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Abstract
In this paper, we aim to obtain quantum error correcting codes from codes over a non-
local ring Rq = Fq + αFq . We first define a Gray map ϕ from Rn

q to F
2n
q preserving

the Hermitian orthogonality in Rn
q to both the Euclidean and trace-symplectic orthog-

onality in F
2n
q . We characterize the structure of cyclic codes and their duals over Rq

and derive the condition of existence for cyclic codes containing their duals over Rq .
By making use of the Gray map ϕ, we obtain two classes of q-ary quantum codes. We
also determine the structure of additive cyclic codes over Rp2 and give a condition for
these codes to be self-orthogonal with respect to Hermitian inner product. By defining
and making use of a new map δ, we construct a family of p-ary quantum codes.

Keywords Quantum codes · Cyclic codes · Gray map

1 Introduction

Quantum error correcting codes(QECC) are useful tool in quantum computation and
communication to detect and correct the quantum errors while quantum information is
transferred via quantum channel. While it is initially supposed that there is no way to
quantum computation and communication due to the difficulties such as decoherence
destroying the information of qubits having a superposition, encoding one qubit to
nine qubits, the first quantum code called Shor code [16] encourages the researchers
in overcoming this problem and deriving a systematic construction for QECC. In [3]
and [17], respectively, Shor et al. and Steane, as independence of each other, discover a
systematic way to construct QECC which are called CSS code. It is no longer enough
to consider two classical linear codes over GF(2) which are nested for constructing
binary QECC. Gottesman [6] comes up with an outstanding notion that aims to detect
and correct the quantum errors for QECC by considering their stabilizer groups that
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are subgroups of Pauli matrices group on binary qubits. In [4], it is shown that it is
equivalent finding additive codes over GF(4) which are self-orthogonal with respect
to certain trace inner product to finding binary stabilizer QECC. By redefining the
Pauli matrices on qubits over higher alphabets, the results given in [4] are generalized
to stabilizer QECC over Fq in [2,10]. In [10], the finding stabilizer codes of length
n over Fq is transformed into at first the finding additive codes of length 2n over Fq

which are self-orthogonal with respect to trace-alternating form and then the finding
additive codes of length n over Fq2 which are self-orthogonal with respect to trace-
symplectic form. It is also shown that for a linear code over Fq2 , its dual with respect
to trace-alternating form is equal to its dual with respect to Hermitian inner product,
whence paves the way for many further researches, some of which are [1,5,9,18].
Next, Kai et al. [9] consider the quantum codes constructed via the Hermitian dual
containing negacyclic codes which are a class of constacyclic codes. The study [5] also
provides the construction of quantum codes via a certain class of constacyclic codes
containing Hermitian duals. In this study, instead of the classical linear codes over
Fq2 including their Hermitian duals, we consider the linear codes over Fq containing
their Euclidean and trace-symplectic duals as the Gray images of certain codes over a
nonlocal ring Rq (will be defined later).

This paper includes six sections organized as follows: Section 2 gives to the readers
some basic definitions and notations which they need in next sections. Section 3
introduces a Gray map ϕ : Rn

q → F
2n
q which preserves both Euclidean and trace-

symplectic orthogonality inF2n
q . Section 4 studies the cyclic codes and their Hermitian

duals (defined in Sect. 2). It also illustrates some quantum codes obtained from cyclic
codes over R5 of length 9 and 11. Section 5 aims to find a condition for additive cyclic
codes over Rq , q = p2, to contain their Hermitian duals. Introducing amap δ : Rn

p2
→

F
4n
p preserving the orthogonality, it also gives some quantum code examples obtained

from additive cyclic codes over R5 of length 11. Section 6 concludes the paper.

2 Preliminaries

Let Fq be a finite field having q elements, where q is a prime power. A code of length
n over Fq is a nonempty subset of Fn

q . A subspace of Fn
q is a linear code of length

n over Fq and so a linear code has a dimension k. The Hamming weight wH (x) of
a vector x = (x0, x1, . . . , xn−1) is the number of nonzero coordinates of the vector
x . The Hamming distance dH (x, y) between two vectors x = (x0, x1, . . . , xn−1)

and y = (y0, y1, . . . , yn−1) is the Hamming weight of the vector x − y. For
u = (

β1 β2 · · · βn
)
, v = (

γ1 γ2 · · · γn
) ∈ Rn

q , consider xt + i yt with |xt | + |yt |
minimum. Then, the Mannheim distance between these word u and v is defined as

dM (u, v) =
n∑

t=1

(|xt | + |yt |).

Anelement of a code is called codeword. The (minimum)Hamming distance dH (C) of
a codeC is defined as theminimumHammingdistance between twodistinct codewords
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in the code C . Also, the Mannheim distance dM (C) of a code C can be defined in
the similar way. [n, k, d]q and [n, k, dM ]q codes refer to linear codes of length n over
Fq and Rq having dimension k and Hamming distance d and Mannheim distance
dM , respectively. Recall that the Euclidean inner product 〈x, y〉 of two vectors x =
(x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) is 〈x, y〉 = ∑n−1

i=0 xi yi . The set C⊥ =
{y ∈ F

n
q : 〈x, y〉 = 0, ∀x ∈ C} is called the Euclidean dual of the code C .

DefineCqn = C
q ⊗C

q · · ·⊗C
q , whereCq is q-dimensional complex vector space.

An ((n, M, d))q quantum code is defined as a subspace with M generators ofCn
q such

that it can detect d − 1 errors but not some d errors. If specially M = qk , such a
quantum code is denoted by [[n, k, d]]q . The following two theorems show that there
is a strong relation between codes over Fq and quantum error correcting codes.

Theorem 1 ([10] CSS Code Construction) Suppose that C and C1 are two [n, k, d]q
and [n, k1, d1]q codes, respectively, such that C1 ⊆ C. Then, there exists a
[[n, k − k1, d ′]]q quantum error correcting code, where

d ′ = min
{
wH (x) : x ∈ (C − C1) ∪

(
C⊥
1 − C⊥)}

≥ min
{
d, d⊥

1

}
(1)

and d⊥
1 = dH (C⊥

1 ). If, particularly, the code C contains its Euclidean dual, then there
exists a [[n, 2k − n, d ′]]q quantum error correcting code, where

d ′ = min{wH (x) : x ∈ C − C⊥} ≥ d. (2)

Define the trace tr : Fq → Fp, tr (x) = x + x p + · · · + x pm−1
, where q = pm .

The trace-symplectic inner product of two vectors (x, y) and (x ′, y′) of F2n
q is given

in [10] as follows:

〈
(x, y) ,

(
x ′, y′)〉

s := tr
(〈
x ′, y

〉 − 〈
x, y′〉) . (3)

The set C⊥s = {y ∈ F
2n
q : 〈x, y〉s = 0, ∀x ∈ C} is called the trace-symplectic

dual of the code C . Recall that the symplectic weight of a vector (x, y) in F
2n
q is

ws (x, y) = n − |{i : xi = 0 and yi = 0}|.
Theorem 2 [10] Suppose that C is an additive code over Fq of length 2n such that
|C | = qn−k , C ⊆ C⊥s and ws

(
C⊥s − C

) = d. Then, there exists a [[n, k, d]]q
quantum error correcting code.

Theorem 2 says that it is necessary to find an additive code over Fq containing its
trace-symplectic dual to construct a quantum code.

For an [[n, k, d]]q quantum code, the relation n + 2 ≥ k + 2d, called quantum
Singleton bound, is an analog to the Singleton bound for classical linear codes over
finite fields [11,15]. An [[n, k, d]]q quantum code is called a quantum MDS(QMDS)
code if it holds the Singleton bound for quantum codes.

Let p be a prime such that p = a2 + b2 for some positive integers a and b and let
Fq be a finite field having q elements, where q is a positive power of p. We denote Rq
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to be Rq = Fq + αFq , where α = a + bi . Then, Rq is a nonlocal commutative ring
with identity and its nontrivial ideals are 〈α〉 and 〈α∗〉, where α∗ = a − bi . It is easily
seen that Rq = 〈α〉 ⊕ 〈α∗〉 and |〈α〉| = |〈α∗〉| = q. Thus, since 〈α〉 = {kα : k ∈ Fq}
and 〈α∗〉 = {kα∗ : k ∈ Fq}, every element r of the ring Rq is written uniquely as

k1α + k2α
∗ (4)

for some k1, k2 ∈ Fq .
A code C of length n over Rq is a nonempty subset of Rn

q . A linear code C of
length n over Rq is a submodule of Rq -module Rn

q . Any linear code over Rq is a
permutation-equivalent to a code having the following generator matrix:

G(k1+k2+k3)×n =
⎛

⎝
Ik1 α∗B1 αA1 αA1 + α∗B2 αA3 + α∗B3
0 α Ik2 0 αA4 0
0 0 α∗ Ik3 0 α∗B4

⎞

⎠ , (5)

where Iki is a ki × ki identity matrix and the matrices Ai and Bi are over Fq . Note
that for a code C with the generator matrix G(k1+k2+k3)×n , the size |C | of C is equal
to q2k1+k2+k3 .

For an element r = x + yα in R, r∗ = x + yα∗. Let x = (x0, x1, . . . , xn−1) and
y = (y0, y1, . . . , yn−1) be two vectors in Rn

q . Define Hermitian inner product 〈x, y〉h
of the vectors x and y as 〈x, y〉h := x0y∗

0 + x1y∗
1 + · · · + xn−1y∗

n−1. Hermitian dual
C⊥h of a code C over Rq of length n is the set

C⊥h = {y ∈ Rn
q : 〈x, y〉h = 0, ∀x ∈ C}. (6)

Note that C⊥h is also linear if C is linear, and |C ||C⊥h | = |Rn
q |. A code C is called

Hermitian self-orthogonal code if C ⊆ C⊥h .

3 A graymap from Rn
q to F

2n
q

We define the Gray map ϕ : Rn
q → F

2n
q as

ϕ (r0, r1, . . . , rn−1) = (−y0b, . . . ,−yn−1b, x0 + y0a, . . . , xn−1 + yn−1a) , (7)

where ri = xi + yiα for all i ∈ {0, 1, . . . , n − 1}.
The Lee weightwL (r) of an element r ∈ Rq iswH (ϕ (r)). The Lee weightwL (x)

of a vector x = (x0, x1, . . . , xn−1) ∈ Rn
q iswL (x) = ∑n−1

i=0 wL (xi ). The Lee distance
dL (x, y) between two vectors x and y in Rn

q is defined to be dL (x, y) = wL (x − y).
The following theorem is direct.

Theorem 3 The Gray map ϕ is an Fq-linear and distance-preserving map from
(Rn

q , dL) to (F2n
q , dH ).
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For two elements r1 = x1 + y1α and r2 = x2 + y2α of the ring Rq , suppose that
r1⊥hr2. This implies that

x1x2 + (x1y2 + x2y1) a = 0 (8)

and
(x2y1 − x1y2) b = 0 (9)

We have the following theorem:

Theorem 4 Let C be a code of length n over Rq . If C contains its Hermitian dual,
ψ (C) contains its dual with respect to both usual inner product and trace-symplectic
inner product.

Proof It is sufficient to prove only for n = 1. Assume that r1⊥hr2. See that

〈ψ (r1) , ψ (r2)〉 = y1y2b
2 + (x1y2 + x2y1) a + x1x2 + y1y2a

2

= (x1y2 + x2y1) a + x1x2.

Equation 8 implies that 〈ψ (r1) , ψ (r2)〉 = 0. For the second,

〈ψ (r1) , ψ (r2)〉s = tr (− (x1 + y1a) y2b + (x2 + y2a) y1b)

= tr ((x2y1 − x1y2) b) .

By Equation 9, tr ((x2y1 − x1y2) b) = 0 and so proof is completed. ��
Combining Theorems 1, 3 and 4, we give:

Corollary 1 If C is a linear code over Rq having the generator matrix G(k1+k2+k3)×n

and containing its Hermitian dual, then there exists an [[2n, 2(2k1 + k2 + k3 − n),

d ≥ dL ]]q quantum error correcting code, where dL is the minimum Lee distance of
the code C.

It is worth to note that for a vector x ∈ Rn
q , wH (x) = ws (ϕ (x)) and so the

(minimum) Hamming weight of the nonzero codewords in a code C over Rq is equal
to the minimum symplectic weight of the nonzero codewords in ϕ (C). We also have
the following from Theorems 1 and 4.

Corollary 2 If C is a linear code over Rq having the generatormatrix G(k1+k2+k3)×n and
containing its Hermitian dual, then there exists a [[n, 2k1 + k2 + k3 − n, d ≥ dH ]]q
quantum error correcting code, where dH is the minimum Hamming distance of the
code C.

4 Quantum codes from cyclic codes over Rq

A linear code C over Fq (resp. Rq ) is called cyclic if its right cyclic shift of every
codeword is also a codeword. Recall that there is a one-to-one correspondence between
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cyclic codes of length n over Fq and the ideals of the quotient ring
Fq [x]

〈xn−1〉 . Since every
ideal of Fq [x]

〈xn−1〉 is principal, C = 〈g (x)〉 for some monic polynomial g (x) ∈ Fq [x]
〈xn−1〉 ,

where g (x) is called generator polynomial of C and divides xn − 1. Similar to the
case over Fq , a cyclic code over Rq of length n is an ideal in Rq [x]

〈xn−1〉 . Hence, we need
to investigate the ideal structure of Rq [x]

〈xn−1〉 .
Equation 4 implies that for every vector x ∈ Rn

q , there exits uniquely vectors
x1, x2 ∈ F

n
q such that x = αx1 + α∗x2. This leads to a characterization of linear and

cyclic codes of length n over Rq .

Theorem 5 A linear code C over Rq of length n is of the form C = αC1 ⊕ α∗C2,
where C1 and C2 are linear codes over Fq of length n. If the code C is a cyclic code,
then C1 and C2 are cyclic codes over Fq .

We now are ready to give exact characterization for cyclic codes over Rq .

Theorem 6 Every cyclic code C over Rq of length n has the form C = 〈αg1 (x)

+α∗g2 (x)〉 for some polynomials g1 (x) and g2 (x) in
Fq [x]

〈xn−1〉 which divide xn − 1.

Moreover, |C | = q2n−∑2
i=1 deg gi (x).

Proof By Theorem 5, C = αC1 + α∗C2 for some cyclic codes C1 = 〈g1 (x)〉
and C2 = 〈g2 (x)〉 of length n, where gi (x) divides xn − 1 for i = 1, 2. Then,
C = 〈αg1 (x) , α∗g2 (x)〉. Set J = 〈αg1 (x) + α∗g2 (x)〉. Clearly, J ⊆ C . For
reverse inclusion, see that α2 = 2aα and (α∗)2 = 2aα∗. This implies that
α (αg1 (x) + α∗g2 (x)) = α2g1 (x) = 2aαg1 (x) ∈ J andα∗ (αg1 (x) + α∗g2 (x)) =
(α∗)2g2 (x) = 2aα∗g2 (x) ∈ J . Hence, αg1 (x) and α∗g2 (x) are included in J and
J = C . The size of C is clear. ��

To construct quantum error correcting codes via cyclic codes over Rq , we need
the condition that cyclic codes over Rq contain their Hermitian dual. We begin to
determine the structure of Hermitian dual code of a cyclic code over Rq . Note that
h (x) = xn−1

g(x) is called check polynomial of a cyclic code C = 〈g (x)〉 over Fq of

length n and hR (x) = xdeg h(x)h(x−1).

Theorem 7 Suppose C = αC1 ⊕ α∗C2 is a cyclic code over Rq of length n. Then,
C⊥h = 〈αhR

2 (x) + α∗hR
1 (x)〉, where h1 (x) and h2(x) are check polynomials of C1

and C2, respectively.

Proof Set J = 〈αhR
2 (x) + α∗hR

1 (x)〉. Let Ci = 〈gi (x)〉 for i = 1, 2. Since C =
〈αg1 (x) + α∗g2 (x)〉, the definition of Hermitian inner product forces that proving
the following equality is necessary.

(
αg1 (x) + α∗g2 (x)

) (
αh2 (x) + α∗h1 (x)

)∗

= (
αg1 (x) + α∗g2 (x)

) (
αh1 (x) + α∗h2 (x)

)

= α2g1 (x) h1 (x) + αα∗ (g1 (x) h2 (x) + g2 (x) h1 (x)) + (
α∗)2g2 (x) h2 (x) = 0

Hence, (αh2 (x) + α∗h1 (x))R = αhR
2 (x) + α∗hR

1 (x) ∈ C⊥h and J ⊆ C⊥h . Since
|J ||C | = |R2n

q |, J = C⊥h . ��
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Note that xn − 1 has no multiple roots over Fq if (n, q) = 1. Then, there exists
an nth root β of unity in some field extension of Fq . This fact enables to describe a
cyclic code of length n and generator polynomial g (x) with respect to its defining
set Z = {i : g(β i ) = 0, i ∈ {0, 1, . . . , n − 1}}. Denote Z−1 = {−i mod n : i ∈ Z}.
Recall that the defining set of gR (x) is Z−1 if the defining set of g (x) is Z . In the
following theorem, equivalent conditions for a cyclic code over Rq to contain its
Hermitian dual are derived.

Theorem 8 Let (n, q) = 1. Let Ci be a cyclic code of length n and generator poly-
nomial gi (x) over Fq and let Zi be defining set of Ci for i = 1, 2. Suppose that
C = αC1 + α∗C2. The following are equivalent:

1. C⊥h ⊆ C,
2. C⊥

2 ⊆ C1,
3. C⊥

1 ⊆ C2,
4. xn − 1 ≡ 0

(
mod g1 (x) gR

2 (x)
)
,

5. xn − 1 ≡ 0
(
mod gR

1 (x) g2 (x)
)
,

6. Z1 ∩ Z−1
2 = ∅,

7. Z−1
1 ∩ Z2 = ∅.

Proof It is easy to see that the conditions (2), (3), (4), (5), (6) and (7) are equivalent
from definitions and so it is enough to prove (1)⇔(4). Since C = αC1 + α∗C2,
Theorem 7 implies that C⊥h = αC⊥

2 ⊕ α∗C⊥
1 . So, if C

⊥h ⊆ C , then C⊥
2 ⊆ C1 and

C⊥
1 ⊆ C2. Thus, g1 (x)| hR

2 (x) and g2 (x)| hR
1 (x). Say hR

2 (x) = g1 (x) f (x). Since
gR
2 (x) hR

2 (x) = − (xn − 1), we get gR
2 (x) g1 (x) f (x) = − (xn − 1).

For the other side, if xn − 1 ≡ 0 mod (g1(x)gR
2 (x)), then gR

2 (x)
∣∣ h1 (x) and so

g2 (x)| hR
1 (x). This means that C⊥

1 ⊆ C2 and C⊥
2 ⊆ C1, which completes the proof.

��
The following is immediate from Theorem 8.

Corollary 3 Let C be a cyclic code overFq containing its dual and let C ′ = αC⊕α∗C.
Then, C ′ is a cyclic code over Rq containing its Hermitian dual.

Corollary 1 is rearranged for cyclic codes containing its Hermitian dual as follows:

Corollary 4 Let C = αC1 ⊕ α∗C2 = 〈αg1 (x) + α∗g2 (x)〉 be a cyclic code over Rq

of length n and (n, q) = 1. If one of the conditions given in Theorem 8 is satisfied,
then there exists a [[2n, 2(n − ∑2

i=1 deg(gi (x))), d ≥ dL ]]q quantum error correcting
code, where dL is the minimum Lee weight of the cyclic code C and gi (x) is generator
polynomial of Ci .

Furthermore, Corollary 2 is rearranged for cyclic codes containing its Hermitian dual
as follows:

Corollary 5 Let C = αC1⊕α∗C2 = 〈αg1 (x) + α∗g2 (x)〉 be a cyclic code over Rq of
length n and (n, q) = 1. If one of the conditions given in Theorem 8 is satisfied, then
there exists a [[n, n − ∑2

i=1 deg(gi (x)), d ≥ dH ]]q quantum error correcting code,
where dH is the minimumHamming weight of the cyclic code C and gi (x) is generator
polynomial of Ci .
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Table 1 All nontrivial cyclic
codes over R5 of length 9
containing its Hermitian dual
and QECC1 and QECC2
obtained by Corollaries 4 and 5
(respectively) in Example 1

g1 (x) g2 (x) Gray image QECC1 QECC2

f2 f3 [18, 10, 4]5 [[18, 2, 4]]5 [[9, 1,≥ 2]]5
f2 f1 [18, 11, 4]5 [[18, 4, 4]]5 [[9, 2, ≥ 2]]5
f2 f1 f3 [18, 9, 4]5 [[18, 0, 4]]5 [[9, 0, ≥ 2]]5
f3 f2 [18, 10, 4]5 [[18, 2, 4]]5 [[9, 1,≥ 2]]5
f3 f1 [18, 15, 2]5 [[18, 12, 2]]5 [[9, 6,≥ 2]]∗5
f3 f1 f2 [18, 9, 4]5 [[18, 0, 4]]5 [[9, 0, ≥ 2]]5
f2 f3 f1 [18, 9, 4]5 [[18, 0, 4]]5 [[9, 0, ≥ 2]]5
f1 f2 [18, 11, 4]5 [[18, 4, 4]]5 [[9, 2, ≥ 2]]5
f1 f3 [18, 15, 2]5 [[18, 12, 2]]5 [[9, 6,≥ 2]]∗5
f1 f2 f3 [18, 9, 4]5 [[18, 0, 4]]5 [[9, 0, ≥ 2]]5
f1 f2 f3 [18, 9, 4]5 [[18, 0, 4]]5 [[9, 0, ≥ 2]]5
f1 f3 f2 [18, 9, 4]5 [[18, 0, 4]]5 [[9, 0, ≥ 2]]5
1 f1 [18, 17, 2]5 [[18, 16, 2]]∗5 [[9, 8,≥ 1]]∗5
1 f2 [18, 12, 2]5 [[18, 6, 2]]5 [[9, 3,≥ 1]]5
1 f3 [18, 16, 2]5 [[18, 14, 2]]5 [[9, 7,≥ 1]]5
1 f1 f2 [18, 11, 2]5 [[18, 4, 2]]5 [[9, 2, ≥ 1]]5
1 f1 f3 [18, 15, 2]5 [[18, 12, 2]]5 [[9, 6,≥ 1]]5
1 f2 f3 [18, 10, 2]5 [[18, 2, 2]]5 [[9, 1,≥ 1]]5
f1 1 [18, 17, 2]5 [[18, 16, 2]]∗5 [[9, 8,≥ 1]]∗5
f2 1 [18, 12, 2]5 [[18, 6, 2]]5 [[9, 3,≥ 1]]5
f3 1 [18, 16, 2]5 [[18, 14, 2]]5 [[9, 7,≥ 1]]5
f1 f2 1 [18, 11, 2]5 [[18, 4, 2]]5 [[9, 2, ≥ 1]]5
f1 f3 1 [18, 15, 2]5 [[18, 12, 2]]5 [[9, 6,≥ 1]]5
f2 f3 1 [18, 10, 2]5 [[18, 2, 2]]5 [[9, 1,≥ 1]]5

Example 1 Let x9 − 1 = f1 f2 f3 over F5, where f1 = x + 4, f2 = 1 + x3 + x6

and f3 = 1 + x + x2. All nontrivial cyclic codes over R5 of length 9 containing its
Hermitian dual and quantum error correcting codes(QECC) obtained by Corollaries 4
and 5 are represented in Table 1.

Example 2 Let x11−1 = f1 f2 f3 over F5, where f1 = x+4, f2 = 4+x+x2+4x3+
2x4 + x5 and f3 = 4+3x + x2 +4x3 +4x4 + x5. All nontrivial cyclic codes over R5
of length 11 containing its Hermitian dual and quantum error correcting codes(QECC)
obtained by Corollaries 4 and 5 are represented in Table 2.

Remark 1 The quantum codes having the parameters marked with “*” in Tables 1
and 2 are QMDS codes.
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Table 2 All nontrivial cyclic codes over R5 of length 11 containing its Hermitian dual and QECC1 and
QECC2 obtained by Corollaries 4 and 5 (respectively) in Example 2

g1 (x) g2 (x) Gray image QECC1 QECC2

f3 f3 [22, 12, 5]5 [[22, 2, 5]]5 [[11, 1, ≥ 5]]5
f3 f1 [22, 16, 4]5 [[22, 10, 4]]5 [[11, 5, ≥ 2]]5
f3 f1 f3 [22, 11, 6]5 [[22, 0, 6]]5 [[11, 0, ≥ 5]]5
f2 f2 [22, 12, 5]5 [[22, 2, 5]]5 [[11, 1, ≥ 5]]5
f2 f1 [22, 16, 4]5 [[22, 10, 4]]5 [[11, 5, ≥ 2]]5
f2 f1 f2 [22, 11, 6]5 [[22, 0, 6]]5 [[11, 0, ≥ 5]]5
f2 f3 f1 [22, 11, 4]5 [[22, 0, 4]]5 [[11, 0, ≥ 2]]5
f1 f3 [22, 16, 4]5 [[22, 10, 4]]5 [[11, 5, ≥ 2]]5
f1 f2 [22, 16, 4]5 [[22, 10, 4]]5 [[11, 5, ≥ 2]]5
f1 f2 f3 [22, 11, 4]5 [[22, 0, 4]]5 [[11, 0, ≥ 2]]5
f1 f3 f3 [22, 11, 6]5 [[22, 0, 6]]5 [[11, 0, ≥ 5]]5
f1 f2 f2 [22, 11, 6]5 [[22, 0, 6]]5 [[11, 0, ≥ 5]]5
1 f1 [22, 21, 2]5 [[22, 20, 2]]∗5 [[11, 10, ≥ 1]]∗5
1 f2 [22, 17, 2]5 [[22, 12, 2]]5 [[11, 6, ≥ 1]]5
1 f3 [22, 17, 2]5 [[22, 12, 2]]5 [[11, 6, ≥ 1]]5
1 f1 f2 [22, 16, 2]5 [[22, 10, 2]]5 [[11, 5, ≥ 1]]5
1 f1 f3 [22, 16, 2]5 [[22, 10, 2]]5 [[11, 5, ≥ 1]]5
1 f2 f3 [22, 12, 2]5 [[22, 2, 2]]5 [[11, 1, ≥ 1]]5
f1 1 [22, 21, 2]5 [[22, 20, 2]]∗5 [[11, 10, ≥ 1]]∗5
f2 1 [22, 17, 2]5 [[22, 12, 2]]5 [[11, 6, ≥ 1]]5
f3 1 [22, 17, 2]5 [[22, 12, 2]]5 [[11, 6, ≥ 1]]5
f1 f2 1 [22, 16, 2]5 [[22, 10, 2]]5 [[11, 5, ≥ 1]]5
f1 f3 1 [22, 16, 2]5 [[22, 10, 2]]5 [[11, 5, ≥ 1]]5
f2 f3 1 [22, 12, 2]5 [[22, 2, 2]]5 [[11, 1, ≥ 1]]5

5 Quantum codes from additive cyclic codes over Rq

This section is devoted to obtaining quantum error correcting codes via additive cyclic
codes over Rq for q = p2. An additive cyclic code C over Rq means that C is closed
under addition and cyclic shift of a codeword in C is again a codeword in C . In
other words, an additive cyclic code of length n over Rq is an additive subgroup in

the quotient group Rq [x]
〈xn−1〉 which is closed under multiplication by x . Making use of

technique used in Theorem 14 in [4], we first characterize the structure of additive
cyclic codes over Rq for q = p2 and then study self-orthogonality condition for these
codes which are needed to construct quantum error correcting codes.

Lemma 1 Let q = p2 be for a prime p and the set {1, w} be a polynomial
basis of Fq over Fp. An additive cyclic code over Fq of length n is of the form
〈g (x) + wp (x) , wa (x)〉 for some polynomials g (x) , p (x) , a (x) ∈ Fp [x]. Fur-
thermore, g (x) and a (x) divide xn − 1 (mod p) and |C | = p2n−deg g(x)−deg a(x).
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Proof Consider the map φ : Fq → Fp mapping an element a + bw to a and

extend it to the map μ : Fq [x]
〈xn−1〉 → Fp[x]

〈xn−1〉 ,
∑

ci xi → ∑
φ (ci ) xi . Then, μ is an

onto Fp [x]-module homomorphism. If C is an additive cyclic code over Fq , then

the image of C under μ is an ideal in Fp[x]
〈xn−1〉 and so has a generator g (x) divid-

ing xn − 1 (mod p). Define the set J =
{
a (x) ∈ Fp[x]

〈xn−1〉 : wa (x) ∈ Kerμ
}
. It is

immediate that J is an ideal in Fp[x]
〈xn−1〉 and so Kerμ = 〈a (x)〉 for some polyno-

mial a (x)| xn − 1 (mod p). Since C is generated by the polynomials a (x) and some
inverse of g (x), C = 〈g (x) + wp (x) , wa (x)〉 for some polynomial p (x) ∈ Fp [x].
The remaining is clear. ��

The following theorem characterizes the structure of additive cyclic codes over
Rp2 . The proof is similar to the proofs of Theorems 6 and 7, so we omit it here.

Theorem 9 An additive cyclic code C over Rp2 of length n is of the form C = αC1 ⊕
α∗C2 for some additive cyclic codes C1 and C2 of length n over Fq . Hence,

C = 〈
α (g1 (x) + wp1 (x)) , αwa1 (x) , α∗ (g2 (x) + wp2 (x)) , α∗wa2 (x)

〉
, (10)

where gi (x) , ai (x)| xn − 1 (mod p).

Next theorem investigates the duals of additive cyclic codes over Rp2 and gives a
condition for additive cyclic codes which are Hermitian self-orthogonal.

Theorem 10 Let C = αC1 ⊕ α∗C2 be an additive cyclic code over Rp2 of length n.

Then, C⊥h = αC⊥
2 ⊕ α∗C⊥

1 . Moreover, C is Hermitian self-orthogonal with respect
to Hermitian dual if and only if C1 ⊆ C⊥

2 .

Proof Set J = αC⊥
2 ⊕α∗C⊥

1 . It is easy to check that J ⊆ C⊥h . Since |J ||C | = |Rn
p2

|,
J = C⊥h . The second part is immediate. ��

Letting Ci = 〈gi (x) + wpi (x) , wai (x)〉 for i ∈ {1, 2} be an additive cyclic code
over Fp2 , we seek the circumstance for C1 ⊆ C⊥

2 .

Lemma 2 C1 ⊆ C⊥
2 if and only if the following hold:

1. g1 (x) g2
(
xn−1

) + bp1 (x) p2
(
xn−1

) ≡ 0 (mod xn − 1),
2. g1 (x) p2

(
xn−1

) + p1 (x) g2
(
xn−1

) ≡ 0 (mod xn − 1),
3. g1 (x) a2

(
xn−1

) ≡ 0 (mod xn − 1),
4. p1 (x) a2

(
xn−1

) ≡ 0 (mod xn − 1),
5. a1 (x) g2

(
xn−1

) ≡ 0 (mod xn − 1),
6. a1 (x) p2

(
xn−1

) ≡ 0 (mod xn − 1),
7. a1 (x) a2

(
xn−1

) ≡ 0 (mod xn − 1),

where b is a nonresidue mod p.

Proof Note that x2 − b is an irreducible polynomial over Fp if b is a nonresidue
mod p. So we can assume that w2 = b. See that the inner product of the vectors
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corresponding to the polynomials g1 (x) + wp1 (x) and x j (g2 (x) + wp2 (x)) for
j ∈ {0, 1, . . . , n − 1} are the coefficient of x j in the polynomial (g1(x) + wp1(x))x j

(g2(xn−1) + wp2(xn−1)). This fact implies that 1 and2 hold. The proofs of the remain-
ing are similar. ��

By considering the images of additive cyclic codes over Rp2 under the Gray map
ϕ , one fails to get p-ary quantum error correcting codes since ϕ carries elements of
Rp2 to vectors in F

2
p2
. We therefore need a new map to obtain p-ary quantum error

correcting codes by using Theorem 2. Let {1, w} be a polynomial basis of Fp2 over
Fp. Note that every element x ∈ Fp2 can be written uniquely as x = x1 + wx2 for
some x1, x2 ∈ Fp. Define the map σ :Rp2 → F

4
p as

σ (x + yα) = (y2, y1 + y2, x2 + y2, x1 + x2 + y1 + y2) (11)

and extend it to the map δ:Rn
p2

→ F
4n
p as

(r0, . . . , rn−1)

→ (y0,2, y0,1 + y0,2, . . . , yn−1,2, yn−1,1 + y0,2, x0,2 + y0,2, x0,1 + x0,2
+ y0,1 + y0,2, . . . , xn−1,2 + yn−1,2, xn−1,1 + xn−1,2 + yn−1,1 + yn−1,2),

where ri = xi,1 + xi,2 + (yi,1 + yi,2)w for some xi,1, xi,2, yi,1yi,2 ∈ Fp. Before
stating that the δ-images of two vectors over Rp2 which are perpendicular to each
other with respect to Hermitian inner product are so with respect to trace-symplectic
inner product, we note that if r1⊥hr2 for two elements r1 = x + yα and r2 = u + vα

in Rp2 , by Eq. 9, we further get

y1u2 + y2u1 − (x1v2 + x2v1) = 0 (12)

and
y1u1 − x1v1 + w2 (y2u2 − x2v2) = 0. (13)

In this case, we also observe that

〈δ (r1) , δ (r2)〉s = tr (x1v2 + x2v1 − (y1u2 + y2u1))

+ tr (x1v1 − y1u1 + 2 (x2v2 − y2u2))

and Eq. 12 implies that

〈δ (r1) , δ (r2)〉s = tr (x1v1 − y1u1 + 2 (x2v2 − y2u2)) . (14)

Then, 〈δ (r1) , δ (r2)〉s vanishes by Eq. 13 if w2 ≡ 2 (mod p). This is possible only
when 2 is a nonresidue mod p, otherwise the polynomial x2 − 2 is reducible over Fp

and so the set {1, w} does not form a basis for Fp2 over Fp. We hence have:
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Table 3 Some nontrivial additive cyclic codes over R25 of length 11 which are Hermitian self-orthogonal
and some QECC over F5 of length 22 obtained by Corollary 6 in Example 3

g1 (x) p1 (x) a1 (x) g2 (x) p2 (x) a2 (x) QECC

0 0 f1 f2 f2 f2 f2 f3 [[22, 10, 2]]5
0 0 f1 f2 f2 f2 f1 f2 [[22, 6, 2]]5
0 0 f1 f2 f2 f2 f3 0 [[22, 16, 1]]5
f1 f2 0 0 f2 f3 0 f2 [[22, 10, 1]]5
f1 f2 0 0 0 0 f2 f3 [[22, 16, 1]]5
f1 f2 f1 f2 0 0 0 0 [[22, 17, 1]]5
f1 f1 f2 f1 f2 f3 f2 f3 0 [[22, 6, 2]]5
f1 f1 f1 f2 f2 f3 0 f2 f3 [[22, 5, 2]]5
f1 1 f1 f2 0 0 0 [[22, 7, 1]]5

Theorem 11 Let p be an odd prime which can be written a2 + b2 for some a, b ∈ Z

and p ≡ 3 or 5 (mod 8). Suppose that {1, w} is a polynomial basis of Fp2 over Fp,
where w2 = 2. If C is an additive code over Rp2 containing its Hermitian dual, then
δ (C) is a linear code over Fp containing its trace-symplectic dual.

Proof Since p ≡ 3 or 5 (mod 8), 2 is a nonresidue mod p and so the polynomial
x2 − 2 is irreducible over Fp. By the above observation and Eq. 13, proof is over. ��

Theorems 2 and 11 together imply:

Corollary 6 Let p be an odd prime which can be written a2 + b2 for some a, b ∈ Z

and p ≡ 3 or 5 (mod 8). Suppose that {1, w} is a polynomial basis of Fp2 over Fp,
where w2 = 2. Let C = αC1 ⊕ α∗C2 be a cyclic code over Rp2 of length n, where
for i = 1, 2, Ci = 〈gi (x) + wpi (x) , ai (x)〉. If the conditions given in Lemma 2 are
satisfied, then there exists a [[2n, 2n − k, d]]p quantum error correcting code, where
k = ∑2

i=1 deg gi + deg ai and d is the minimum symplectic weight in δ(C)⊥s −δ (C).

Example 3 Let x11−1 = f1 f2 f3 over F5, where f1 = x+4, f2 = 4+x+x2+4x3+
2x4 + x5 and f3 = 4+ 3x + x2 + 4x3 + 4x4 + x5. Table 3 illustrates what we discuss
in this section by giving some examples of quantum error correcting codes over F5
obtained by Hermitian self-orthogonal additive cyclic codes over R25 of length 11.

Example 4 Let q = 29, α = 5 + 2i and x31 − 1 = f1 f2 f3 f4. With help of MAGMA
and under the conditions of Theorem 8, some nontrivial quantum code parameters of
length 31 over R29 are given in Table 4.

Example 5 Let q = 13, α = 3+2i . Satisfying the conditions given in Corollary 4 and
using the software programme Mathematica, we obtain a [[8, 0, 4]]13 quantum code
from a classical code C over R13. Also, this classical code C is an extremal self-dual
code over R13. The generator matrix G of the classical code C is

123



Quantum codes from codes over the ring Fq + αFq Page 13 of 21 365

Table 4 Some nontrivial quantum codes over R29 of length 31 which are Hermitian self-orthogonal and
some QECC over F29 of length 62 obtained by Theorem 8 in Example 4

g1(x) g2(x) QECC1 QECC2

f1 f2 f3 [[62, 20, ≥ 8]]29 [[31, 10, 8]]5+2i

f2 f3 f4 [[62, 2, ≥ 8]]29 [[31, 1, 8]]5+2i

f2 f3 f1 f4 [[62, 0, ≥ 9]]29 [[31, 0, 9]]5+2i

Table 5 Using the software programmeMathematica and themethod given in this paper, some newquantum
codes with respect to the Mannheim metric over R13 of length 5, 6, 8 are given

The generator matrix G QECC

G = (
1 0 9α 6α 9 + 11α

) [[5, 3, 10]]3+2i

G =
⎛

⎝
1 0 9α 6α 9 + 11α
5α 1 5 + 10α 11α 12 + 9α
12α 8 + 3α 1 11α 5

⎞

⎠ [[5, 1, 15]]3+2i

G =

⎛

⎜⎜⎜
⎝

1 0 3 + 6α 3 + 6α 5 + 10α 4 + 6α
0 1 6 + 12α 7 + α 2α 1 + 3α
9 + 5α 9 + 5α 1 8α 9α 12 + 9α
12 + 11α 5 + 10α 2 + 4α 1 7α 7 + 11α
9α 9 + 5α 9 + 5α 12α 1 3 + 4α

⎞

⎟⎟⎟
⎠

[[6, 4, 12]]3+2i

G =
⎛

⎜
⎝

1 0 9 + 5α 12α 2α 12 + 5α
0 1 10 + 7α 3α 10α 12 + 3α
9 + 5α 9 + 5α 1 8α 9α 12 + 9α
12 + 11α 5 + 10α 2 + 4α 1 7α 7 + 11α

⎞

⎟
⎠ [[6, 2, 15]]3+2i

G =
⎛

⎝
1 0 11α 12α 2 + 4α 9 + 11α
0 1 8 + 3α 11α 8α 7 + 5α
4 + 8α 0 0 5 + 10α 12α 9 + 11α

⎞

⎠ [[6, 0, 15]]3+2i

G =
⎛

⎜
⎝

1 12 + 11α 8α 2α 12 8 + 7α 10 + 5α 3 + 12α
12α 1 5 + 10α 11α 2 + 6α 1 + 9α 2 + 8α 6 + 7α
5α 9α 1 8 + 3α 11 + 8α 2 11 + α 12 + 6α
α 1 11 + α 1 11 + 4α 9 + 3α 7 + 10α 8 + 6α

⎞

⎟
⎠ [[8, 0, 24]]3+2i

G =

⎛

⎜⎜
⎝

1 12 + 11α 8α 2α 12 8 + 7α 10 + 5α 3 + 12α
12α 1 5 + 10α 11α 1 + 6α 1 + 9α 2 + 8α 6 + 7α
5α 9α 1 8 + 3α 11 + 8α 2 11 + α 12 + 6α
α 1 11 + α 1 11 + 4α 9 + 3α 7 + 10α 8 + 6α

⎞

⎟⎟
⎠ .

Using the Gray image of this code, we obtain a quantum code with the parameters
[[16, 0,≥ 6]] over F13 (Table 5). The generator matrix of the Gray image of the code
C is

G
′ =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

0 4 10 9 0 12 3 2 1 6 11 6 12 3 12 0
2 0 6 4 1 8 10 12 10 1 9 7 6 2 0 1
3 8 0 7 10 0 11 1 2 1 1 4 9 2 1 4
11 0 11 0 5 7 6 1 3 1 1 1 10 5 11 0
12 7 2 7 1 10 1 0 0 4 10 9 0 12 3 2
3 12 4 6 7 11 0 12 2 0 6 4 1 8 10 12
11 12 12 9 4 11 12 9 3 8 0 7 10 0 11 1
10 12 12 12 3 8 2 0 11 0 11 0 5 7 6 1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

.
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Using the software programme MAGMA, it can easily be checked that this [16, 8, 6]
classical linear code is an extremal self-dual code over F13.

For the benefit of readers, some of these programs can be found in [7,8].

6 Quantum logical gates and quantum teleportation in quantum
channel over Rq

In this section, we define quantum logical gates based on Pauli spin matrices, for
example Hadamard gate, for quantum codes given in Sects. 4 and 5 for q = p. Using
these gates, we encode qubits in quantum channel over Rp.

6.1 Quantum logical gates and basis vectors over Rq

We can consider a quantum system with p-dimensional state space. For the basis
vectors, bra-ket notations are used in general. For p-ary quantum state space, the basis
vectors are denoted by

|0〉 =

⎛

⎜⎜
⎜
⎝

1
0
...

0

⎞

⎟⎟
⎟
⎠

p×1

, |1〉 =

⎛

⎜⎜
⎜
⎝

0
1
...

0

⎞

⎟⎟
⎟
⎠

p×1

, . . . , |p − 1〉 =

⎛

⎜⎜
⎜
⎝

0
0
...

1

⎞

⎟⎟
⎟
⎠

p×1

.

Todefine the basis forq-ary quantumstate space,weneed tensor product. The tensor
product⊗ is usual tensor product, namely |a1〉⊗|a2〉⊗· · ·⊗|an〉 = |a1a2 · · · an〉. Let
u = (a1, . . . , an) be a vector in a vector space. Thereafter, |u〉 denotes |u1u2 · · · un〉.

Let the set P = {I , X , Z ,Y } denote the well-known Pauli spin matrices. Here, for
example, X is known quantum NOT gate that it can flip a quantum bit (shortly qubit).
More information can be found in ([13], pp.13–20).

Definition 1 [10,14] Let the set Pp = {I , Xa, Za,Ya} be the Pauli spin matrices for
p-ary quantum state space. The quantum NOT gate X and quantum gate Z were given
by

(Xi )s,t = δt,(s+i ( mod p)), (Zi )s,t = ξ i .s ( mod p)δs,t ,

respectively. Here, δs,t denotes the Kronecker delta function and 0 ≤ s, t ≤ p − 1.
The Hadamard gate is defined as

Hp = 1√
p

(
as,t

)
, as,t = ξ (s−1)(t−1) ( mod p), 1 ≤ s, t ≤ p.

These gates act on the quantum state |a1〉 as

Xa |a1〉 = |a1 + a (mod p)〉 , Za |a1〉 = ξ Tr(aa1) |a1〉 , Ya = Xa Za,
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where ξ = e2π i/p. Lastly, the Hadamard gate for q-ary quantum state space was
constructed by

Hq = 1√
q

⎛

⎜
⎝Hp ⊗ · · · ⊗ Hp︸ ︷︷ ︸

m times

⎞

⎟
⎠ .

For example, let p = 5. Then,

Hp = 1√
5

⎛

⎜⎜⎜⎜
⎝

1 1 1 1 1
1 ξ ξ2 ξ3 ξ4

1 ξ2 ξ4 ξ ξ3

1 ξ3 ξ ξ4 ξ2

1 ξ4 ξ3 ξ2 ξ

⎞

⎟⎟⎟⎟
⎠

.

Note that HpH
†
p = H†

p Hp = Ip, where H†
p denotes the conjugate transpose of Hp

and Ip denotes the identity matrix in p dimensions. In light of the above facts, we now
define basis vectors and quantum logical gates for a p-ary quantum state space over
Rp.

Definition 2 Let r = r1 + r2α be an element of Rp and let Xr1 , Xr2 , Zr1 and Zr2

denote the quantum gates given in Definition 1. We define quantum gates X
′
r and Z

′
r

over Rp as

X
′
r = Xr1 ⊗ Xr2 , Z

′
r = Zr1 ⊗ Zr2 ,

respectively. Also, we define Hadamard gate H
′
p for Rp as

H
′
p = Hp ⊗ Hp.

Example 6 Let α = 2 + i , that is, p = 5. There are 25 quantum X
′
r gates and 25

quantum Z
′
r gates for R5 = F5 + αF5. Using the above method, we now give some

of them:

X
′
1 = X1 ⊗ X0 =

⎡

⎢
⎢⎢⎢
⎣

05 I5 05 05 05
05 05 I5 05 05
05 05 05 I5 05
05 05 05 05 I5
I5 05 05 05 05

⎤

⎥
⎥⎥⎥
⎦

25×25

,
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where 05 denotes 5 × 5 zero matrix and

X1 =

⎡

⎢⎢⎢⎢
⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎤

⎥⎥⎥⎥
⎦

5×5

.

Note 1 = 1 + 0.α, that is, r1 = 1, r2 = 0, and X0 = I5.
Another quantum NOT gate X

′
α for R5 is

X
′
α =

⎡

⎢⎢⎢
⎢
⎣

X1 05 05 05 05
05 X1 05 05 05
05 05 X1 05 05
05 05 05 X1 05
05 05 05 05 X1

⎤

⎥⎥⎥
⎥
⎦

25×25

,

Z
′
1 = Z1 ⊗ Z0 =

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0
0 ξ 0 0 0
0 0 ξ2 0 0
0 0 0 ξ3 0
0 0 0 0 ξ4

⎤

⎥⎥⎥⎥
⎦

⊗ I5

=

⎡

⎢⎢⎢⎢
⎣

I5 05 05 05 05
05 ξ I5 05 05 05
05 05 ξ2 I5 05 05
05 05 05 ξ3 I5 05
05 05 05 05 ξ4 I5

⎤

⎥⎥⎥⎥
⎦

25×25

,

The Hadamard gate H
′
p acts on the state |0〉 as

Hp
′ |0〉 = |0〉 + |1〉 + |2〉 + |3〉 + |4〉 + |α〉

+ |2α〉 + |3α〉 + |4α〉 + |1 + α〉 + |2 + α〉 + |3 + α〉
+ |4 + α〉 + |1 + 2α〉 + |2 + 2α〉 + |3 + 2α〉 + |4 + 2α〉 + |1 + 3α〉
+ |2 + 3α〉 + |3 + 3α〉 + |4 + 3α〉 + |1 + 4α〉 + |2 + 4α〉 + |3 + 4α〉

+ |4 + 4α〉 .

The number of basis vector for quantum codes defined over R5 is 25, namely

|0〉 , |1〉 , |2〉 , |3〉 , |4〉 ,

|α〉 , |1 + α〉 , |2 + α〉 , |3 + α〉 , |4 + α〉 ,

|1 + 2α〉 , |2 + 2α〉 , . . . , |4 + 4α〉 .
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Using the above NOT gates X
′
1 and X

′
α , we define some of these basis vectors as

|0〉 =

⎛

⎜⎜⎜⎜⎜
⎝

1
0
0
...

0

⎞

⎟⎟⎟⎟⎟
⎠

25×1

,

|1〉 = X
′
1 |0〉 =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

0
...

0
1 (21th component)

0
...

0

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

25×1

,

|2〉 = X
′
1 |1〉 =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

0
...

0
1 (16th component)

0
...

0

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

25×1

,

|α〉 = X
′
α |0〉 =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

0
...

0
1 (5th component)

0
...

0

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

25×1

,

|1 + α〉 = X
′
1 ⊗

(
X

′
α |0〉

)
.

It is clear that we obtain all basis vectors, using the above method since |r1 + r2α〉 =
X

′
r1 ⊗

(
X

′
r2α |0〉

)
and |r2α〉 = X

′
α ⊗ X

′
α ⊗ · · · ⊗ X

′
α︸ ︷︷ ︸

r2 times

|0〉.

6.2 Quantum encoding

There are infinitely many p × p matrices, and thus infinitely many single qubit gates.
However, it turns out that the properties of the complete set can be understood from
the properties of a much smaller set. It is possible to build up an arbitrary single
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qubit gate using a finite set of quantum gates. More generally, an arbitrary quantum
computation on any number of qubits can be generated by a finite set of gates that
is said to be universal for quantum computation. To obtain such a universal set, we
first can construct some quantum gates involving multiple qubits. We already define
single qubit gates in Definition 2. To obtain such a universal set, we need quantum
controlled-NOT, shortly CNOT, gate which is a multiple qubits gate.

Definition 3 ([13], pp. 177–193, 484–488)The prototypicalmulti-qubit quantum logic
gate is the controlled-NOT gate. This gate has two input qubits, known as the control
qubit and the target qubit, respectively. The CNOT acts on qubits in two-dimensional
quantum state space as:

CNOT |00〉 = |00〉 , CNOT |01〉 = |01〉 ,

CNOT |10〉 = |11〉 , CNOT |11〉 = |10〉 .

Definition 4 Let r1 + r2α be an element of Rp. Then, we define CNOT for p-
dimensional quantum state space over Rp as follows:

CNOTr1+r2α |r1 + r2α r1 + r2α〉 = |r1 + r2α0〉 .

Here, CNOTr1+r2α is a matrix with type p4 × p4. Note CNOTr1+r2α |r3 + r4α 0〉 =
|r3 + r4α0〉 for r1 + r2α �= r3 + r4α.

For example, CNOT1 |10〉 = |11〉, CNOT2 |20〉 = |22〉, CNOTα |α0〉 = |αα〉.

Example 7 Using these quantum gates and taking α = 2+i , let us encode the quantum
state

|ψ〉 = a0 |0〉 + a1 |1〉 + a2 |2〉 + a3 |3〉 + a4 |4〉 + a5 |α〉
+ a6 |2α〉 + a7 |3α〉 + a8 |4α〉 + a9 |1 + α〉 + · · · + a24 |4 + 4α〉

to

∣∣∣ψ
′〉 = a0

∣∣
∣∣∣∣
0 · · · 0︸ ︷︷ ︸

26

〉

+ a1 |1 · · · 1〉 + a2 |2 · · · 2〉 + a3 |3 · · · 3〉

+ a4 |4 · · · 4〉 + a5 |α · · ·α〉 + · · · + a24 |4 + 4α · · · 4 + 4α〉 .

A circuit performing this encoding is illustrated in Fig. 2. Circuit symbols of quantum
gates are given in Fig. 1.

123



Quantum codes from codes over the ring Fq + αFq Page 19 of 21 365

Fig. 1 Quantum gates and circuit symbols

Fig. 2 Encoding circuit for the three-qubit bit flip code. The data to be encoded enters the circuit on the top
line

In Fig. 2, |ψ1〉 , |ψ2〉 , |ψ3〉 , |ψ24〉 are

|ψ1〉 = a0

∣
∣∣∣∣∣
0 · · · 0︸ ︷︷ ︸

26

〉

+ a1

∣
∣∣∣∣∣
11 0 · · · 0︸ ︷︷ ︸

24

〉

+ a2

∣
∣∣∣∣∣
22 0 · · · 0︸ ︷︷ ︸

24

〉

+ a3

∣
∣∣∣∣∣
33 0 · · · 0︸ ︷︷ ︸

24

〉

+ a4

∣∣
∣∣∣∣
44 0 · · · 0︸ ︷︷ ︸

24

〉

+ a5

∣∣
∣∣∣∣
αα 0 · · · 0︸ ︷︷ ︸

24

〉

+ · · · + a24

∣∣
∣∣∣∣
4 + 4α 4 + 4α 0 · · · 0︸ ︷︷ ︸

24

〉

|ψ2〉 = a0

∣∣∣
∣∣∣
0 · · · 0︸ ︷︷ ︸

26

〉

+ a1

∣∣∣
∣∣∣
111 0 · · · 0︸ ︷︷ ︸

23

〉

+ a2

∣∣∣
∣∣∣
222 0 · · · 0︸ ︷︷ ︸

23

〉

+ a3

∣∣∣
∣∣∣
333 0 · · · 0︸ ︷︷ ︸

23

〉

+ a4

∣∣∣∣
∣∣
444 0 · · · 0︸ ︷︷ ︸

23

〉

+ a5

∣∣∣∣
∣∣
ααα 0 · · · 0︸ ︷︷ ︸

23

〉

+ · · ·
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+a24

∣∣
∣∣∣∣
4 + 4α4 + 4α 4 + 4α 0 · · · 0︸ ︷︷ ︸

23

〉

,

|ψ3〉 = a0

∣∣∣
∣∣∣
0 · · · 0︸ ︷︷ ︸

26

〉

+ a1

∣∣∣
∣∣∣
1111 0 · · · 0︸ ︷︷ ︸

22

〉

+ a2

∣∣∣
∣∣∣
2222 0 · · · 0︸ ︷︷ ︸

22

〉

+ a3

∣∣∣∣
∣∣
3333 0 · · · 0︸ ︷︷ ︸

22

〉

+ a4

∣∣∣∣
∣∣
4444 0 · · · 0︸ ︷︷ ︸

22

〉

+ a5

∣∣∣∣∣
∣
αααα 0 · · · 0︸ ︷︷ ︸

22

〉

+ · · ·+a24

∣∣∣∣∣
∣
4 + 4α 4+4α4 + 4α 4+4α 0 · · · 0︸ ︷︷ ︸

22

〉

,

|ψ24〉 = a0

∣∣∣∣∣∣
0 · · · 0︸ ︷︷ ︸

26

〉

+a1

∣∣∣∣∣∣
1 · · · 1︸ ︷︷ ︸

25

0

〉

+a2

∣∣∣∣∣∣
2 · · · 2︸ ︷︷ ︸

25

0

〉

+a3

∣∣∣∣∣∣
3 · · · 3︸ ︷︷ ︸

25

0

〉

+a4

∣∣∣∣∣∣
4 · · · 4︸ ︷︷ ︸

25

0

〉

+ a5

∣
∣∣∣∣∣
α · · · α︸ ︷︷ ︸

25

0

〉

+ · · · + a24

∣
∣∣∣∣∣
4 + 4α · · · 4 + 4α︸ ︷︷ ︸

25

0

〉

.

|ψ25〉 =
∣∣∣ψ

′〉
is given above. Using these quantum logical gates and basis vectors, one

can encode codes given in Tables 1, 2 and 3 in previous section.

7 Conclusion

Since there is a transformation between quantum error correction codes over the finite
field Fq and additive codes over Fq which are self-orthogonal with respect to certain
inner products [10], we consider these additive codes as the Gray images of cyclic
codes over Rq containing their Hermitian duals andHermitian self-orthogonal additive
cyclic codes over Rp2 , respectively. The structures of cyclic codes and their duals over
Rq are determined, and the condition for cyclic codes to contain their duals is given.
Considering the images of these cyclic codes under the Gray map ϕ, we obtain two
classes of q-ary quantum error correcting codes. We also tabulate all nontrivial cyclic
codes over R5 of length 9 and 11 which contain their Hermitian duals and quantum
codes obtained by Gray images of these codes. Note that we can tabulate all nontrivial
cyclic codes over Rq of some length n. But as the length n increases, the table occupies
more space in the paper. Also, for q = p2, the structure of additive cyclic codes over
Rq is studied and the circumstances of these codes to be self-orthogonal with respect
to Hermitian inner product are given. Introducing the map δ, we obtain a class of p-ary
quantum error correcting codes of length 2n from the additive cyclic codes over Rp2

of length n. We furthermore give some examples of additive cyclic codes over R25 of
length 11 and quantum codes over F5 of length 22 obtained by the help of δ-images
of these codes.
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