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Abstract
We study the entanglement property of a free Dirac field in a Werner state as seen
by two relatively accelerated parties. We study the concurrence, negativity, mutual
information and π -tangle of the tripartite system. We show how these entanglement
properties depend on both the free parameter F , which is a real parameter called
fidelity, and the acceleration parameter r . The degree of entanglement is degraded by
the Unruh effect, but we notice that the Werner state always remains entangled even
in the acceleration limit, and thus, it can become a good candidate to quantum telepor-
tation in uniform acceleration frame. We notice that the entropy S(ρA I II) decreases
with the free parameter F , and also S(ρA I II), S(ρA) and S(ρI II) are independent of
the acceleration parameter r . The von Neumann entropy is not a good entanglement
measure any more for this mixed state. We verify that the Werner state in a noninertial
frame obeys the Coffman–Kundu–Wootters (CKW) monogamous inequality and find
that two useful relations for the concurrence and negativity.
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1 Introduction

Over the past many years, stimulated from the original discoveries of Hawking radia-
tion and the Unruh effect [1–3], a new field known as relativistic quantum information
(RQI) which blends together concepts from gravitational physics and quantum com-
puting has emerged. Its main aim is to understand the relationship between special and
general relativity and quantum information. Such a combination has undergone signif-
icant revision in relativistic settings, and the new phenomena have been arisen [4–10].
For example, quantum teleportation fidelity can be affected between observers in uni-
form relative acceleration. The entanglement is an observer-dependent property that
is degraded from the perspective of accelerated observers moving in flat spacetime.
Up to now, the subject of RQI which pulls together concepts and ideas from special
relativity, quantum optics, general relativity, quantum communication and quantum
computation has attracted the attention of many authors [8,11–23].

As we know, when an observer moves in uniform acceleration, he cannot access
all information about the global spacetime. The appearance of the communication
horizon will lead to the loss of information and a corresponding degradation of
entanglement [24], which is called the Unruh effect. This will give us a quantita-
tive understanding of such degradations in noninertial frames. It is known from the
contributions mentioned above that the entanglement is observer dependent [5–9].
Among these contributions, the study by Alsing et al. analyzed the entanglement
between two modes of a free Dirac field as seen by two relatively accelerated par-
ties [11]. Wang et al. generalized Alsing’s study to three observers [13], which
is revisited in our recent study [14]. After that, Smith and Mann first showed
that tripartite nonlocality persists for fermionic systems in the infinite acceleration
limit [15].

Generally speaking, it is assumed that Alice, Bob and Charlie initially share a
Greenberger–Horne–Zeilinger (GHZ) state, which has the form |GHZ〉 = (|000〉 +
|111〉)/√2, and then, let Alice stay stationary, while Bob and Charlie move in a
uniform acceleration. Except for the GHZ state, another popular study is concerned
with the W-state, which has the explicit form |W〉 = (|100〉 + |010〉 + |001〉)/√3
and it is the special case of W-type state as studied by Weinstein [25]. It should
be recognized that the pure GHZ and W-states are two different kinds of tripartite
entangled states in quantum information. However, it should be pointed out that it is
impossible to transformGHZstate intoW-state, evenwith only a very small probability
of success [12]. On the other hand, Qiang and his co-author have studied GHZ state
in an accelerated frame and obtained some useful relations of entanglement [26].
Recently, we have studied the entanglement of the W-state and pseudo-pure state by
using the concurrence measures [27–29], which is different from our present study
since Werner state is a mixed state. We find that the W-state [27] is more complicated
than GHZ state since its density matrix cannot be written as an X form, in which
nonzero elements are arrayed in the diagonal or anti-diagonal when constructed in an
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orthonormal basis [30]. Particularly, we also noticed that theW-state is still entangled
even in the infinite acceleration limit [27], which is unlike the GHZ state since the
initially entangled GHZ state is not entangled any more in some acceleration r .

Recently, Moradi [31] has studied the Werner state [32], which is a mixed state
of a Greenberger–Horne–Zeilinger (GHZ) state and the completely unpolarized state
and involves a free parameter F , which determines the distillability of entanglement.
Until now, precise quantitative knowledge on two-qubit Werner states has triggered
important advances, e.g., regarding the relation between entanglement and nonlocal-
ity [32], entanglement purification, and noisy quantum channels [33], or mixed state
entanglement under symmetries [34,35]. Moradi studied its distillability of entangle-
ment in accelerated frames only using a unique criterion whether there exists at least
one negative eigenvalue of the partial transpose of density operator ρ, but such a
study is simpler. His main motivation was to show how the states will change from
distillable into separable for certain values of acceleration parameter r and free param-
eter F . Certainly, this aim can be achieved easily by this approach. Except for this
criterion, in fact, some other crucial entanglement measures including the concur-
rence, negativity, mutual information and π -tangle can also be used to understand
the entanglement property in accelerated frames. The different measures with its own
advantages and disadvantages used to study the entangled system enable us to under-
stand this state completely. Undoubtedly, these studies shall enrich and generalize the
previous results [31]; and also they shall indicate how the degree of entanglement
is affected by both the free parameter F and the acceleration parameter r from dif-
ferent measurement aspects. With the aid of the calculation skills used in our recent
study about theW-state and pseudo-pure state as well as relevant concurrence [27–29],
the purpose of this paper is focused on studying the entanglement properties of the
Dirac field for the Werner state and their relevances with the parameters F and r . We
attempt to see whether there also exist similar useful relations for the Werner state in
accelerated frames as shown in [26].

The rest of this work is organized as follows. In Sect. 2, we present the concur-
rence and negativity of bipartite subsystems when the observer Bob is moving in a
uniform acceleration. We calculate the threshold values of the free parameter F for
both concurrence and negativity and also study their dependencies on the parameters
F and r . We calculate the mutual information in Sect. 3 and show how it depends on
the parameters F and r . In Sect. 4, we study the π -tangle of tripartite system in order
to investigate the entanglement behavior of the global system. Some discussions are
given in Sect. 5, and the conclusions are summarized in Sect. 6.

2 Concurrence and negativity of bipartite subsystem

As mentioned above, we are interested in how the acceleration parameter r of these
observers except for the free parameter F will affect the degree of entanglement
for bipartite and tripartite systems. Our setting consists of two observers: Alice and
Bob. We first let Alice stay stationary, while Bob moves in uniform acceleration.
Consider Bob to be accelerated uniformly in the (t, z) plane. Rindler coordinates
(τ, ξ) are appropriate for describing the viewpoint of an observer moving in uniform
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acceleration. Two different sets of the Rindler coordinates, which differ from each
other by an overall change in sign, are necessary for covering Minkowski space.
These sets of coordinates define two Rindler regions that are disconnected from each
other [11,24]

t = a−1eaξ sinh(aτ), z = a−1eaξ cosh(aτ), Region I

t = −a−1eaξ sinh(aτ), z = −a−1eaξ cosh(aτ), Region II. (1)

We denote the accelerating observer in regions I and II as Bob and anti-Bob, respec-
tively, as shown in Fig. 1. A free Dirac field in (3+ 1)-dimensional Minkowski space
satisfies the Dirac equation iγ μ∂μψ − mψ = 0. Here, m is the particle mass, γ μ are
the Dirac gamma matrices, and ψ is a spinor wave function, which is composed of
the complete orthogonal set of fermion ψ+

k , and antifermion ψ−
k modes and can be

written as the following form

ψ =
∫

(akψ
+
k + b†kψ

−
k )dk, (2)

where a†k (b
†
k ) are the creation and annihilation operators for fermions (antifermions)

of themomentum k, respectively. They satisfy the anticommutation relation {ai , a†j } =
{bi , b†j } = δi j . The quantum field theory for a Rindler observer can be constructed
by expanding the spinor field in terms of a complete set of fermion and antifermion
modes in regions I and II as

ψ =
∫ ∑

τ

(cτ
kψ

τ+
k + dτ†

k ψτ−
k )dk, τ ∈ {I, II}. (3)

Similarly, cτ†
k (dτ†

k ) and cτ
k (d

τ
k ) are the creation and annihilation operators for

fermion (antifermions), respectively, acting on region I (II) for τ = I (II) and sat-
isfying similar anticommutation relation as above. The relation between creation and
annihilation operators in Minkowski and Rindler spacetimes can be found by using
Bogoliubov transformation ak = cos(r) cIk − sin(r) dII†−k, bk = cos(r) dIk − sin(r) cII†−k ,

where cos(r) = 1/
√
1 + e−2πωkc/a with ωk = √|k|2 + m2 and r is Bob’s accelera-

tion parameterwith the range r ∈ [0, π/4] for a ∈ [0,∞). The detailed derivations can
refer to Refs. [2,11]. For example, Alsing et al. [11] have used single-mode approxima-
tion to show how the Unruh effect is arisen for Dirac particles through the Bogoliubov
transformation and how theBob’s states |0B〉 and |1B〉 are generated. Recently, Fuentes
et al. discussed the Unruh effect beyond the single-mode approximation [2], in which
two complex numbers qR and qL (the subindexes L and R corresponding to the left and
right regions in Rindler diagram, i.e., regions I and II in Fig. 1) are used to construct
the one-particle state, i.e., |1〉 = qR |1R0L 〉 + qL |0R1L 〉.

In this work, we are only interested in the single-mode approximation for simplicity
as previous study [11,13,15,29]. That is to say, in our case one has qR = 1, qL = 0
to satisfy the normalization condition |qR |2 + |qL |2 = 1. Using the single-mode
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Fig. 1 (Color online) Rindler spacetime diagram: Lines of constant position ξ are hyperbolas, and lines of
constant proper time τ for the accelerated observer run through the origin. In the present work, we denote
regions I and II as Bob and anti-Bob, respectively. The reader can refer to Ref. [24] for more information

approximation [11,13,15,23,27–29], Bob’s vacuum state |0B〉 and one-particle state
|1B〉 in Minkowski space are transformed into Rindler space

|0B〉 = cos(rb)|0BI 0BI I 〉 + sin(rb)|1BI 1BI I 〉,
|1B〉 =|1BI 0BI I 〉,

(4)

where |nBI 〉 and |nBI I 〉 (n = 0, 1) are the mode decomposition of |nB〉 into two
causally disconnected regions I and II in Rindler space. This implies that the vacuum
state of a localized system defined by inertial observers is inequivalent to the vacuum
state of a localized system undergoing uniform acceleration as seen by observers in
accelerated frames (Rindler observers) as used in Refs. [9,36,37].

We assume that Alice and Bob share a bipartite state of Werner type [32] in inertial
frames with the following form [31]

ρAB = F |�−〉〈�−| + 1 − F

3

(|�+〉〈�+|
+| �−〉〈�−| + |�+〉〈�+|) , (5)

where 0 ≤ F ≤ 1 measures the overlap of the this state and the Bell state. In inertial
system, for 0 ≤ F ≤ 1/2, the Werner state is unentangled, but entangled for 1/2 <

F ≤ 1. Note that theWerner state has the simplest form |�−〉〈�−| for F = 1, while it
is the combination of other Bell states for F = 0. The states |�±〉 and |�±〉 appeared
in Eq. (5) are usual entangled Bell states

|�±〉AB = 1√
2
(|0A〉|0B〉 ± |1A〉|1B), (6)

|�±〉AB = 1√
2
(|0A〉|1B〉 ± |1A〉|0B), (7)
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where |0〉 and |1〉 are the vacuumstate and single-particle excitation state of the fermion
mode, say k, in Minkowski space. All other modes of the field are in the vacuum state.

As what follows, we shall denote |nBI 〉(|nBI I 〉, ρA BI , ρA BI I , ρBI BI I ) as
|nI 〉(|nI I 〉, ρA I , ρA I I , ρI II) for simplicity. Substituting |�±〉AB and |�±〉AB into
Eq. (5), we obtain the density operator of the Werner state as follows

ρA I I I = 1

3
(1 − F)[cos2(r)|0I , 0I I , 0A〉〈0I , 0I I , 0A|

+ sin2(r)|1I , 1I I , 0A〉〈1I , 1I I , 0A|
+ sin(r) cos(r)(|1I , 1I I , 0A〉〈0I , 0I I , 0A| + |0I , 0I I , 0A〉〈1I , 1I I , 0A|)
+|1I , 0I I , 1A〉〈1I , 0I I , 1A|]
+1

6
(2F + 1)[cos2(r)|0I , 0I I , 1A〉〈0I , 0I I , 1A|

+ sin2(r)|1I , 1I I , 1A〉〈1I , 1I I , 1A|
+ cos(r) sin(r)(|1I , 1I I , 1A〉〈0I , 0I I , 1A| + |0I , 0I I , 1A〉〈1I , 1I I , 1A|)
+|1I , 0I I , 0A〉〈1I , 0I I , 0A|]
+1

6
(1 − 4F)[cos(r)(|1I , 0I I , 0A〉〈0I , 0I I , 1A|

+|0I , 0I I , 1A〉〈1I , 0I I , 0A|)
+ sin(r)(|1I , 1I I , 1A〉〈1I , 0I I , 0A| + |1I , 0I I , 0A〉〈1I , 1I I , 1A|)]. (8)

In order to study the entanglement properties of bipartite systems, let us take the
trace over the modes I I , I and A, respectively, and obtain their density operators
ρA I , ρA I I and ρI I I as follows:

ρA I = 1

6
{2(1 − F) cos2(r)|0I , 0A〉〈0I , 0A|

+(2F + 1) cos2(r)(|0I , 1A〉〈0I , 1A|
+(1 − 4F) cos(r)(|1I , 0A〉〈0I , 1A| + |0I , 1A〉〈1I , 0A|)
+[2(1 − F) sin2(r) + (2F + 1)]|1I , 0A〉〈1I , 0A|
+[(2F + 1) sin2(r) + 2(1 − F)]|1I , 1A〉〈1I , 1A|}. (9)

ρA I I = 1

6
{[2(1 − F) cos2(r) + 2F + 1]|0I I , 0A〉〈0I I , 0A|

+(1 − 4F) sin(r)(|1I I , 1A〉〈0I I , 0A|
+|0I I , 0A〉〈1I I , 1A|)
+[(2F + 1) cos2(r) + 2(1 − F)]|0I I , 1A〉〈0I I , 1A|
+2(1 − F) sin2(r)|1I I , 0A〉〈1I I , 0A|
+(2F + 1) sin2(r)|1I I , 1A〉〈1I I , 1A|}. (10)

ρI I I = 1

2
[cos2(r)|0I , 0I I 〉〈0I , 0I I | + sin2(r)|1I , 1I I 〉〈1I , 1I I |

+ cos(r) sin(r)(|1I , 1I I 〉〈0I , 0I I |
+|0I , 0I I 〉〈1I , 1I I |) + |1I , 0I I 〉〈1I , 0I I |]. (11)
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All of these density matrices have an X form,

ρx =

⎛
⎜⎜⎝

a 0 0 ω

0 b z 0
0 z∗ c 0
ω∗ 0 0 d

⎞
⎟⎟⎠ , (12)

from which we are able to calculate the concurrence in the following way [38,39]

C(ρx ) = 2max[0, |z| − √
ad, |ω| − √

bc]. (13)

Comparing the matrix forms of Eqs. (9), (10), (11) with Eq. (12), according to Eq. (13)
we can easily obtain

C(ρA I ) = max[0, 1
3
cos(r)(|1 − 4F |

−
√
2(1 − F)(3 − (2F + 1) cos2(r))], (14)

C(ρA I I ) = max[0, 1
3
sin(r)(|1 − 4F |

−
√
2(1 − F)(3 − (2F + 1) sin2(r)))], (15)

C(ρI I I ) = sin(r) cos(r). (16)

We notice that replacing cos(r) by sin(r) in Eq. (14) allows us to obtain C(ρA I I ), and
vice versa. On the other hand, we find that C(ρI I I ) only depends on the acceleration
parameter r regardless of the free parameter F . We plot C(ρA I ) and C(ρA I I ) as a
function of the acceleration parameter r for various F in Figs. 2 and 3, respectively.We
also plot the corresponding C(ρI I I ) in Fig. 4. It is shown that C(ρA I I ) and C(ρI I I )

increase with the acceleration parameter r , but C(ρA I ) decreases with the increasing
r . Moreover, both C(ρA I ) and C(ρA I I ) increase with the free parameter F .

Apart from the concurrence, negativity as another important entanglement measure
introduced by Vidal and Werner [40] can be calculated by the formula [41,42] N =
‖ρTA

AB‖ − 1, where ‖A‖ = tr(
√
AA†) is the trace norm of a matrix A, i.e., the sum

of the singular values of A [43]. Alternatively, ‖A‖ − 1 is equal to two times of the
sum of absolute values of negative eigenvalues of A. For an X-type matrix (12), we
are able to obtain the explicit negativities as follows:

N (ρx ) = max
[
0,

√
(a − d)2 + 4|z|2 − (a + d)

]

+max
[
0,

√
(b − c)2 + 4|ω|2 − (b + c)

]
. (17)

N (ρA I ) = max
[
0,

1

6

(√
4(1 − 4F)2 cos2(r) + 9 sin4(r)

−(1 − 4F) cos2(r) − 3
) ]

, (18)
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Fig. 2 (Color online) Plots of concurrence C(ρA I ) as a function of the acceleration parameter r for
F = 0.500 (black), F = 0.625 (dotted and blue), F = 0.750 (dashed and purple), F = 0.875 (dot-dashed
and black), F = 1.000 (red)

Fig. 3 (Color online) Plots of concurrence C(ρA I I ) as a function of the acceleration parameter r for
F = 0.500 (black), F = 0.625 (dotted and blue), F = 0.750 (dashed and purple), F = 0.875 (dot-dashed
and black), F = 1.000 (red)

Fig. 4 (Color online) Plots of concurrence C(ρI I I ) (red) as a function of the acceleration parameter r
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N (ρA I I ) = max
[
0,

1

6
(

√
4(1 − 4F)2 sin2(r) + 9 cos4(r)

−(1 − 4F) sin2(r) − 3)
]
, (19)

N (ρI I I ) = 1

2

(√
sin2(2r) + 1 − 1

)
. (20)

Similar to the concurrence, by replacing cos(r) by sin(r) in Eq. (18), we get
Eq. (19), and vice versa. We note that N (ρI I I ) only depends on the acceleration
parameter r as the concurrence C(ρI I I ). After studying, we find that the negativ-
ities N (ρA I ), N (ρA I I ) and N (ρI I I ) have similar behaviors to the concurrences
C(ρA I ),C(ρA I I ) and C(ρI I I ) with respect to the acceleration parameter r and
the free parameter F . Therefore, we do not illustrate them for simplicity. In par-
ticular, we find that the negativity N (ρA I ) asymptotically reaches a threshold value
R(r) = (cos(2r) − 4)/(cos(2r) − 7) = 0.571429 of the F in the acceleration limit
r = π/4. This means that the Werner state always remains entangled even in the infi-
nite acceleration limit. This could become a good candidate in quantum information
tasks, such as teleportation, between parties in relative uniform acceleration.

3 Mutual information

We are now in the position to calculate the mutual information, which includes the
information interaction I0, the total information IT and dual information ID . All these
calculations which depend on the entanglement entropy S(ρ) = −∑4

i=1 λi log2 λi
are defined, respectively, as

I0 = S(ρA) + S(ρI ) + S(ρI I )

−S(ρA I ) − S(ρA I I ) − S(ρI II) + S(ρA I II, ρI ),

IT = S(ρA) + S(ρI ) + S(ρI I ) − S(ρA I II),

ID = S(ρA I ) + S(ρA I I ) + S(ρI II) − 2S(ρA I II). (21)

As we know, the von Neumann entropy which can be regarded as an entanglement
measure is only for pure state. For a mixed state, it is not a good entanglement measure
any more. For the present problem, it is necessary to consider the mutual information.
To calculate them, we have to calculate corresponding eigenvalues of the densities ρA,
ρI , ρI I , ρA I , ρA I I , ρI II, ρA I II. For the case ρA, we have λ1A = λ2A = 1/2. Its entropy
S(ρA) = 1; for density matrix ρI , we have λ1I = cos2(rb)/2, λ2I = (1 + sin2(rb))/2;
for ρI I , two eigenvalues can be obtained easily by interchanging cos(rb) ↔ sin(rb).
For the density matrix ρA I , however, their eigenvalues are given by

λ1A I = −1

3
(F − 1) cos2(r), λ2A I = 1

12
(−τ + α) ,

λ3A I = 1

12
(τ + α) , λ4A I = 1

6

[
(2F + 1) sin2(r) − 2F + 2

]
, (22)
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where

τ =
[

− 4(1 − 4F)2 sin2(r) + 4(1 − 4F)2 + 9 sin4(r)
]1/2

,

α = (1 − 4F) sin2(r) + 4F + 2. (23)

Based on the eigenvalues given in Eq. (22), we have

S(ρA I ) = − 1

48 ln(2)

{
(α − τ) ln

(
α − τ

48

)

+(α + τ) ln

[
α + τ

48

]
− 16(F − 1)

× cos2(r) ln

[
−1

3
(F − 1) cos2(r)

]

+8
[
(2F + 1) sin2(r) − 2F + 2

]

× ln

[
1

6

(
(2F + 1) sin2(r) − 2F + 2

)]}
. (24)

It is shown in Fig. 5 that S(ρA I ) first increases with the free parameter F and then
decreases with it, but S(ρA I ) increases with the acceleration parameter r .

As far as the case ρA I I is considered, the eigenvalues are calculated as

λ1A I I = − 1

3
(F − 1) sin2(r), λ2A I I = λ2A I ,

λ3A I I =λ3A I , λ4A I I = 1

6

[
(2F + 1) cos2(r) − 2F + 2

]
.

(25)

We find that λ1A I I and λ4A I I can be obtained easily through replacing cos(r) in Eq. (22)
by sin(r), and vice versa. With the same process of calculation as S(ρA I ), we find
that the S(ρA I I ) can be obtained from S(ρA I ) through substituting cos(r) and sin(r)
in S(ρA I ) by sin(r) and cos(r), respectively. We plot S(ρA I I ) in Fig. 6 and find
that S(ρA I I ) first increases with F and then decreases with it, but S(ρA I I ) does not
always increase with the acceleration parameter r and depends on the interval of free
parameter F . It is interesting to see that the S(ρA I I ) first increases with the parameter
r and then decreases with it when the free parameter F arrives at the critical value
F = 1.

Now, we consider the case ρI II. In this case, the eigenvalues are given by
λ1I II = λ2I II = 1/2 and λ3I II = λ4I II = 0, so its entropy S(ρI II) = 1. Hence, we
have S(ρI II) = S(ρA) = 1. Finally, let us study the entropy S(ρA I II) for tripartite
case. The eigenvalues of the density ρA I II are given by λ

1,2,3
A I II = (1 − F)/3 and

λ4A I II = F . It is found that S(ρA I II) = (F − 1) log((1 − F)/3) − F log(F)/ log(2),
which is independent of the parameter r . The S(ρA I II) decreases with F as shown in
Fig. 7.
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Fig. 5 (Color online) Plot of entanglement entropy S(ρA I ) as the functions of the free parameter F and
the acceleration parameter r

Fig. 6 (Color online) Plot of entanglement entropy S(ρA I I ) as the functions of the free parameter F and
the acceleration parameter r

To illustrate the mutual information with respect to the parameters F and r , we
show it in Figs. 8 and 9. It is found that the difference between IT and ID is almost
zero. We note that the total information IT and dual information ID first decrease with
the fidelity parameter F and then increase with it. They increase with the acceleration
parameter r . However, the information interaction I0 which is very small first increases
with the fidelity F ≥ 1/2 and the acceleration parameter r and then decreases with
them.
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Fig. 7 (Color online) Plot of S(ρA I II) as function of free parameter F

Fig. 8 (Color online) Plot of information interaction I0(ρA I II) (in color yellow), total information IT (in
color blue) and dual information ID (in color green) as the functions of the free parameter F and the
acceleration parameter r

4 �-tangle of three qubit system

In this section, we are going to investigate the entanglement property of the total
system. Before starting, we notice that the negativity N = 0 used in Section 2 becomes
a unique necessary and sufficient condition to see whether the qubit–qubit (2 × 2) or
qubit-qutrit (2 × 3) entangled system is separable or not.

When the dimensions of a quantum system in theHilbert space exceed six, however,
this condition becomes necessary but not sufficient [42,44,45]. To measure the degree
of entanglement of the total system ρA I I I , let us study the π -tangle [41]

π = πA + πB + πC

3
, (26)
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Fig. 9 (Color online) Plot of information interaction I0(ρA I II) as the functions of the free parameter F
and the acceleration parameter r

where

πA =N 2
A(BC) − N 2

AB − N 2
AC ,

πB =N 2
B(AC) − N 2

BA − N 2
BC ,

πC =N 2
C(AB) − N 2

CA − N 2
CB

(27)

with NAB = ‖ρTA
AB‖ − 1 is 1− 1-tangle and NA(BC) = ‖ρTA

A(BC)‖ − 1 is 1− 2-tangle.
These definitions andEqs. (9), (10), (11) enable us to easily calculate NA(I I I ), NI (A I I )

and NI I (A I ). After calculation, we find that

NA(I I I ) = ‖ρTA
A(I I I )‖ − 1 = max[2F − 1, 0]. (28)

Similarly, we can also calculate NI (A I I ) = ‖ρTI
I (A I I )‖ − 1 and NI I (A I ) =

‖ρTI I
I I (A I )‖ − 1, but the results are too complicated and we write them out in

Appendix A. Based on the results N (ρA I ), N (ρAI I ) and N (ρI I I ) given above,
it is not difficult to find NA I = NI A = N (ρA I ), NA I I = NI I A = N (ρA I I )

and NI I I = NI I I = N (ρI I I ). By substituting all 1 − 1 tangles and 1 −
2 tangles into Eq. (27) and considering Eq. (26), we can obtain π(ρA(I II)),
π(ρI(A II)) and π(ρII(A I))-tangles directly. We plot the π(ρI(A I)) and π(ρII(A I))-
tangles as a function of the acceleration parameter r for various values of the free
parameter F in panels (a) and (b) of Fig. 10. We find that they increase with the
increasing r and the free parameter F . The π(ρA(I II))-tangle has the similar variation
to them and is not illustrated here for simplicity. The algebraic average π -tangle is
displayed in Fig. 11.
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(a) (b)

Fig. 10 (Color online) Plot of π(ρI(A II)) and π(ρII(A I))-tangles as function of r for F = 0.500 (black),
F = 0.625 (dotted and blue), F = 0.750 (dashed and purple), F = 0.875 (dot-dashed and black),
F = 1.000 (red)

Fig. 11 (Color online) Plot of π -tangle as function of r . The parameter value of F is chosen as above

5 Discussions

After obtaining the expressions of concurrence, negativity, mutual information and
calculating the π -tangle, let us discuss the whole properties of this Werner state in
accelerated frame.

1. For the general case 1/2 < F < 1 and 0 ≤ r ≤ π/4. According to
Eqs. (14), (18), we get the threshold value of the free parameter F for C(ρA I )

and N (ρA I ) as R(r) = [2 sin2(r) + 3]/2[sin2(r) + 3], which is the same as that
of Ref. [31]. Similarly, C(ρA I I ) and N (ρA I I ) also have a threshold value of the
F as S(r) = [5 − 2 sin2(r)]/2[4 − sin2(r)], which is also same as that given
in [31], but R(r) �= S(r). We plot R(r) and S(r) as a function of the acceleration
parameter r in Fig. 12. It is shown that R(r) increases from 0.5 when r increases,
but S(r) decreases from 5/8 = 0.625. Finally, they all tend to the same value
4/7 ≈ 0.5714 in the acceleration limit r = π/4. How to interpret? Since an
accelerated observer Bob in the Rindler region I has no access to the anti-Bob in
the causally disconnected region II, then threshold value R(r) of subsystem A I
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Fig. 12 (Color online) Plot of threshold R(r) (red line) and S(r) (black line) for the entanglement of
subsystems ρA I and ρAI I

and that S(r) of subsystem A I I must tend to the same critical value 0.5714 in
the infinite acceleration limit because they must be continuous at the boundary
condition. Also, we might explain it in another way. As addressed as follows (see
point 2), we notice that C(ρA I ) = C(ρA I I ) and negativity N (ρA I ) = N (ρA I I )

in this limit and both of them are equal to 0.5714. But this does not mean that both
subsystem ρA I and subsystem ρA I I generally are in the same entangled state.
Now, let us give some useful remarks on these results. First, the concurrence
C(ρA I ), the negativity N (ρA I ) and the negative eigenvalues of the partial trans-
pose of the density operator ρA I have the same threshold value R(r) of F ; the
C(ρA I I ), N (ρA I I ) and the negative eigenvalues of the partial transpose of the
density operator ρA I I have the same threshold value S(r) of F . This means that
any of these quantities for a qubit–qubit system can be used to judge the degree
of entanglement. Second, we find that R(r) ≤ S(r) is valid for any acceleration
parameter r . Third, subsystem ρI I I is always entangled except for r = 0. This
means that the Werner state always remains entangled even in the infinite acceler-
ation limit. Fourth, there are three different cases for the subsystem ρA I and ρA I I .
When F ≤ R(r), they are all separable; while R(r) < F ≤ S(r), the subsystem
ρA I is entangled, but ρA I I is separable; they are both entangled for F > S(r).
We list C(ρA I ),C(ρA I I ), N (ρA I ) and N (ρA I I ) for some typical values of the
acceleration parameter r and the free parameter F in Table1.

2. When r = 0 and F > R(0) = 1/2, we have C(ρA I ) = N (ρA I ) = 2F − 1 and
find that they are nothing but those in inertial frame. This means that the values
of concurrence and negativity of the Werner state in inertial frame are equal to
each other even though they are different in noninertial frame. On the other hand,
generally, one has ρA I �= ρA I I ,C(ρA I ) �= C(ρA I I ) and N (ρA I ) �= N (ρA I I ),
but in the infinite acceleration limit r = π/4, we find that C(ρA I ) = C(ρA I I ) =
(4F − 1 − √

(1 − F)(5 − 2F))/(3
√
2) and N (ρA I ) = N (ρA I I ) = F − 7 +√

64F(2F − 1) + 17)/12, both for F > S(π/4) ≈ 0.5714. This implies that
bipartite subsystems ρA I and ρA I I equally share the entanglement of the system
in the maximum acceleration.
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Table 1 C(ρA I ), C(ρA I I ), N (ρA I ), N (ρA I I ) as the functions of the acceleration parameter r and
free parameter F , where 0 ≤ F = 0.50 < R(r) < F = 0.55 < S(r) < F = 0.65 for r = π/6 ≈
0.5236, π/8 ≈ 0.3927, π/12 ≈ 0.2618

r ≈ F 0.5236 0.3927 0.2618

0.5 0.55 0.65 0.5 0.55 0.65 0.5 0.55 0.65

C(ρA I ) 0 0.0195 0.1892 0 0.0485 0.2304 0 0.0748 0.2662

C(ρA I I ) 0 0 0.0495 0 0 0.0299 0 0 0.0163

N (ρA I ) 0 0.0183 0.1785 0 0.0474 0.2258 0 0.0744 0.2651

N (ρA I I ) 0 0 0.0268 0 0 0.0121 0 0 0.0044

3. We have calculated πA, πI and πI I numerically and found that πA, πI and πI I are
nonnegative. Thismeans that all 1−1 tangles and 1−2 tangles satisfy theCoffman–
Kundu–Wootters (CKW) monogamy inequality [46], i.e.,Q2

A|BC ≥ Q2
AB +Q2

AC ,
where the squares of one-entanglement and two-entanglement play the role of any
measure of correlation Q. Therefore, we conclude that all tripartite subsystems
considered here are monogamy.

4. Some useful relations of entanglement of theDirac field in an accelerated frame for
GHZ-like state were obtained [26]. We have also found some useful relations for
thisWerner state. For example,we have found a useful relation for the concurrence,

[3 sec(r)C(ρA I ) − |1 − 4F |]2
+[3 csc(r)C(ρAI I ) − |1 − 4F |]2 = 2(1 − F)(5 − 2F). (29)

Similarly, we have obtained another useful relation for the negativity

[6N (ρA I ) + 3 + (1 − 4F) cos2(r)]2
+[6N (ρA I I ) + 3 + (1 − 4F) sin2(r)]2

+9

2
[2N (ρI I I ) + 1]2 = 35

2
+ 32F(2F − 1). (30)

These two relations show that entanglement of bipartite subsystems depends on both
acceleration parameter r and the free parameter F . As mentioned before, the Werner
state is entangled for F ∈ (1/2, 1], which has been verified by the results presented
above. How to understand these two relations? The first relation (29) implies that the
degree of entanglement reflected by the concurrence could be transferred between
bipartites ρA I and ρA I I , but their sum associated with their accessories remains a
quantity 2(1−F)(5−2F). Similarly, the relation (30) about the negativity can also be
explained in the similar way to (29). That means the degree of entanglement reflected
by the negativity could be transferred among the bipartite subsystems ρA I , ρA I I and
ρI II.
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6 Summary

In this work, we have studied the entanglement properties of the Dirac field initially
entangled in a Werner state when one observer remains in inertial frame but another
observer is moving in noninertial frame. The formulas of concurrence, negativity and
mutual information for three bipartite subsystems ρA I , ρA I I and ρI I I are presented.
The total system π -tangle is also calculated. It is found that the concurrence C(ρA I ),
C(ρA I I ), negativity N (ρA I ), N (ρA I I ) and entanglement entropy S(ρA I ), S(ρA I I )

and S(ρA I II) depend on the free parameter F , but the C(ρI I I ), N (ρI I I ) and S(ρI II)

are regardless of the free parameter F . We have found that S(ρA I II) decreases with
increasing free parameter F but it is independent of the acceleration parameter r .
In particular, S(ρI II) = S(ρA) is only a constant so that it is independent of both
free parameter F and acceleration parameter r . We have found that the threshold
values R(r) of the free parameter F with respect to the concurrence and negativity
in the subsystem ρA I are same, so is the S(r), which corresponds to ρA I I . We have
also verified that tripartite systems of the Werner state in an accelerated frame are
monogamy and presented two useful relations (29) and (30).

Before ending this work, we give some useful remarks on this work. First, we find
that many results obtained above are symmetric to Bob and anti-Bob distributed in
region I and region II, respectively, through exchanging sin(r)with cos(r). This might
be explained by the way that sin(r + π/2) = cos(r) when Bob and anti-Bob B̄ are
exchanged.Moreover, as shown in Ref. [11] the Bogoliubov transformation that mixes
a particle mode in region I of momentum k and an antiparticle mode in region II of
momentum −k is given by

[
ak
b†−k

]
=

[
cos(r) −e−iφ sin(r)

eiφ sin(r) cos(r)

] [
cIk
dII†−k

]
, (31)

where φ is an unimportant phase factor that can always be absorbed into the definition
of the operators. When the phase factor e∓iφ = ±1 for φ = nπ, n = 0, 1, 2, . . .,
we find that the transformation between the creation and annihilation operators in
regions I and II are connected by the irreducible representation of an SO(2) group.
Second, we note that the degree of entanglement of this Werner state will become
more robust when the free parameter F ∈ (1/2, 1] increases, but it decreases with
the increasing acceleration parameter r , which is related to acceleration a. Third, we
find that the Werner state always remains entangled to a degree, and thus, it could be
used in quantum information tasks, such as teleportation, between parties in relative
uniform acceleration for bipartite subsystems. In particular, we have found that the
bipartite subsystem ρI I I is always entangled and only depends on the acceleration
parameter r regardless of the free parameter F . We can also perform such quantum
information tasks by using the tripartite entanglement when some observers are falling
into a black hole while others are hovering outside the event horizon, which is different
from the entangled states in inertial frames. Fourth, it is possible to apply beyond the
single-model approximation proposed by Fuentes et al. [2] to generalize the present
study in the future. Finally, we might conclude that the degree of the entanglement
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will be degraded when the acceleration parameter r increases. Since the acceleration
parameter r depends on the frequency of the field modes, then it is obviously relevant
for the mass parameter of the field. For a wave vector k labeling the modes, one
has the frequency wk = √

m2 + k2. Therefore, the degree of the entanglement will
be increased with the increasing frequency wk , which is proportional to mass of the
particle.

Acknowledgements We would like to thank the referees for making invaluable and positive sugges-
tions which have improved the manuscript greatly. This work is supported by Project 20190234-SIP-IPN,
COFAA-IPN, Mexico, and the CONACYT project under Grant No. 288856-CB-2016.

Appendix A: Explicit expressions for 1− 2 and 1− 1 tangles

In this Appendix, we are going to write out explicitly the analytical expressions for
these 1 − 1 and 1 − 2 tangles as follows:

NA(I) = 1

24

(
16F cos2(r)

+√
8(8F − 5)(8F + 1) cos(2r) + 256F(2F − 1) + 18 cos(4r) + 86 − 2(cos(2r) + 7)

)
,

(A1)

NA(II) = 1

24
((2 − 8F) cos(2r)

+√−8(8F − 5)(8F + 1) cos(2r) + 256F(2F − 1) + 18 cos(4r) + 86 + 8F − 14
)

, (A2)

NI(II) = 1

4

(√
6 − 2 cos(4r) − 2

)
= 1

2

(√
sin2(2r) + 1 − 1

)
. (A3)

NA(I II) = −1 + 2F, (A4)

NI(A II) = 1

3

{
− Root

[
2#13 + #12(2F cos(2r) − 6F + cos(2r) − 3)

+#1
(

− 28F2 sin2(r) − 4F2 sin2(r) cos(2r)

+32F sin2(r) + 8F sin2(r) cos(2r) − 4 sin2(r) − 4 sin2(r) cos(2r)
)

+16F3 sin4(r) cos2(r) − 24F2 sin4(r) cos2(r)

+8 sin4(r) cos2(r)&, 1
]

− Root
[
2#13 + #12(2F cos(2r)

+6F − 2 cos(2r) − 6) + #1
(

− 28F2 cos2(r)

+4F2 cos(2r) cos2(r) − 4F cos2(r) + 4F cos(2r) cos2(r)

+ cos(2r) cos2(r) + 5 cos2(r)
)

−16F3 sin2(r) cos4(r) + 12F sin2(r) cos4(r) + 4 sin2(r) cos4(r)&, 1
]}

, (A5)

NII(A I) = 1

3

{
− Root

[
2#13 + #12(−2F cos(2r) + 6F + 2 cos(2r) − 6)

+#1
(

− 28F2 sin2(r) − 4F2 sin2(r) cos(2r)

−4F sin2(r) − 4F sin2(r) cos(2r) + 5 sin2(r) − sin2(r) cos(2r)
)

−16F3 sin4(r) cos2(r) + 12F sin4(r) cos2(r)
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+4 sin4(r) cos2(r)&, 1
]

− Root
[
2#13 + #12(−2F cos(2r)

−6F − cos(2r) − 3) + #1
(

− 28F2 cos2(r)

+4F2 cos(2r) cos2(r) + 32F cos2(r) − 8F cos(2r) cos2(r)

+4 cos(2r) cos2(r) − 4 cos2(r)
)

+16F3 sin2(r) cos4(r) − 24F2 sin2(r) cos4(r) + 8 sin2(r) cos4(r)&, 1
]}

. (A6)

It should be pointed out that those special symbols # and& that appeared in NI(A II) and
NII(A I) are generated when we solve higher-order polynomial eigenvalue problems,
but fortunately they do not affect the final results. On the other hand, we have reverified
again why F ≥ 1/2 based on the result NA(I II) = −1 + 2F ≥ 0. However, in order
to make the π(ρA(I II)) not less than zero, the F = 0.5 is excluded.
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