 1}, a = (α1, α2, . . . , αn) ∈ Fn
q2

and v = (υ1, υ2, . . . , υn) ∈ (F∗
q2

)n , where α1, α2, . . . , αn ∈ Fq2 are distinct,

υ1, υ2, . . . , υn ∈ F∗
q2

may not be distinct and k ≤ n ≤ q2. Then, the GRS code
over Fq2 associated with a and v can be defined as:

GRSk(a, v) = {(υ1 f (α1), υ2 f (α2), . . . , υn f (αn)) : f (x) ∈ Fq2 [x]k}.

The GRS code GRSk(a, v) above is an [n, k, n − k + 1] linear MDS code over Fq2 .
The generator matrix G of GRSk(a, v) is given as follows:

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

υ1α
0
1 υ2α

0
2 · · · υnα

0
n

υ1α
1
1 υ2α

1
2 · · · υnα

1
n

...
...

. . .
...

υ1α
k−1
1 υ2α

k−1
2 · · · υnα

k−1
n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It iswell known that theEuclidean dual ofGRSk(a, v) is also aGRScode and can be
denoted asGRSn−k(a, v

′
) for some v

′ = (υ
′
1, υ

′
2, . . . , υ

′
n) ∈ (F∗

q2
)n (see [34]). Denote

the all-one vector of length n by 1=(1, 1, . . . , 1), then we have that GRSk(a, 1)⊥E =
GRSn−k(a,u), where u = (u1, u2, . . . , un) with ui = ∏

1≤ j≤n, j �=i (αi − α j )
−1 for

all 1 ≤ i ≤ n (see [35]). Recently, Luo and Cao [31] proposed that GRSk(a, v)⊥ =
GRSn−k(a,w), where w = (ω1, ω2, . . . , ωn) with ωi = υ−1

i ui for any 1 ≤ i ≤ n.

Notice thatC⊥H = C
⊥E

for any linear codeC . For the Hermitian dual ofGRSk(a, v),
we have the following lemma.

Lemma 2.1 Let the notations be defined as above. Then, the Hermitian dual
of GRSk(a, v) is GRSn−k(a,w), where w = (ω1, ω2, . . . , ωn) with ωi =
υ−1
i

∏
1≤ j≤n, j �=i (αi−α j )

−1 for all1 ≤ i ≤ n. In particular,wehaveGRSk(a, 1)⊥H =
GRSn−k(a,u), where u = (u1, u2, . . . , un) with ui = ∏

1≤ j≤n, j �=i (αi − α j )
−1 for

all 1 ≤ i ≤ n.

Proof Let σ be the mapping σ(α) = α for any α ∈ Fq2 . From [36], σ is an automor-
phism of Fq2 . Then, we have

GRSk(a, v) = {(ν1 f (α2), ν1 f (α2), . . . , νn f (αn)) : f (x) ∈ Fq2 [x]k}
= {(ν1 f (α2), ν1 f (α2), . . . , νn f (αn)) : f (x) ∈ Fq2 [x]k}
= GRSk(a, v).

Therefore, the Hermitian dual of GRSk(a, v) is

GRSk(a, v)⊥H = GRSk(a, v)⊥E = GRSn−k(a,w),
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where w = (ω1, ω2, . . . , ωn) with ωi = υ−1
i

∏
1≤ j≤n, j �=i (αi − α j )

−1 for all 1 ≤ i ≤
n. ��

The following lemma provides a sufficient and necessary condition of c ∈
GRSk(a, v) ∩ GRS(a, v)⊥H and will be used frequently for determining the Her-
mitian hull of a GRS code.

Lemma 2.2 Suppose that GRSk(a, v) is the GRS code associated with a and v defined
as above. For any codeword c = (υ1 f (α1), υ2 f (α2), . . . , υn f (αn)) ∈ GRSk(a, v),
c ∈ GRS(a, v)⊥H if and only if there exists a polynomial g(x) with deg(g(x)) ≤
n − k − 1 such that

(υ
q+1
1 f (α1), υ

q+1
2 f (α2), . . . , υ

q+1
n f (αn))

= (u1g(α1), u2g(α2), . . . , ung(αn))

= (u1g
′q(α1), u2g

′q(α2), . . . , ung
′q(αn)),

where g
′q(αi ) = g(αi ) and ui = ∏

1≤ j≤n, j �=i (αi − α j )
−1 for all 1 ≤ i ≤ n.

Proof From Lemma 2.1, we have

(υ
q+1
1 f (α1), υ

q+1
2 f (α2), . . . , υ

q+1
n f (αn)) = (u1g(α1), u2g(α2), . . . , ung(αn)),

where deg(g(x)) ≤ n − k − 1 and ui = ∏
1≤ j≤n, j �=i (αi − α j )

−1 for all 1 ≤ i ≤ n.

According to the definition of σ , there exists a polynomial g
′
(x) = σ−1(g(x)) such

that

(u1g(α1), u2g(α2), . . . , ung(αn)) = (u1g
′q(α1), u2g

′q(α2), . . . , ung
′q(αn)).

This completes the proof. ��
Note that deg(g

′
(x)) = deg(g(x)) ≤ n − k − 1 and the existence of g(x) depends

on the existence of g
′
(x).

2.3 Entanglement-assisted quantum error-correcting codes

In the following, we recall some basic notations and results of entanglement-assisted
quantum error-correcting codes. EAQEC codes are a generalization of standard sta-
bilizer quantum codes that can be constructed via arbitrary classical linear codes (not
necessarily dual-containing). A q−ary EAQEC code can be denoted as [[n, k, d; c]]q ,
which encodes k information qubits into n channel qubits with the help of c pairs of
maximally entangled states and corrects up to � d−1

2 � errors, where d is the minimum
distance of the code. For an [[n, k, d; c]]q EAQEC code, the performance is deter-
mined by its rate k/n and net rate (k − c)/n. Brun et al. [14] proved that one can
obtain catalytic codes if the net rate is positive. The parameters n, k, d and c of an
EAQEC code have many constraints; one of the most important bounds on EAQEC
codes is the EA-quantum Singleton bound as follows.

123



366 Page 6 of 16 L. Li et al.

Lemma 2.3 [9,16] For any EAQEC code [[n, k, d; c]]q , if d ≤ n+2
2 , its parameters

must satisfy

n + c − k ≥ 2(d − 1),

where 0 ≤ c ≤ n − 1.

An EAQEC code [[n, k, d; c]]q is called an EAQEC MDS code if its parameters
achieve the EA-quantum Singleton bound. In recent years, more and more EAQEC
codes have been constructed by using classical linear code over finite fields. One of
the most frequently used constructions is given as below.

Theorem 2.4 [11,14] Let H be the parity check matrix of an [n, k, d] classical linear
code over Fq2 . Then, there exists an EAQEC code with parameters [[n, 2k − n +
c, d; c]]q , where c = rank(HH†) is the required number of maximally entangled
states and H† is the conjugate transpose of H over Fq2 .

LetC be an [n, k] classical linear codewith parity checkmatrix H .Guenda et al. [18]
proved that rank(HH†) = n − k − dim(HullH (C)) = n − k − dim(HullH (C⊥H )),
which establishes the relation between the value of rank(HH†) and the dimension
of the Hermitian hull of C . Based on the fact, Guenda et al. provided the following
construction, by considering linear code C and its dual code.

Lemma 2.5 [18] Let C be an [n, k, d]q2 classical linear code and C⊥ be its
Euclidean dual code with parameters [n, n − k, d⊥]q2 . Then there exist [[n, k −
dim(Hullh(C)), d; n−k−dim(Hullh(C))]]q and [[n, n−k−dim(Hullh(C)), d⊥; k−
dim(Hullh(C))]]q EAQEC codes. Furthermore, if C is MDS, then one of the two
EAQEC codes must be MDS.

3 Constructions of EAQECMDS codes fromGRS codes

In this section, by considering generalized Reed–Solomon codes over Fq2 , we first
construct three classes of q2-ary MDS codes and calculate the dimension of their
Hermitian hulls. Let ω be a primitive element of Fq2 . It is easy to know that F∗

q =
〈ωq+1〉 is a cyclic subgroup of themultiplicative group F∗

q2
. This shows thatαq+1 ∈ Fq

for any α ∈ Fq2 , and there must exist some element α ∈ Fq2 such that β = αq+1 for
any β ∈ Fq .

Theorem 3.1 Let q be a prime power. If q + 1 ≤ n ≤ 2(q − 1) and n − q < k ≤ � n
2 �,

then there exists a q2-ary [n, k] MDS code with l-dimensional Hermitian hull, where
1 ≤ l ≤ k + q − n.

Proof If s is even and n − s ≤ q, we let α1, α
q
1 , . . . , α s

2
, α

q
s
2

∈ Fq2 \ Fq and

βs+1, . . . , βn ∈ Fq . Note that (α + αq) ∈ Fq for any α ∈ Fq2 . For any β ∈ Fq and
α ∈ Fq2 \Fq , we have (β−α)(β−αq) = β2−(α+αq)β+αq+1 ∈ F∗

q = 〈ωq+1〉. Let
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ui = ∏
s+1≤ j≤n, j �=i (βi −β j )

−1 ·∏1≤ j≤ s
2
(βi −α j )

−1(βi −α
q
j )

−1 for s+1 ≤ i ≤ n.

It is clear that ui ∈ F∗
q , i.e., ui ∈ F∗

q = 〈ωq+1〉. Then there exists a element υi ∈ Fq2

such that υ
q+1
i = ui for any s + 1 ≤ i ≤ n. When 1 ≤ i ≤ s, we let ui = (α i+1

2
−

α
q
i+1
2

)−1 ∏
1≤ j≤ s

2 , j �= i+1
2

(α i+1
2

−α j )
−1(α i+1

2
−α

q
j )

−1 ∏
s+1≤ j≤n(α i+1

2
−β j )

−1 for odd i

and ui = (α
q
i
2
−αi )

−1 ∏
1≤ j≤ s

2 , j �=i (α
q
i
2
−α j )

−1(α
q
i
2
−α

q
j )

−1 ∏
s+1≤ j≤n(α

q
i
2
−β j )

−1 for

even i . Take a = (α1, α
q
1 , . . . , α s

2
, α

q
s
2
, βs+1, . . . , βn) and v = (b1, b2, . . . , bs, υs+1,

. . . , υn), where bi for odd i satisfies bq+1
i �= uiui+1 and bi = 1 for even i . Then, we

have

GRSk(a, v) = {(b1 f (α1), f (αq
1 ), . . . , bs−1 f (α s

2
), f (αq

s
2
),

υs+1 f (βs+1), . . . , υn f (βn)) : f (x) ∈ Fq2 [x]k}.

For any c = (b1 f (α1), f (αq
1 ) . . . , bs−1 f (α s

2
), f (αq

s
2
), υs+1 f (βs+1), . . . , υn f (βn)) ∈

GRSk(a, v) ∩GRS(a, v)⊥H , it follows from Lemma 2.2 that there exists g(x) ∈
Fq2 [x]n−k such that

(bq+1
1 f (α1), f (αq

1 ) . . . , bq+1
s−1 f (α s

2
), f (αq

s
2
), υ

q+1
s+1 f (βs+1), . . . , υ

q+1
n f (βn))

= (u1g(α
q
1 ), u2g(α1), . . . , us−1g(α

q
s
2
), usg(α s

2
), us+1g(βs+1), . . . , ung(βn))

= (u1g(α
q
1 ), u2g(α1), . . . , us−1g(α

q
s
2
), usg(α s

2
), υ

q+1
s+1 g(βs+1), . . . , υ

q+1
n g(βn)).

(1)

Hence, we have f (βi ) = g(βi ) for any s + 1 ≤ i ≤ n and

⎧
⎨

⎩

bq+1
2i−1 f (αi ) = u2i−1g(α

q
i ),

f (αq
i ) = u2i g(αi ),

(2)

for any 1 ≤ i ≤ s
2 . Note that deg( f (x)) ≤ k−1 ≤ n−k−1 and deg(g(x)) ≤ n−k−1.

Since n − k − 1 < n − s, we have f (x) = g(x) for any x ∈ Fq2 . Then (2) becomes

⎧
⎨

⎩

bq+1
2i−1g(αi ) = u2i−1g(α

q
i ),

g(αq
i ) = u2i g(αi ),

(3)

Combine (3) and the definition of bi , we have g(αi ) = g(αq
i ) = 0 for

any 1 ≤ i ≤ s
2 . Thus, we can obtain f (x) = g(x) = h(x)

∏ s
2
i=1(x −

αi )(x − α
q
i ), where deg(h(x)) ≤ k − 1 − s. In addition, if s is odd and

n − s < q, we take a = (α1, α
q
1 , . . . , α s−1

2
, α

q
s−1
2

, αs, βs+1, . . . , βn) and v =
(b1, b2, . . . , bs−1, bsνs, νs+1, . . . , νn), where bi for odd i satisfies bq+1

i �= uiui+1
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and bi = 1 for even i . Similarly, we can obtain f (x) = g(x) = xh(x)
∏ s−1

2
i=1(x −

αi )(x − α
q
i ), where deg(h(x)) ≤ k − 1 − s. These demonstrate the results. ��

Letq = pm and e be a positive integer such that e|m. Notice that Fq2 can be regarded

as a 2m
e -dimensional vector space over Fpe . For any integer z with 1 ≤ z < 2m

e −1, let
A be an z-dimensional vector subspace over Fpe of Fq2 .We denote the elements of Fpe

by α1 = 0, α2, . . . , αpe . For 1 ≤ t ≤ pe and 1 ≤ j ≤ t , we denote A j = {x + α jη :
x ∈ A}, where η ∈ Fq2 \ Fpe is some fixed element. Let N = tpez be an integer

with 1 ≤ t ≤ pe and 1 ≤ z < 2m
e − 1. Assume that ∪t

i=1Ai = {α1, α2, . . . , αN } and
Ui = ∏

1≤ j≤N , j �=i (αi − α j )
−1 for any 1 ≤ i ≤ N . If αi ∈ Ah for some 1 ≤ h ≤ t , it

follows from Lemma 5 in [32] that

Ui =
⎛

⎝
∏

α �=0∈A

α−1

⎞

⎠

⎛

⎝
∏

β∈A

(η − β)

⎞

⎠

1−t ⎛

⎝
∏

1≤ j≤t, j �=h

(αh − α j )
−1

⎞

⎠ .

Moreover, let δ = (
∏

α �=0∈A α)(
∏

β∈A(η − β))t−1, we have δUi ∈ Fpe ⊂ Fq as
α1, α2, . . . , αt ∈ Fpe . By using GRS codes, we construct the following MDS codes
of length n over Fq2 and determine their Hermitian hulls.

Theorem 3.2 Let q = pm ≥ 3 be a prime power and e be a positive integer with e|m.
Let N = tpez be an integer, where 1 ≤ t ≤ pe and 1 ≤ z ≤ 2m

e − 1. Assume that n

is an integer such that 1 < n < N. For any 1 < k ≤ � N+q−1
q+1 � and n + k > N + 1,

then there exists a q2-ary [n, k] MDS code with l-dimensional Hermitian hull for any
1 ≤ l ≤ n − N + k − 1.

Proof Let the notations be defined as above. Take a = (α1, α2, . . . , αn). Since 1 ≤
t ≤ pe ≤ q and N = tpez , we have 1 < k ≤ � N+q−1

q+1 � ≤ pez = |A|. It follows from
n + k > N + 1 that N − n < k − 1 ≤ pez − 1 < |A|. Then for any 1 ≤ i ≤ n, we
have

ui =
∏

1≤ j≤n, j �=i

(αi − α j )
−1

=
∏

1≤ j≤N , j �=i

(αi − α j )
−1)

N∏

j=n+1

(αi − α j )

= Ui

N∏

j=n+1

(αi − α j ).

Since δUi ∈ Fq , there exist υ1, υ2, . . . , υn ∈ Fq2 such that υ
q+1
i = δUi for any

1 ≤ i ≤ n. Furthermore, we take v = (bυ1, bυ2, . . . , bυs, υs+1, . . . , υn) with 1 ≤
s ≤ n+ k− N −1, where bq+1 �= 1 and υi ∈ F∗

q2
with υ

q+1
i = δUi for all 1 ≤ i ≤ n.
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We consider the following q2-ary GRS code of length n,

GRSk(a, v) = {(bυ1 f (α1), . . . , bυs f (αs), υs+1 f (αs+1),

. . . , υn f (αn)) : f (x) ∈ Fq2 [x]k}.

For any c = (bυ1 f (α1), . . . , bυs f (αs), υs+1 f (αs+1), . . . , υn f (αn)) ∈ GRSk(a, v)
∩GRS(a, v)⊥H . It follows from Lemma 2.2 that

(bq+1υ
q+1
1 f (α1), . . . , b

q+1υ
q+1
s f (αs), υ

q+1
s+1 f (αs+1), . . . , υ

q+1
n f (αn))

= (u1g(α
q
1 ), . . . , usg(α

q
s ), us+1g(α

q
s+1), . . . , ung(α

q
n ))

= (u1g
′q(α1), . . . , usg

′q(αs), us+1g
′q(αs+1), . . . , ung

′q(αn)),

(4)

where g
′
(x) ∈ Fq2 [x]n−k . For any s + 1 ≤ i ≤ n, it follows from the last n − s

coordinates of (4) that υq+1
i f (αi ) = ui g

′q(αi ), i.e.,

δUi f
q(αi ) = ui g

′
(αi ) =

⎛

⎝Ui

∏

n+1≤ j≤N

(αi − α j )

⎞

⎠ g
′
(αi ).

This shows that δ f q(x) = (
∏

n+1≤ j≤N (x −α j ))g
′
(x) has at least n− s distinct roots.

It is clear that deg((
∏

n+1≤ j≤N (x − α j ))g
′
(x)) ≤ N − n + n − k − 1 ≤ N − k − 1.

Besides, it is easy to know that deg(δ f q(x)) ≤ q(k − 1) ≤ N − k − 1, due to
1 ≤ k ≤ � N+q−1

q+1 �. It follows from 1 ≤ s ≤ n + k − N − 1 that N − k − 1 < n − s.

Therefore, we have δ f q(x) = (
∏

n+1≤ j≤N (x−α j ))g
′
(x) for any x ∈ Fq2 . According

to the first s coordinates of (4), we have that bq+1υ
q+1
i f (αi ) = ui g

′q(αi ), i.e.,

bq+1δUi f
q(αi ) = ui g

′
(αi ) =

⎛

⎝Ui

∏

n+1≤ j≤N

(αi − α j )

⎞

⎠ g
′
(αi ) = δUi f

q(αi ),

for any 1 ≤ i ≤ s. As bq+1
i �= 1 for any 1 ≤ i ≤ s, we can obtain f (αi ) = 0 for

any 1 ≤ i ≤ s. Moreover, it follows from δ f q(x) = (
∏

n+1≤ j≤N (x − α j ))g
′
(x) that

f (αi ) = 0 for any n + 1 ≤ i ≤ N . Then we have that f (x) = h(x)(
∏s

i=1(x −
αi ))(

∏N
i=n+1(x − αi )), where deg(h(x)) ≤ n − N + k − 1 − s. Put g

′
(x) =

δ f q(x)
∏N

i=n+1(x − αi )
−1 = δhq(x)(

∏s
i=1(x

q − αi ))(
∏N

i=n+1(x − αi )
q−1) and

g(x) = δqh(xq)(
∏s

i=1(x
q −αi ))(

∏N
i=n+1(x−α

q
i )q−1). For any g(x), g

′
(x) ∈ Fq2 [x]

of the forms above, there is a f (x) = h(x)(
∏s

i=1(x − αi ))(
∏N

i=n+1(x − αi )) such
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that

(bq+1υ
q+1
1 f (α1), . . . , b

q+1υ
q+1
s f (αs), υ

q+1
s+1 f (αs+1), . . . , υ

q+1
n f (αn))

= (u1g(α
q
1 ), . . . , usg(α

q
s ), us+1g(α

q
s+1), . . . , ung(α

q
n ))

= (u1g
′q(α1), . . . , usg

′q(αs), us+1g
′q(αs+1), . . . , ung

′q(αn)),

which implies that

(bυ f (α1), . . . , bυs f (αs), υs+1 f (αs+1), . . . , υn f (αn))

∈ GRSk(a, v) ∩ GRSk(a, v)⊥H .

Therefore, dim(Hull(GRSk(a, v,∞))) = n−N+k−s, where 1 ≤ s ≤ n+k−N−1.
This completes the proof. ��

Let n
′
be some divisor of q2−1. Denote n1 = n

′

gcd(n′
, q + 1)

and n2 = gcd(n
′
, q+

1). Then gcd(n1, q + 1) = 1 and n1|q − 1. Let G = 〈ω
q2−1

n
′ 〉 and D = 〈ω q+1

n2 〉. It
is obvious that G and D are the multiplicative subgroups of F∗

q2
of order |G| = n

′

and |D| = n2(q − 1), respectively. Due to q+1
n2

| q2−1
n′ , we have G as a subgroup of D.

Then there are β1, . . . , β q−1
n1

∈ D such that D = β1G ∪ β2G ∪ . . . ∪ β
(
q−1
n1

−1)G. Let

1 ≤ t ≤ q−1
n1

and N = tn
′
. For convenience, we denote ∪t

i=1βi G = {α1, α2, . . . , αN }
and Ui = ∏

1≤ j≤N , j �=i (αi − α j )
−1 for any 1 ≤ i ≤ N . If αi ∈ βsG for some

1 ≤ s ≤ t , it follows from Lemma 7 of [32] that

Ui = αi n
′−1β−n

′
s

∏

0≤h≤t−1,h �=s

(βn
′

s − βn
′

h )−1,

and εUi = n
′−1β−n

′
s

∏
0≤h≤t−1,h �=s(β

n
′

s − βn
′

h )−1 ∈ F∗
q , where ε = α−1

i . Further-
more, we construct the following MDS codes and determine their Hermitian hulls.

Theorem 3.3 Let q = pm ≥ 3 be a prime power and n
′ = n1n2 be some divisor of

q2 − 1 with n1 = n
′

gcd(n′
,q+1)

and n2 = gcd(n
′
, q + 1). Suppose that N = tn

′
with

1 ≤ t ≤ q−1
n1

and n is an integer such that 1 < n < N. For any 1 < k ≤ � N+q
q+1 �

and n + k > N + 1, then there exists a q2-ary [n, k] MDS code with l-dimensional
Hermitian hull for any 1 ≤ l ≤ n − N + k − 1.

Proof With the notations above, we take a = (α1, α2, . . . , αn). Then we have

ui =
∏

1≤ j≤n, j �=i

(αi − α j )
−1

= Ui

N∏

j=n+1

(αi − α j ),
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for any 1 ≤ i ≤ n. Since εUi ∈ F∗
q , there must exist υ1, υ2, . . . , υn ∈ Fq2 such

that υ
q+1
i = εUi for any 1 ≤ i ≤ n. Let b ∈ F∗

q2
and bq+1 �= 1. Take v =

(bυ1, bυ2, . . . , bυs, υs+1, . . . , υn), where 1 ≤ s ≤ n + k − N − 1. Then we obtain
the following q2-ary GRS code of length n associated with a and v,

GRSk(a, v) = {(bυ1 f (α1), . . . , bυs f (αs), υs+1 f (αs+1),

. . . , υn f (αn)) : f (x) ∈ Fq2 [x]k}.

For any c = (bυ1 f (α1), . . . , bυs f (αs), υs+1 f (αs+1), . . . , υn f (αn)) ∈ GRSk(a, v)
∩GRS(a, v)⊥H . According to Lemma 2.2, we have

(bq+1υ
q+1
1 f (α1), . . . , b

q+1υ
q+1
s f (αs), υ

q+1
s+1 f (αs+1), . . . , υ

q+1
n f (αn))

= (u1g(α
q
1 ), . . . , usg(α

q
s ), us+1g(α

q
s+1), . . . , ung(α

q
n ))

= (u1g
′q(α1), . . . , usg

′q(αs), us+1g
′q(αs+1), . . . , ung

′q(αn)),

(5)

where g
′
(x) ∈ Fq2 [x]n−k . For any s + 1 ≤ i ≤ n, it follows from the last n − s

coordinates of (6) that υq+1
i f (αi ) = ui g

′q(αi ), i.e.,

α−1
i Ui f

q(αi ) = ui g
′
(αi ) =

⎛

⎝Ui

N∏

j=n+1

(αi − α j )

⎞

⎠ g
′
(αi ).

Then the polynomial f q(x) = x(
∏N

j=n+1(x−α j ))g
′
(x)has at leastn−s distinct roots.

It is clear that deg(x(
∏N

j=n+1(x−α j ))g
′
(x)) ≤ N−n+1+n−k−1 ≤ N−k. Since 1 <

k ≤ � N+q
q+1 �, deg( f q(x)) ≤ q(k−1) ≤ N − k. It follows from 1 ≤ s ≤ n+ k− N −1

that N − k < n − s. Therefore, we have f q(x) = x(
∏N

j=n+1(x − α j ))g
′
(x) for any

x ∈ Fq2 . From the first s coordinates of (6), we have that bq+1υ
q+1
i f (αi ) = ui g

′q(αi ),
i.e.,

bq+1α−1
i Ui f

q(αi ) = ui g
′
(αi ) =

⎛

⎝Ui

N∏

j=n+1

(αi − α j )

⎞

⎠ g
′
(αi ),

for any 1 ≤ i ≤ s. Then bq+1 f q(αi ) = αi (
∏N

j=n+1(αi − α j ))g
′
(αi ) = f q(αi )

for any 1 ≤ i ≤ s. As bq+1
i �= 1 for any 1 ≤ i ≤ s, we obtain f (αi ) = 0 for

any 1 ≤ i ≤ s. In addition, it follows from f q(x) = x(
∏N

j=n+1(x − α j ))g
′
(x) that

f (0) = 0 and f (αi ) = 0 for any n + 1 ≤ i ≤ N . Thus, we have that f (x) =
xh(x)(

∏s
i=1(x − αi ))(

∏N
i=n+1(x − αi )), where deg(h(x)) ≤ n − N + k − 2− s. Put

g
′
(x) = x−1 f q(x)

∏N
i=n+1(x − αi )

−1 = xq−1hq(x)(
∏s

i=1(x
q − αi ))(

∏N
i=n+1(x −

αi )
q−1) and g(x) = xq−1h(xq)(

∏s
i=1(x

q − αi ))(
∏N

i=n+1(x − α
q
i )q−1). For any
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Table 1 Sample parameters of
EAQEC codes from
Theorem 3.4 for q = 9 and
n = 11, 12

k l [[n, k1, d1; c1]]q [[n, k2, d2; c2]]q
3 1 [[11, 2, 9; 7]]9 [[11, 7, 4; 2]]9
4 1 [[11, 3, 8; 6]]9 [[11, 6, 5; 3]]9
4 2 [[11, 2, 8; 5]]9 [[11, 5, 5; 2]]9
5 1 [[11, 4, 7; 5]]9 [[11, 5, 6; 4]]9
5 2 [[11, 3, 7; 4]]9 [[11, 4, 6; 3]]9
5 3 [[11, 2, 7; 3]]9 [[11, 3, 6; 2]]9
4 1 [[12, 3, 9; 7]]9 [[12, 7, 5; 3]]9
5 1 [[12, 4, 8; 6]]9 [[12, 6, 6; 4]]9
5 2 [[12, 3, 8; 5]]9 [[12, 5, 6; 3]]9
6 1 [[12, 5, 7; 5]]9 [[12, 5, 7; 5]]9
6 2 [[12, 4, 7; 4]]9 [[12, 4, 7; 4]]9
6 3 [[12, 3, 7; 3]]9 [[12, 3, 7; 3]]9
1. k1 = k − l, d1 = n − k + 1, c1 = n − k − l.
2. k2 = n − k − l, d2 = k + 1, c2 = k − l

g(x), g
′
(x) ∈ Fq2 [x] of the forms above, there exists a f (x) = xh(x)(

∏s
i=1(x −

αi ))(
∏N

i=n+1(x − αi )) such that

(bq+1υ
q+1
1 f (α1), . . . , b

q+1υ
q+1
s f (αs), υ

q+1
s+1 f (αs+1), . . . , υ

q+1
n f (αn))

= (u1g(α
q
1 ), . . . , usg(α

q
s ), us+1g(α

q
s+1), . . . , ung(α

q
n ))

= (u1g
′q(α1), . . . , usg

′q(αs), us+1g
′q(αs+1), . . . , ung

′q(αn)),

which implies that

(bυ f (α1), . . . , bυs f (αs), υs+1 f (αs+1), . . . , υn f (αn))

∈ GRSk(a, v) ∩ GRSk(a, v)⊥H .

Therefore, dim(Hull(GRSk(a, v,∞))) = n − N + k − 1 − s, where 1 ≤ s ≤
n + k − N − 1. This completes the proof. ��

In Theorems 3.1, 3.2 and 3.3, we constructed three classes of MDS codes by using
GRS codes and completely determined their Hermitian hulls. Based on the results and
Lemma 2.5, three classes of q-ary EAQEC codes and EAQEC MDS codes can be
easily obtained as follows.

Theorem 3.4 Let q be a prime power. If q + 1 < n ≤ 2(q − 1) and n − q <

k ≤ � n
2 �, then there exist [[n, k − l, n − k + 1; n − k − l]]q EAQEC codes and

[[n, n − k − l, k + 1; k − l]]q EAQEC MDS codes, where 1 ≤ l ≤ k + q − n.

Example 1 Let q = 9 and n = 11, 12 in Theorem 3.4. Then we can obtain some new
EAQEC codes and EAQEC MDS codes, whose parameters are listed in Table 1.
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Theorem 3.5 Let q = pm ≥ 3 be a prime power and e be a positive integer with e|m.
Assume that N = tpez with 1 ≤ t ≤ pe and 1 ≤ z ≤ 2m

e − 1 and n is an integer

such that 1 < n < N. If 1 < k ≤ � N+q−1
q+1 � and n + k > N + 1, then there exist

[[n, k − l, n − k + 1; n − k − l]]q EAQEC codes and [[n, n − k − l, k + 1; k − l]]q
EAQEC MDS codes, where 1 ≤ l ≤ n − N + k − 1.

Example 2 Let p = 3, m = 2 and e = 2 in Theorem 3.5, then z = 1. Take N = 54
and n = 53, then we can obtain some new EAQEC codes and EAQEC MDS codes,
whose parameters are listed in Table 2.

Theorem 3.6 Let q = pm ≥ 3 be a prime power and n
′ = n1n2 be some divisor of

q2 − 1 with n1 = n
′

gcd(n′
,q+1)

and n2 = gcd(n
′
, q + 1). Suppose that N = tn

′
with

1 ≤ t ≤ q−1
n1

and n is an integer such that 1 < n < N. If 1 < k ≤ � N+q
q+1 � and

n + k > N + 1, then there exist [[n, k − l, n − k + 1; n − k − l]]q EAQEC codes and
[[n, n − k − l, k + 1; k − l]]q EAQEC MDS codes, where 1 ≤ l ≤ n − N + k − 1.

Example 3 Let p = 5 and m = 2 in Theorem 3.6. Take N = tn
′ = 2 · 78 = 156

and n = 155, then we can obtain some new EAQEC codes and EAQEC MDS codes,
whose parameters are listed in Table 3.

Remark 1 (1) In [30,31], the authors constructed some EAQEC (MDS) codes of
lengths n ≤ q and all EAQEC MDS codes of lengths q + 1. In [32], all q-ary
EAQEC MDS codes of lengths n ≤ q are completely determined. So, we mainly
consider the construction of EAQEC codes of length n > q + 1.

(2) Let q > 3 be a prime power. From Theorem 3.1, we know that Theorem 3.4
holds even for n = q + 1, i.e., we have EAQEC codes with parameters [[q +
1, k − l, q − k + 2; q − k − l + 1]]q and EAQEC MDS codes with parameters
[[q + 1, q − k − l + 1, k + 1; k − l]]q , where 1 < k ≤ � q+1

2 � and 1 ≤ l ≤ k − 1.
However, the EAQEC codes have been constructed in [30]. We do not consider the
case with n = q + 1 in Theorem 3.4. Now, all the EAQEC codes in Theorem 3.4
are new in the sense that our parameters are not covered by the codes available in
the literature.

(3) Notice that the required number of maximally entangled states and lengths of the
EAQEC codes constructed by us can take various values. Comparing the param-
eters with all known ones in the literature, one can find that our EAQEC codes
in Theorems 3.5 and 3.6 are new. Some examples are given in Tables 1, 2 and 3,
which can be obtained by Theorems 3.4, 3.5 and 3.6, respectively. The parameters
of our EAQEC codes are flexible not only on c but also on n.

4 Conclusions

In this paper, we first constructed three classes of MDS codes by considering GRS
codes and determined their Hermitian hulls. Based on the constructed MDS codes,
we obtained three new classes of q-ary EAQEC codes and EAQEC MDS codes,
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Table 2 Sample parameters of
EAQEC codes from
Theorem 3.5 for p = 9, N = 54
and n = 53

k l [[n, k1, d1; c1]]q [[n, k2, d2; c2]]q
3 1 [[53, 2, 51; 49]]9 [[53, 49, 4; 2]]9
4 1 [[53, 3, 50; 48]]9 [[53, 48, 5; 3]]9
4 2 [[53, 2, 50; 47]]9 [[53, 47, 5; 2]]9
5 1 [[53, 4, 49; 47]]9 [[53, 47, 6; 4]]9
5 2 [[53, 3, 49; 46]]9 [[53, 46, 6; 3]]9
5 3 [[53, 2, 49; 45]]9 [[53, 45, 6; 2]]9
6 1 [[53, 5, 48; 46]]9 [[53, 46, 7; 5]]9
6 2 [[53, 4, 48; 45]]9 [[53, 45, 7; 4]]9
6 3 [[53, 3, 48; 44]]9 [[53, 44, 7; 3]]9
6 4 [[53, 2, 48; 43]]9 [[53, 43, 7; 2]]9
1. k1 = k − l, d1 = n − k + 1, c1 = n − k − l.
2. k2 = n − k − l, d2 = k + 1, c2 = k − l

Table 3 Sample parameters of
EAQEC codes from
Theorem 3.6 for q = 25,
N = 156 and n = 155

k l [[n, k1, d1; c1]]q [[n, k2, d2; c2]]q
3 1 [[155, 2, 153; 151]]25 [[155, 151, 4; 2]]25
4 1 [[155, 3, 152; 150]]25 [[155, 150, 5; 3]]25
4 2 [[155, 2, 152; 149]]25 [[155, 149, 5; 2]]25
5 1 [[155, 4, 151; 149]]25 [[155, 149, 6; 4]]25
5 2 [[155, 3, 151; 148]]25 [[155, 148, 6; 3]]25
5 3 [[155, 2, 151; 147]]25 [[155, 147, 6; 2]]25
6 1 [[155, 5, 150; 148]]25 [[155, 148, 7; 5]]25
6 2 [[155, 4, 150; 147]]25 [[155, 147, 7; 4]]25
6 3 [[155, 3, 150; 146]]25 [[155, 146, 7; 3]]25
6 4 [[155, 2, 150; 145]]25 [[155, 145, 7; 2]]25
1. k1 = k − l, d1 = n − k + 1, c1 = n − k − l.
2. k2 = n − k − l, d2 = k + 1, c2 = k − l

whose maximally entangled states are closely related to the Hermitian hull and are
flexible. Also, the three new classes of EAQEC codes and EAQEC MDS codes have
more flexible lengths. Comparing with the parameters of all known EAQEC codes,
all EAQEC codes obtained in this paper are new. The Hermitian hull of a linear code
is a worthwhile problem for further study. It would be interesting to construct more
EAQEC MDS codes by determining the Hermitian hulls of linear codes.
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