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Abstract
We have investigated the quantization of the multi-player Stackelberg game by
proposing an asymmetric quantum entanglement operation. Due to the informational
asymmetry between the leaders and followers in the Stackelberg model, it is more nat-
ural to have differential quantum entanglement in a multi-player quantum Stackelberg
game. It is found that the profit functions considered in the multi-player Stackelberg
model display interesting and intriguing patterns as functions of quantum entangle-
ment parameters. In particular, differential quantum entanglement could cause the
leaders to lose the first-mover advantage inherent in the classical Stackelberg model.
This surprising feature raises an important question: “To move first or not to move
first?”

Keywords Quantum games · Quantum entanglement · Quantum strategies ·
Stackelberg oligopoly

1 Introduction

Game theory is concerned with how rational individuals make decisions when they are
mutually interdependent. This theory finds many applications in various branches of
economics and areas such as the social sciences, biology and engineering [1–3]. With
the recent interest in quantum computing and quantum information theory, there has
been much effort in trying to recast classical game theory using quantum probability
amplitudes, and hence study the effect of quantum superposition, interference and
entanglement on the agents’ optimal strategies [4,5]. The seminal work on quantum
game theory by Meyer [6] studied a simple coin tossing game and showed how a
player utilizing quantum superposition could win with certainty against a classical
player. Since then, many interesting aspects on quantum games with discrete strategies
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have been studied theoretically. For example, a general protocol for “two-player-
two-strategy” quantum games with entanglement was developed by Eisert et al. [7]
using the well-known prisoners’ dilemma as an example, and this was extended to
multi-player games by Benjamin and Hayden [8]. Besides the games with discrete
strategies, Li et al. [9] also investigated the quantization of games with continuous
strategic space. They gave a “minimal” quantum structure of Cournot duopoly and
showed that the players can escape the frustrating dilemma-like situation, i.e. the
uniqueNash equilibrium is inferior to the Pareto optimal as in the prisoners’ dilemma,
if the structure involves a maximally entangled state. The essence of their “minimal”
extension of the classical Cournot duopoly into the quantumdomain is that the strategic
space ismaintained unexpanded and only the initial state is extended to be an entangled
state. This extension has the advantage that if the game of nonzero entanglement
exhibits any features not seen in the classical game, these features can be completely
attributed to the quantum entanglement.

Later, Lo and Kiang [10] generalized Li et al.’s [9] “minimal” quantization rules to
both Cournotmodel andBertrandmodel of oligopoly. Inspired by the generalizedmul-
timode SU(1,1) displacement operator introduced by Lo and Liu [11], they proposed
a unitary entanglement operation of the form

Ĵ (γ ) ≡ exp

⎧
⎨

⎩
−1

2

N∑

i, j=1

βi j

(
â†i â

†
j − âi â j

)
⎫
⎬

⎭
, (1)

where βi j = 2γ
(
1/N − δi j

)
, and the operators âi and â†i are the annihilation and

creation operators of the i th field mode, respectively, satisfying the commutation
relations:

[
âi , â

†
j

] = δi j and
[
âi , â j

] = 0. It should be noted that the entanglement

operation Ĵ (γ ) is symmetric with respect to the interchange of any pair of fieldmodes,
and that the matrix β has been chosen such that in the limit of N → ∞ there is no
entanglement in order to guarantee a perfectly competitive market. Following Li et al.
[9], they assumed the starting state to be the tensor product of N single-mode vacuum
states which are subsequently entangled via the unitary operation Ĵ (γ ) described in
Eq. (1). The resultant state |ψi 〉 ≡ Ĵ (γ )|vac〉1 ⊗ | vac〉2 ⊗ |vac〉3 · · · ⊗ |vac〉N is a
generalizedmultimode squeezed vacuum state introduced by Lo and Sollie [12]. Then,
all the N firms execute their strategic moves via the unitary operations

{
D̂i (xi ) ≡

exp
{
xi
(
â†i − âi

)
/
√
2
}; i = 1, 2, 3, . . . , N

}
, respectively. Having executed their

moves, the firms forward their electromagnetic field modes to the final measurement,
prior to which a disentanglement operation Ĵ (γ )† is performed. Thus, the final state
prior to the measurement is given by |ψ f 〉 ≡ Ĵ (γ )†

[∏N
i=1 D̂i (xi )

]
Ĵ (γ )|vac〉1 ⊗

|vac〉2 ⊗ |vac〉3 · · · ⊗ |vac〉N . The final measurement is made corresponding to the
observables {X̂i ≡ (â†i + âi )/

√
2; i = 1, 2, 3, . . . , N }. It is obvious that without

quantum entanglement, namely γ = 0, this quantum structure can be easily shown to
yield a faithful representation of the classical game, and the final measurement gives
the original classical results: qi ≡ 〈ψ f |X̂i |ψ f 〉 = xi for i = 1, 2, 3,…, N . On the
other hand, for any case of nonzero quantum entanglement, it is straightforward to
show that the final measurement yields the following respective quantities of the firms:
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qi =
N∑

j=1

(exp (β))i j x j = xi exp (−2γ ) + 1

N

[
1 − exp (−2γ )

]
N∑

j=1

x j . (2)

In the Cournot model the profits of the firms can then be evaluated as:

ui = qi

⎛

⎝k −
N∑

j=1

q j

⎞

⎠ ; j = 1, 2, 3, . . . , N . (3)

Solving for the Nash equilibrium yields the unique solution

q∗
i = k

N + 1

{
1 − [1 − exp (2γ )

]
/N

1 − 2
[
1 − exp (2γ )

]
/ (N + 1)

}

(4)

for i = 1, 2, 3, . . . , N . The corresponding profits of the firms at this equilibrium are
given by

u∗
i = k2

(N + 1)2

{{
1 − [1 − exp (2γ )

]
/N
}
exp (2γ )

{
1 − 2

[
1 − exp (2γ )

]
/ (N + 1)

}2

}

; i = 1, 2, 3, . . . , N . (5)

As a result, a “minimal” quantum extension of the classical Cournot N-opoly is
obtained.

Furthermore, Zhou et al. [13] extended the quantum Cournot duopoly to three firms
with different pair-wise entanglement parameters. They found that the sumof thefirms’
profit increases monotonically to a limit as the three entanglement parameters tend
to infinity. Indeed, the sum of the three firms’ profit will attain the same asymptotic
limit even if there are only two pair-wise entanglement parameters (that is, one of
the entanglement parameter is zero), provided these two parameters tend to infinity.
They also considered the case for an arbitrary number, N , of firms, but then restricted
themselves in this case to a common entanglement parameter.1 Such a situation had
been discussed by Lo and Kiang [10], though a different form for the entanglement
parameter was used.

In the Cournot oligopoly, the firms assume a symmetric role, and the presence of
different pair-wise entanglement parameters seems artificial. In contrast, there is an
inherent asymmetry in the Stackelberg duopoly, where there is a first mover and a
follower. Unlike the Cournot duopoly in which both firms make their strategic moves
at the same time and thus have to guess what the action of their opponents would be,
the Stackelberg duopoly allows one of the firms to move first. Since the other firm
can now observe its opponent’s move before making its own decision, the game can
no longer be modelled as static. In such a dynamic game, there exists an interesting

1 The two approaches of course should give the same profit result if in the first one sets all the entanglement
parameters to be the same, and in the second one sets N = 3. However, the two in their paper did not agree.
The result they obtained by setting all the parameters equal in the first approach actually became independent
of the entanglement parameter. This can be corrected if the limit of the three parameters approaching to the
same value is taken properly.
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result: there is a clear advantage to moving first. This first-mover advantage in the
Stackelberg duopoly is due to the fact that being able to make its strategic decision
known, the first mover does not need to guess what the follower will do because the
follower is assumed to behave optimally. We therefore believe that it is more natural
to have differential entanglement in a multi-player quantum Stackelberg game than in
a Cournot one. In this paper we study this scenario and, in particular, we examine how
the differential entanglement affects the first-mover advantage. Our analysis indicates
that for a small number of firms the leaders could lose the first-mover advantage
and might experience a disadvantage instead. This surprising feature is certainly not
expected in the classical game. The general scheme of this paper is as follows: in the
next section the model of quantum Stackelberg oligopoly with differential pair-wise
entanglement is proposed, and its solution is discussed in detail in Sect. 3. The last
section concludes our findings.

2 Quantum Stackelberg oligopoly

In the Stackelberg model of oligopoly some of the firms, namely the leaders, are
allowed to move first while the remaining firms, namely the followers, can observe the
leaders’ moves before making their own choices. To find the solution to this oligopoly
problem, the concept of subgame perfect equilibrium or backwards induction is needed
[1–3]. Thismeanswefirst solve for the followers: each of the followers reacts optimally
to the moves of both the leaders and other followers, by making his/her own choice
which maximizes his/her profits. Then, each of the leaders takes into account the
optimal response of the followers and set his/her own move in such a way as to
maximize his/her own profits against the followers and other leaders. That is, the
leaders substitute the followers’ reaction functions into their own profit functions and
then optimize their moves accordingly. An appropriate candidate of the entanglement
operator used in quantizing the Stackelberg oligopoly is given by

Ĵ (γ, λ, ξ) = exp

⎧
⎨

⎩
−1

2

N∑

i, j=1

βi j

(
â†i â

†
j − âi â j

)
⎫
⎬

⎭
exp

⎧
⎨

⎩
−1

2

M∑

i, j=1

αi j

(
b̂†i b̂

†
j − b̂i b̂ j

)
⎫
⎬

⎭

× exp

⎧
⎨

⎩
− ξ

NM

N∑

i=1

M∑

j=1

(
â†i b̂

†
j − âi b̂ j

)
⎫
⎬

⎭
(6)

for βi j = 2γ (1/N −δi j ) and αi j = 2λ(1/M−δi j ). The operators âi and â
†
i represent

the annihilation and creation operators of the followers, while the operators b̂i and b̂
†
i

are associated with the leaders. These operators satisfy the commutation relations:
[
âi , â

†
j

] = [
b̂i , b̂

†
j

] = δi j and
[
âi , â j

] = [
b̂i , b̂ j

] = [
âi , b̂ j

] = [
âi , b̂

†
j

] = 0. Unlike
the entanglement operator used in the Cournot model, this operator takes into account
the inherent asymmetry in the Stackelberg model. Furthermore, for M = N = 1 and
γ = λ = 0, this model is reduced to the quantum Stackelberg duopoly model studied
by Lo and Kiang [14].
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For simplicity, in the following we shall concentrate on two special cases, namely
the case of a single leader with N followers and the case of a single follower with M
leaders, in order to demonstrate the effect of quantum entanglement on the outcomes
of the Stackelberg oligopoly. It is obvious that the former case is obtained by setting
M = 1 and λ = 0, while requiring N = 1 and γ = 0 yields the latter case.

2.1 Special case of a single leader with N followers

In the special case of a single leader with N followers, there can be one entanglement
parameter among the fellow followers, and a different one between the first mover and
the followers. Thus, the entanglement operator becomes

Ĵ (γ, ξ) = exp

⎧
⎨

⎩
−1

2

N∑

i, j=1

βi j

(
â†i â

†
j − âi â j

)
⎫
⎬

⎭
exp

{

− ξ

N

N∑

i=1

(
â†i b̂

† − âi b̂
)
}

. (7)

Our subsequent analysis begins with introducing the initial state |ψi 〉 of the system,
which is the tensor product of (N + 1) single-mode vacuum states subjected to the
entanglement operation given in Eq. (7). The leader’s strategicmove is executed via the
unitary operation D̂(x0) ≡ exp{x0(b̂† − b̂)/

√
2}, while the followers’ are represented

by the unitary operations {D̂i (xi ) ≡ exp{xi (â†i − âi )/
√
2}; i = 1, 2, 3, . . . , N }. Hav-

ing executed their moves, the final state after the disentanglement operation is given
by |ψ f 〉 ≡ Ĵ (γ, ξ)†

[∏N
i=1 D̂i (xi ) D̂(x0)

]
Ĵ (γ, ξ)|ψi 〉. Then, the final measurement

gives the quantities of products produced by the firms:

q0 = x0 cosh

(
ξ√
N

)

+ 1√
N

sinh

(
ξ√
N

) N∑

j=1

x j

qi = xi exp (−2γ ) + 1

N

[

cosh

(
ξ√
N

)

− exp (−2γ )

] N∑

j=1

x j

+ 1√
N

sinh

(
ξ√
N

)

x0 ; i = 1, 2, 3, . . . , N . (8)

Here, the subscript 0 refers to the single leader. As a result, the profits of the leader
and the followers are given by

u0 = q0

⎛

⎝k − q0 −
N∑

j=1

q j

⎞

⎠

ui = qi

⎛

⎝k − q0 −
N∑

j=1

q j

⎞

⎠ ; i = 1, 2, 3, . . . , N . (9)
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In accordance with the backwards induction analysis, the followers know the
leader’s strategic move x0, and thus, they choose their moves {xi } by optimizing
their profits with respect to this x0:

∂ui
∂xi

=
{(

1 − 1

N

)

exp (−2γ ) + 1

N
cosh

(
ξ√
N

)}
⎛

⎝k − q0 −
N∑

j=1

q j

⎞

⎠

− qi

[

cosh

(
ξ√
N

)

+ 1√
N

sinh

(
ξ√
N

)]

= 0. (10)

Since all followers are identical, they will all arrive at the same optimal value x∗,
and hence, the above equation can be simplified to yield

x∗ = f (ξ) k − g (ξ) x0

N
[
cosh

(
ξ√
N

)
+ 1√

N
sinh

(
ξ√
N

)] (11)

where

f (ξ) =
(N − 1) exp (−2γ ) + cosh

(
ξ√
N

)

(N − 1) exp (−2γ ) + 2 cosh
(

ξ√
N

)

g (ξ) = cosh

(
ξ√
N

)

+ √
N sinh

(
ξ√
N

)

− 1

(N − 1) exp (−2γ ) + 2 cosh
(

ξ√
N

) .

(12)

Their identical profit u∗ is then given by

u∗ =
[
k cosh

(
ξ√
N

)
− x0

] [
x∗ cosh

(
ξ√
N

)
+ 1√

N
sinh

(
ξ√
N

)
x0
]

(N − 1) exp (−2γ ) + 2 cosh
(

ξ√
N

) . (13)

Next, we substitute the optimal value x∗ into the profit or utility function of the leader
given in Eq. (9). Optimizing it with respect to x0 , one obtains

x∗
0 = k

2

⎧
⎪⎨

⎪⎩
cosh

(
ξ√
N

)

−
[
(N − 1) exp (−2γ ) + cosh

(
ξ√
N

)]
sinh

(
ξ√
N

)

√
N
[
(N − 1) exp (−2γ ) + 2 cosh

(
ξ√
N

)]
+ sinh

(
ξ√
N

)

⎫
⎪⎬

⎪⎭

(14)

123



To move first or not to move first? Page 7 of 16 335

and

u∗
0 = k2

4
[
(N − 1) exp (−2γ ) + 2 cosh

(
ξ√
N

)]

{

cosh

(
ξ√
N

)

+
[
(N − 1) exp (−2γ ) + cosh

(
ξ√
N

)]
sinh

(
ξ√
N

)

√
N
[
(N − 1) exp (−2γ ) + 2 cosh

(
ξ√
N

)]
+ sinh

(
ξ√
N

)

⎫
⎬

⎭
. (15)

It is not difficult to show that both x∗
0 and u∗

0 are nonnegative definite. In terms of the
optimal value x∗

0 given in Eq. (14), we could also determine the optimal values x∗
in Eq. (11) and u∗ in Eq. (13). For γ = ξ = 0, it is apparent that the above results
are reduced to the well-known results of the classical Stackelberg oligopoly model,
namely [1–3]

x∗
0 = k

2
, x∗ = k

2 (N + 1)

u∗
0 = k2

4 (N + 1)
, u∗ = k2

4 (N + 1)2


u∗ ≡ u∗
0 − u∗ = k2N

4 (N + 1)2
, (16)

which explicitly demonstrates the first-mover advantage in the model for 
u∗ > 0.

2.2 Special case of a single follower withM leaders

In the special case of a single follower with M leaders, the entanglement operator is
given by

Ĵ (λ, ξ) = exp

⎧
⎨

⎩
−1

2

M∑

i, j=1

αi j

(
b̂†i b̂

†
j − b̂i b̂ j

)
⎫
⎬

⎭
exp

{

− ξ

M

M∑

i=1

(
â†b̂†i − âb̂i

)
}

.

(17)

and the initial state |ψi 〉 of the system is the tensor product of (M + 1) single-mode
vacuum states subjected to the entanglement operation given in Eq. (17). The strategic
moves of the follower and leaders are executed via the unitary operations: D̂(x0) ≡
exp{x0(â† − â)/

√
2} and {D̂i (xi ) ≡ exp{xi (b̂†i − b̂i )/

√
2}; i = 1, 2, 3, . . . , M},

respectively. After executing their moves and the disentanglement operation, the final
state is given by |ψ f 〉 ≡ Ĵ (λ, ξ)†

[∏N
i=1 D̂i (xi ) D̂(x0)

]
Ĵ (λ, ξ)|ψi 〉. The final mea-

surement generates the quantities of products produced by the firms:
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q0 = x0 cosh

(
ξ√
M

)

+ 1√
M

sinh

(
ξ√
M

) M∑

j=1

x j

qi = xi exp (−2λ) + 1

M

[

cosh

(
ξ√
M

)

− exp (−2λ)

] M∑

j=1

x j

+ 1√
M

sinh

(
ξ√
M

)

x0; i = 1, 2, 3, . . . , M . (18)

The corresponding profits are then given by

u0 = q0

⎛

⎝k − q0 −
M∑

j=1

q j

⎞

⎠

ui = qi

⎛

⎝k − q0 −
M∑

j=1

q j

⎞

⎠ ; i = 1, 2, 3, . . . , M . (19)

It should be noted that in this special case the subscript 0 refers to the single follower
instead.

To perform the backwards induction analysis, we first solve the equation

∂u0
∂x0

= k cosh

(
ξ√
M

)

− 2 cosh

(
ξ√
M

)[

cosh

(
ξ√
M

)

+ √
M sinh

(
ξ√
M

)]

−H (ξ)

M∑

j=1

x j

= 0 (20)

for the optimal move x∗
0 of the follower and obtain

x∗
0 =

k cosh
(

ξ√
M

)
− H (ξ)

∑M
j=1 x j

2 cosh
(

ξ√
M

) [
cosh

(
ξ√
M

)
+ √

M sinh
(

ξ√
M

)] . (21)

The function H (ξ) is defined by

H (ξ) = cosh

(
ξ√
M

)2

+ 2√
M

cosh

(
ξ√
M

)

sinh

(
ξ√
M

)

+ sinh

(
ξ√
M

)2

.(22)

Then, by substituting this optimal value x∗
0 into the profit function of the leaders given

in Eq. (19) and optimizing it with respect to xi , the optimal move and profit of each
leader are determined as follows:
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x∗ = k

M
cosh

(
ξ√
M

){
(M − 1) exp (−2λ) + F (ξ)

(M − 1) exp (−2λ) + G (ξ)

}

(23)

u∗ = k2

2M cosh
(

ξ√
M

)

{
(M − 1) exp (−2λ) + 1

2G (ξ)
[
(M − 1) exp (−2λ) + G (ξ)

]2

}

(24)

where

F (ξ) = 1

cosh
(

ξ√
M

)
+ √

M sinh
(

ξ√
M

)

G (ξ) =
2 cosh

(
ξ√
M

)
+ √

M sinh
(

ξ√
M

)

cosh
(

ξ√
M

) [
cosh

(
ξ√
M

)
+ √

M sinh
(

ξ√
M

)] . (25)

Here, the derivations have made use of the fact that all leaders are identical and they
will all arrive at the same optimal value of x∗. Accordingly, the corresponding optimal
move and profit of the follower are given by

x∗
0 = F (ξ)

2 cosh
(

ξ√
M

)

{

k cosh

(
ξ√
M

)

− MH (ξ) x∗
}

(26)

u∗
0 = k

2 cosh
(

ξ√
M

)

⎧
⎨

⎩

cosh
(

ξ√
M

)
x∗
0 + √

M sinh
(

ξ√
M

)
x∗

(M − 1) exp (−2λ) + G (ξ)

⎫
⎬

⎭
. (27)

It should be noted that, unlike the case of a single leader with N followers, the
leaders’ optimal moves and profits in this case are no longer nonnegative definite. For
λ = ξ = 0, the well-known results of the classical Stackelberg oligopoly model are
recovered, namely [1–3]

x∗ = k

M + 1
, x∗

0 = k

2 (M + 1)

u∗ = k2

2 (M + 1)2
, u∗

0 = k2

4 (M + 1)2


u∗ ≡ u∗ − u∗
0 = k2

4 (M + 1)2
, (28)

which clearly indicate the first-mover advantage in the model for 
u∗ > 0

3 Illustrative numerical results

In Fig. 1 the profits of each follower u∗ and the leader u∗
0 of the special case of a single

leader with two followers (i.e. N = 2) are plotted versus the entanglement parameter
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Fig. 1 a The leader’s profit u∗
0

(in units of the classical value) is
plotted versus the entanglement
parameter γ for different values
of the entanglement parameter ξ

in the case of one leader with
two followers, i.e. N = 2, b the
profit of each follower u∗ (in
units of the classical value) is
plotted versus γ for different
values of ξ in the same case, and
c the profit difference

u∗ ≡ u∗

0 − u∗ (in units of the
classical value) is plotted versus
γ for different values of ξ in the
same case. It should be noted
that ξ must be less than 0.46561
in order to have nonnegative
values of x∗

ξ = 0.46561
ξ = 0.0
ξ = ‒ 1.0
ξ = ‒ 2.0
ξ = ‒ 3.01.5

1.0

0.5

0.0

2.0

0.0 10.05.0‒ 10.0 ‒ 5.0

ϒ

u 0
*

1.0

0.8

0.4

0.0

1.4

0.0 10.05.0‒ 10.0 ‒ 5.0

ϒ

u*

ξ = 0.46561
ξ = 0.0
ξ = ‒ 1.0
ξ = ‒ 2.0
ξ = ‒ 3.0

1.2

0.6

0.2

(c) N = 2

(b) N = 2

(a) N = 2

2.0

1.5

0.5

0.0

2.5

0.0 10.05.0‒ 10.0 ‒ 5.0

ϒ

Δu
*

ξ = 0.46561
ξ = 0.0
ξ = ‒ 1.0
ξ = ‒ 2.0
ξ = ‒ 3.0

1.0
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γ (between the two followers) for different values of the entanglement parameter ξ

(between each follower and the leader). Our analysis indicates that if ξ is less than
0.46561, then x∗ is non-negative for all values of γ . Of course, nonnegative values of
x∗ can also be found for other values of ξ provided that γ is chosen appropriately. As
shown in the figure, for γ � − 2 the leader’s profit u∗

0 (in units of the classical value)
is infinitesimal. Then, it starts to increase rapidly with the entanglement parameter
γ and saturates around γ = 1 for the given values of the entanglement parameter ξ .
The profit of each follower u∗ (in units of the classical value) also exhibits similar
behaviour. In addition, tuning the parameter ξ enables us to enhance or suppress their
profits against the classical values.

Moreover, the difference between the leader’s profit and the profit of each follower

u∗ ≡ u∗

0 − u∗ (in units of the classical value) is plotted against γ for different
values of ξ . It is apparent that the leader’s profit is always more than the followers’
for the given values of ξ . In other words, the leader always has an advantage over
the followers. However, significant first-mover advantage occurs only for γ � 1. In
Fig. 2 we examine how the number of followers affects the aforementioned first-mover
advantage. The results indicate that the same pattern of the first-mover advantage also
exists for N = 5, 10 and 30, as well as that the sole effect of increasing the number of
followers is simply the enhancement of the first-mover advantage. In all these cases
the parameter ξ plays the role of fine-tuning the first-mover advantage only. Besides,
it should be noted that in each of these three cases the value of ξ is capped by an upper
bound to ensure the nonnegative definiteness of x∗ for all values of γ .

InFig. 3 the profits of each leaderu∗ and the followeru∗
0 of the special case of a single

follower with two leaders (i.e. M = 2) are plotted versus the entanglement parameter
λ (between the two leaders) for different values of the entanglement parameter ξ

(between each leader and the follower). In order to ensure the values of x∗
0 , u

∗
0 and u

∗
to be nonnegative definite for all values of λ, we must require − 1.24645 < ξ < 0.
Other values of ξ can also be allowed if λ is chosen appropriately. For λ � − 2
the profits of the follower u∗

0 (in units of the classical value) and each leader u∗ (in
units of the classical value) are very small. Then, they start to grow rapidly with the
entanglement parameter λ and come to a plateau around λ = 1 for the given values
of the entanglement parameter ξ . By varying the parameter ξ , we are able to monitor
the profits against the classical values, too. Likewise, it is found that the first-mover
advantage is essentially zero for λ < − 3 and then it begins to rise rapidly. After
hitting the maximum near the classical value at λ ≈ − 1, the first-mover advantage
starts to diminish, and an unexpected loss of the first-mover advantage appears at
λ ≈ 0 (except for ξ = 0). The loss deteriorates with the entanglement parameter λ

until it levels off at λ ≈ 2. This feature is certainly not expected in the classical model
of Stackelberg oligopoly. In Fig. 4 the loss of the first-mover advantage is further
examined for M = 5, 10 and 30. The same pattern of the loss exists for M = 5,
10 and 30, too; increasing the number of leaders simply results in aggravation of the
loss. Furthermore, in all these cases the parameter ξ plays the role of fine-tuning the
first-mover advantage only, and its value is confined within a specific range.
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Fig. 2 The profit difference

u∗ ≡ u∗

0 − u∗ (in units of the
classical value) is plotted against
γ for different values of ξ in the
case of a 5 followers (i.e.
N = 5), b 10 followers (i.e.
N = 10), and c 30 followers (i.e.
N = 30). It should be noted that
in each of these three cases the
value of ξ is capped by an upper
bound, namely ξ = 0.48467,
0.49202 and 0.49726 for N = 5,
10 and 30, respectively

(a) N = 5
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ϒ

Δu
*

1.0

ξ = 0.48467
ξ = 0.0
ξ = ‒ 1.0
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(b) N = 10
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(c) N = 30

15.0

0.0

20.0

0.0 10.05.0‒ 10.0 ‒ 5.0

ϒ

Δu
*

5.0

10.0

ξ = 0.49726
ξ = 0.0
ξ = ‒ 1.0
ξ = ‒ 2.0
ξ = ‒ 3.0

123



To move first or not to move first? Page 13 of 16 335

Fig. 3 a The follower’s profit u∗
0

(in units of the classical value) is
plotted versus the entanglement
parameter λ for different values
of the entanglement parameter ξ

in the case of one follower with
two leaders, i.e. M = 2, b the
profit of each leader u∗ (in units
of the classical value) is plotted
versus λ for different values of ξ

in the same case, and c the profit
difference 
u∗ ≡ u∗ − u∗

0 (in
units of the classical value) is
plotted versus λ for different
values of ξ in the same case. It
should be noted that ξ must be
confined within the specific
range [− 1.24645, 0] in order to
ensure the values of x∗

0 , u
∗
0 and

u∗ to be nonnegative definite
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(b) M = 2

(c) M = 2
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Fig. 4 The profit difference

u∗ ≡ u∗ − u∗

0 (in units of the
classical value) is plotted against
γ for different values of ξ in the
case of a 5 leaders (i.e. M = 5),
b 10 leaders (i.e. M = 10), and c
30 leaders (i.e. M = 30). It
should be noted that in each of
these three cases the value of ξ

is confined within a specific
range, namely [− 1.07602, 0],
[− 1.03549, 0] and
[− 1.01134, 0] for M = 5, 10
and 30, respectively
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4 Conclusion

Wehave investigated the quantization of themulti-player Stackelberg game by propos-
ing an asymmetric quantum entanglement operation given in Eq. (7). This quantization
scheme is different from the one introduced in the quantization of the Cournot and
Bertrand oligopolies where a symmetric quantum entanglement operation given in
Eq. (1) is used instead. We believe that due to the informational asymmetry between
the leaders and followers in the Stackelberg model, it is more natural to have dif-
ferential quantum entanglement in a quantum Stackelberg oligopoly. For simplicity,
two special cases of the multi-player Stackelberg model, namely the case of a single
leader with N followers as well as the case of a single follower with M leaders, have
been examined in detail to demonstrate the effect of quantum entanglement on the
outcomes of the Stackelberg oligopoly. Our analysis indicates that in the former case
the quantum entanglement simply monitors the first-mover advantage against the clas-
sical value, whereas in the latter case an unexpected loss in the first-mover advantage
could be caused by the quantum entanglement. This surprising feature is certainly
not expected in the classical Stackelberg model and raises an important question: “To
move first or not to move first ?”. Furthermore, we believe that the general case of M
leaders with N followers may contain more complex patterns of the players’ profits
and a thorough investigation is desirable.

As a final remark, it should be noted that using a different quantization scheme Iqbal
and Toor [15] also performed an analysis of the quantum Stackelberg duopoly. Their
study indicates that the backward induction outcome in the quantum form of Stackel-
berg duopoly becomes the same as the classical equilibrium of Cournot duopoly. That
is, the classical first-mover advantage is avoided by quantization. On the other hand,
using the minimal quantization rule, Lo and Kiang [14] has found that while positive
entanglement enhances the first-mover advantage beyond the classical limit, the advan-
tage is dramatically suppressed by negative entanglement, leading to its disappearance
asymptotically. Hence, despite that both quantization schemes predict suppression of
the first-mover advantage, the two schemes show significant differences, too.
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