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Abstract
Quantum walks are generalizations of random walks that have extensive applications
in various fields including cryptography, quantum algorithms, and quantum network-
ing. Discrete quantum walks can be seen as nonlinear mappings between quantum
states and position probability distributions, and this mathematical property may be
thought of as an imprint of chaotic behavior and consequently used to generate encryp-
tion keys. In this paper, we introduce encryption and decryption algorithms for NEQR
images based on discrete quantum walks on a circle. We present full quantum circuits
of proposed encryption and decryption algorithms together with digital computer sim-
ulations of most common attacks on encrypted images. Our numerical results show
that our quantum image encryption and decryption scheme has high efficiency and
high security with high large key space.

Keywords Discrete-time quantum walks · Quantum walks on a circle ·
chaotic systems · Quantum image processing · Quantum image encryption

1 Introduction

Images constitute a very popular information source for human beings. Since raw
digital images can be maliciously manipulated and altered, the protection of image
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data from unauthorized access has become a crucial issue studied by experts and
researchers [1].

Image encryption is a widely used technique for protecting images, and it refers to
transforming an image from an understandable form into an unidentifiable form [2,3].

Chaotic systems play a vital role in the development of encryption and decryption
algorithms as they are used to generate encryption keys [4]. Chaotic systems can be
intuitively thought as dynamical systems whose behavior, in addition to being highly
sensitive to initial conditions, is so complicated that predicting it easily becomes
impossible [5].

There is no unanimous formal mathematical definition of a chaotic system. How-
ever, the following definition [6,7] is generally accepted: A chaotic systemmust fulfill
the following three properties:

1. It must be sensitive to initial conditions.
2. It must be topologically mixing.
3. It must have dense periodic orbits.

Chaotic systems can be either continuous (variables evolve continuously with time)
or discrete (variables change at equally spaced time steps). In the discrete case, a
more operational definition has been proposed: Some discrete-time and discrete-value
chaotic systems are characterized by nonlinear maps [8].

Moreover, the mappings that describe chaotic systems are both deterministic and
highly sensitive to initial conditions. As stated in [4], the deterministic nature of the
equations that define chaotic systems implies both the existence and uniqueness of
solutions; however and in contrast, the computability of solutions does not necessarily
follow from determinism, i.e., solutions may exist and be unique, but it may be impos-
sible to exactly calculate them using a computer. Deterministic mappings of chaotic
systems with domain defined in the real number system are computationally unpre-
dictable (this is because the trajectories of those chaotic systems are not computable),
while deterministic mappings defined on finite sets are always predictable because
their trajectories are eventually periodic [9].

Quantum computation can be defined as a multidisciplinary field focused on the
development of computers and algorithmsbased on the quantummechanical properties
of nature [10]. Quantum computation is transitioning from an emerging branch of
science into a mature research field, with cross-fertilizing initiatives in fields such as
machine learning [11–13], military technology [14], and image processing [15,16].
Moreover, several solid results of quantum computation are increasingly attracting the
attention of wider audiences of computer engineers and IT managers [17].

Quantum image processing is a subfield of quantum information focused on devel-
oping quantum algorithms and quantum protocols for capturing, manipulating, and
recovering visual information [18]. This field was born with the publication of [19–
22], and, in spite of being at an early development stage, it has already produced key
contributions in the areas of quantum image watermarking [23–26], quantum image
encryption [27–35], and quantum image steganography [36–40]. Several methods for
storing and processing quantum images have been proposed, among them the Novel
EnhancedQuantumRepresentation (NEQR) and the Flexible Representation of Quan-
tum Images (FRQI) [15,41,42].
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There is a variety of quantum/classical image encryption techniques based on
chaotic systems. In [30], Gong et al. presented a quantum image encryption algorithm
based on quantum controlled-NOT (Ĉnot) operation controlled by Chen’s hyper-
chaotic system.Also, Liang et al. [31] presented a quantumencryption algorithmbased
on generalized affine transform and quantum Ĉnot operation controlled by logistic map
and Tan et al. [32] presented a quantum color image encryption scheme based on the
same idea of [30], while Zhou et al. [33] proposed a quantum image encryption algo-
rithm with a four-dimensional hyper-chaotic system and iterative Arnold transforms.

Quantum walk, the quantum-mechanical counterpart of random walks, is an
advanced tool for building quantum algorithms that also constitutes a universal model
of quantum computation [43,44]. Traditionally, quantumwalks have been employed to
develop quantum algorithms focused on solving graph-related and algebraic problems
(e.g., [44–48]). Additionally, discrete quantum walks have been recently thought of as
a resource to create quantum image encryption algorithms, according to the following
rationale: The computation of the position probability distribution of a quantumwalker
requires calculating probabilities out of quantum amplitudes via squaring norms of
complex numbers. We may then think of a discrete quantum walk Q as a nonlinear
mapping Q : H �→ P where H is a Hilbert space in which the quantum walker lives
and P is a set of probability distributions.

Thinking of discrete quantum walks as nonlinear mappings allows to consider
them as discrete-time and discrete-value chaotic systems [8]. Further considerations
to support the notion of discrete quantum walks as a type of chaotic systems are the
deterministic nature of evolution via unitary operators as well as being highly sensitive
to initial conditions. (The shapes of position probability distributions significantly
change depending on several factors, including the initial quantum state of walkers
and coins.) So, we may use discrete quantum walks as key generators for encryption
algorithms [49–53].

In [51], Li et al. have proposed a quantum hash function based on controlled two-
particle discrete-time quantum walks on a circle. Also, Yang et al. [49] have proposed
a classical image encryption approach based on two-particle quantumwalks on a circle
and Yang et al. [53] designed a quantum hash function and presented its application
to classical image encryption which depends on the idea of controlled quantum walks
in [51].

To the best of our understanding and according to our literature review, no previous
research has investigated the use of quantum walks to encrypt and decrypt images
stored in quantum systems. Hereinafter, we shall use the term quantum image to refer
to an image stored in a set of qubits. In the contribution presented in this manuscript,
we store grayscale images in the NEQR model.

So, in this paper, we present quantum image encryption and decryption algorithms
basedon the chaotic behavior (in the sense of nonlinearmappings) of quantumwalks on
a circle with N nodes controlled by a binary messagem. Our proposed quantum walk-
based encryption and decryption algorithms build upon the quantum walk scheme
presented in [53]. Analyses and simulation results show that our presented algorithm
has high efficiency with high security.

The remainder of this paper is organized as follows: Sect. 2 is devoted to introduc-
ing some preliminary notions of quantum walks on a circle and NEQR representation
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model. Section 3 presents our quantum image encryption/decryption protocol. Sec-
tion 4 provides numerical analyses and digital computer simulation results of our
encryption/decryption protocol on several images. Finally, concluding remarks are
drawn in Sect. 5.

2 Preliminaries

2.1 Quantumwalks on a circle

Quantum walks constitute a generalization of random walks in the quantum world.
Originally devised as models of physical phenomena as well as advanced tools for
building quantum algorithms [54–56], quantum walks have been proved to constitute
a universal model of quantum computation [43,44,57]. These properties together with
the appealing idea of defining the notion of algorithm based on scattering theory [58]
have made quantum walks a popular field of research.

There are two kinds of quantum walks: continuous and discrete quantum walks.
The former evolves via the Schrödinger equation, while the latter evolves via unitary
operators [44,59–63]. In this paper, we focus on discrete-time quantum walks (QWs)
as a key component of our quantum image encryption algorithm.

The basic components of a coined discrete quantum walk are a coin, a walker,
evolution operators, and a set of observables. A walker is a quantum system living in
a Hilbert space Hp with #(Hp) = ℵ0 if the quantum walk runs on an unlimited line
or #(Hp) = N if it runs on a circle of N vertices. The coin is typically a quantum
system living in a two-dimensional Hilbert spaceHc. Then, the total state of a discrete
quantum walk lives inHp ⊗ Hc.

The total evolution operator Û for a discrete quantum walk is given by Eq. (1):

Û = Ŝ(Ĉ ⊗ Î ) (1)

where Ĉ and Ŝ are the coin operator and the shift operator, respectively.
An elementary step of a coined classical random walk consists of tossing a coin,

and, depending on the outcome of the coin toss, the walker would walk one step either
to the left or the right. The dynamics of a coined discrete quantum walk resemble that
of a coined classical random walk.

An elementary step of a coined discrete quantum walk consists of applying, to
the total quantum system (walker and coin), an evolution operator to the coin state
followed by a conditional shift operator. The coin operator transforms the coin state
in a superposition, and the shift operator spreads the walker state over the graph upon
which the quantum walk is run (for example, over Z if it is an unrestricted quantum
walk on a line.)

In general, an r -step discrete quantum walk can be written as

|ψ〉tn = Ûr |ψ〉t0 (2)
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or, equivalently, as
|ψ〉tr =

∑

k

[ak |0〉c + bk |1〉c]|k〉p (3)

The general matrix representation of a two-dimensional coin operator is given by
Eq. (4) [44,63]:

C =
( √

ρ
√
1 − ρeiω√

1 − ρeiω −√
ρei(ω+φ)

)
(4)

where 0 ≤ ρ ≤ 1 and the arbitrary angles 0 ≤ ω, φ ≤ π . If we only focus on coin
operators defined over R2, the general matrix representation of a two-dimensional
coin operator is given by Eq. (5), where θ ∈ R [49,50,52]:

C =
(
cos θ sin θ

sin θ − cos θ

)
(5)

The structure of the shift operator Ŝ depends on the graph the quantum walk is
running on. For instance, a shift operator for a coined discrete quantum walk on an
unrestricted line is given by Eq. (6)

Ŝ =
∑

x

(|x + 1, 0〉〈x, 0| + |x − 1, 1〉〈x, 1|) (6)

Equation (7) is a suitable shift operator for a circle with N nodes:

Ŝ =

⎧
⎪⎨

⎪⎩

|2, 0〉〈1, 0| + |N , 1〉〈1, 1| when x = 1

|1, 0〉〈N , 0| + |N − 1, 1〉〈N , 1| when x = N

|x + 1, 0〉〈x, 0| + |x − 1, 1〉〈x, 1| when x �= 1, N

(7)

The probability of finding the particle at position x after r steps can be stated as
follows:

P(x, r) =
∑

c∈{0,1}
|〈x,c|

(
Û

)r |ψ〉0|2 (8)

Since Eq. (1) defines a unitary (hence reversible) operator, the position probability
distribution produced by a walker on an N -circle never reaches a uniform distribution
[63].

Moreover, please note that for a circle with only N nodes, probability P(x, r) is
nonzero in any position if the number of steps r is greater than or equal to the number
of nodes N [50,51,55].

2.2 NEQRmodel

Digital images arematrices of orderm×nwhose entries are known as pixels. Pixels can
store colors, grayscale tones, or black-and-white values, as shown in Fig. 1, where we
present a view of the city ofMontreal in color, gray scale, and black-and-white formats.
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(a) (b)

(c)

Fig. 1 Three different views (color, gray scale, and black and white) of the city of Montreal

Fig. 2 An example of image with size 21 × 21

Grayscale tones are numerically represented by integer numbers from 0 (black) to 255
(white).

Quantum images can be represented by several methods [15], among them the
NEQR model [41]. The key concept behind the NEQR model is to store grayscale
values in qudits. To do so, each NEQR image pixel is an element of the computa-
tional basis ofH28 , i.e., {|00000000〉, |00000001〉, . . . , |11111111〉}. In order to keep
track of the spatial location of each qudit, the NEQR model uses a pair of qubits
|i〉, | j〉 as indices, where i and j are the row and column in which the accompanying
qudit (grayscale quantum pixel) is located. Please note that by using the qubit indices
|i〉, | j〉, each qudit in an NEQR image can be addressed independently of any other
qudit in the quantum image. Moreover, since pixels in an NEQR image are elements
of the computational basis of H28 , then we can deterministically retrieved classical
grayscale values by performing entrywise measurements using projection operators
{|z〉〈z|, z ∈ {0, 1, . . . , 255}}. So, NEQR is a pertinent model for quantum grayscale
image processing tasks.

Let us formally define the NEQR model. Suppose that we have an image I of size
2n × 2n . Then, the NEQR representation of I can be expressed according to Eq. (9):

|I 〉 = 1

2n

2n−1∑

i=0

2n−1∑

j=0

|ci, j 〉 ⊗ |i〉| j〉 (9)

where |ci, j 〉 ∈ {|00000000〉, |00000001〉, . . . , |11111111〉}. Figure 2 presents an
example of an NEQR image with size 21 × 21.
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3 Proposed quantum image encryption and decryption algorithms

In this section, we present our encryption/decryption protocol for quantum images.
Please refer to Figs. 3 and 4 for a big-picture visual representation of the following

steps.Moreover, Figs. 5, 6 show an example of our encryption and decryption protocol.

Encryption
Our encryption protocol consists of mixing, via Ĉnot gates, two NEQR images: The

first NEQR image, denoted by |K 〉, contains a mask, while the second NEQR image,
denoted by |I 〉, stores the actual image I wewant to encrypt [i.e., |I 〉 is the plain image
in NEQR model, Eq. (9)]. Image |K 〉 is produced by the following three-step method
(upper half of Fig. 3):

1. Compute a probability distribution P = (p1, p2, . . . , pN ) by running an r -step
quantum walk on an N node circle as described in Sect. 3.1 and depicted on the
left-hand side of Fig. 3. Probability distribution P can be computed via either dig-
ital computer simulations or an actual experimental implementation of a quantum
walk on an N node circle:

(a) Digital computer simulations In this case, an r -step quantum walk on an N
node circle [Eqs. (2, 3)] is simulated on a digital computer (Sect. 3.1). Then,
probability distribution P is computed by squaring the probability amplitudes
of Eqs. (2, 3) following Eq. (8). This is the approach we have followed in this
paper.

(b) Experimental realization In this case, an r -step quantum walk on an N node
circle [Eqs. (2, 3)] is experimentally run on a physical setup. After r steps,
a measurement on the walker is taken. This experiment should be repeated
many times in order to learn the frequency of finding the quantum walker on
each node. Probability distribution P would be computed straightforwardly
out of those frequencies.

2. Divide up the elements of P into n sets Pi , where each Pi is composed of n
numbers (i.e., N = n × n, i ∈ {1, . . . , n}). Furthermore, produce a temporary
order n matrix T whose columns Ti are the sets Pi . This step is encapsulated in
the process ‘Resize and reshape QW probability distribution to an n × n matrix’
(upper side of Fig. 3).

3. We now transform matrix T into a new temporary matrix S whose entries are
integer numbers between 0 and 255, i.e., we map each entry ti, j ∈ [0, 1] into an
integer number si, j ∈ {0, . . . , 255}, using Eq. (10)

si, j = floor((ti, j × 108) mod 256) (10)

In order to compute Eq. (10), we have used the MATLAB function fix, i.e.,

si, j = fix((ti, j × 108) mod 256)

Finally, matrix S will be used as input of the NEQR protocol to produce matrix
K .
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Fig. 3 The encryption and decryption processes of the proposed protocol. Here, the resize and reshape
process consists of transforming probability P to an n × n (size of the original image)

The last part of our encryption protocol consists of applying Ĉnot gates on grayscale
qudits from image |I 〉 (target qubits) using qudits from image |K 〉 as control qubits.
This step is explained in full detail in Sect. 3.2.

Decryption
The decryption process consists of applying a Ĉnot gate on each and every qudit

from the quantum encrypted image, being qudits from image |K 〉 the control qubits
required for these computations. Once the quantum image has been decrypted, the
next and final step is to measure the NEQR quantum image in order to extract the
corresponding original classical image.

In summary, the encryption and decryption processes can be described as follows:

Quantum Encrypted Image = Cnot(|K 〉, NEQR(Original Image)) (11)

Decrypted Image = Cnot(|K 〉,Encrypted Image) (12)

where |K 〉 is an NEQR image produced by transforming a probability distribution P
using the NEQR model, as described above. Hereinafter, P will be known as the key
of this protocol, being this name due to the fact that the role of P in our protocol
resembles that of a private key in a cryptography protocol.

The key is produced by running (and measuring at a later stage) an r -step discrete
quantum walk on an N node circle according to Eq. (13).

key = QWs(m, N , r , α, β, θ1, θ2, θ3) (13)

As described in [53], QWs are produced by running a quantum walk on a circle
using three different evolution operators Û0, Û1, Û2 presented in Eqs. (17, 18, 19).
(One evolution operator is selected for each step of the quantum walk.) The key
parameters are the numbers (m, N , r , α, β, θ1, θ2, θ3), wherem is a bit string employed
to select coin operators Û0, Û1, Û2 presented in Eqs. (17, 18, 19), N is the number
of nodes, r is the number of running steps of the discrete quantum walk, α and β are
the amplitudes of the quantum-walk coin initial state (the walker is usually initialized
as |0〉 unless required otherwise), and θ1, θ2, as well as θ3 are arguments of the coin
matrices presented in Eqs. (14, 15, 16). The process of generating a key by running
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Fig. 4 Quantum circuit for the encryption algorithm

a quantum walk using key parameters (m, N , r , α, β, θ1, θ2, θ3) is presented in full
detail in Sect. 3.1.

Our quantum image encryption and decryption protocol is illustrated in Fig. 3, and
the last circuit of the encryption protocol is presented in Fig. 4, with model example
for encryption and decryption processes presented in Figs. 5 and 6, respectively.

3.1 Key generator based on quantumwalks

To generate a key based on one-dimensional one-particle QWs on a circle controlled
by a binary string m, we use three coins operators Ĉ0, Ĉ1 , and Ĉ2 to construct evolu-
tion operators Û0, Û1, and Û2, respectively. Matrix representations of Ĉ0, Ĉ1, Ĉ2 are
presented in Eqs. (14–16).

C0 =
(
cos θ1 sin θ1
sin θ1 − cos θ1

)
(14)
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Fig. 5 A model example of the encryption algorithm. By running quantum walks on a circle with key
parameters (m, N , r , α, β, θ1, θ2, θ3), produce a probability vector P, then resizing it to one column with
length n × n (size of the original image), thereafter reshape it to the size of the original image, then used
as quantum controlled-NOT image |K 〉 after converted to integer values. The plain image (Elaine, in this
example) transformed to the quantum state |I 〉 and encrypted by applying the Ĉnot gate controlled by |K 〉
(control qubit)

C1 =
(
cos θ2 sin θ2
sin θ2 − cos θ2

)
(15)

C2 =
(
cos θ3 sin θ3
sin θ3 − cos θ3

)
(16)

where θ1, θ2, θ3 ∈ {0, 2π}.
Moreover, the quantum walk evolution operators Û0, Û1, Û2 are presented in

Eqs. (17, 18, 19).

Û0 = Ŝ( Î ⊗ Ĉ0) (17)

Û1 = Ŝ( Î ⊗ Ĉ1) (18)

Û2 = Ŝ( Î ⊗ Ĉ2) (19)

According to the quantum walk-based key generation protocol presented in [53],
quantum walk evolution operators Û0, Û1, Û2 are selected in agreement with the fol-
lowing procedure: letm and r (two of the key parameters presented in Eq. (13)) be a bit
string (i.e., a concatenation of 0s and 1s) and the total number of steps of the quantum
walk, respectively. Then, the evolution operator Û j

i of each step j th ( j ∈ {1, . . . r})
of the quantum walk will be selected according to the rule presented in Eq. (20):
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Fig. 6 A model example of the decryption algorithm. By running quantum walks on a circle with key
parameters (m, N , r , α, β, θ1, θ2, θ3), produce a probability vector P, then resizing it to one column with
length n×n (size of the encrypted image), thereafter reshape it to the size of the encrypted image, then used
as quantum controlled-NOT image |K 〉 after converted to integer values. The encrypted image transformed
to the quantum state |I Enc〉 and decrypted by applying the Ĉnot gate controlled by |K 〉

Û j
i =

⎧
⎪⎨

⎪⎩

Û0, if m j = 0 (i.e., the j th bit of m is equal to 0)

Û1, if m j = 1 (i.e., the j th bit of m is equal to 1)

Û2, if the QW step number j is greater than the length of m.

(20)

For example, let m = 01101 and r = 7. Then, reading m from left to right (i.e.,
m0 = 0, m1 = 1, m3 = 1, m4 = 0, m5 = 1), we shall run a seven-step quantum walk
using the evolution operators presented in Eq. (21):

|ψ〉7 = Û2(r>#(m))Û2(r>#(m))Û1(m5=1)Û0(m4=0)Û1(m3=1)Û1(m2=1)Û0(m1=0)|ψ〉0
(21)

So, generating a key in our protocol consists of selecting key parameters
(m, N , r , α, β, θ1, θ2, θ3) for running a one-particle QWs on a circle with N nodes
in order to produce a probability distribution P with size N (i.e., the key):

P =

⎡

⎢⎢⎢⎢⎢⎣

p1
p2
...

pN−1
pN

⎤

⎥⎥⎥⎥⎥⎦
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As stated at the beginning of this section, P can be produced either by computation
or experimental realization.

As previously stated in this paper,m is a bitstring employed to select coin operators
Û0, Û1, Û2 presented in Eqs. (17, 18, 19), N is the number of nodes, r is the number of
running steps of the discrete quantumwalk,α andβ are the amplitudes of the quantum-
walk coin initial state (hence, the initial state of the coin is |ψ〉0 = α|0〉 + β|1〉. The
initial state of the quantum walker is |0〉 unless otherwise stated), and θ1, θ2, and θ3
are arguments of the coin matrices presented in Eqs. (14, 15, 16).

3.2 Quantum image encryption procedure

Our proposal for image encryption consists of the following steps.

1. Produce NEQR images |I 〉 |K 〉 (Eqs. (22, 23)) using the NEQR model for quan-
tum image representation (Sect. 2.2).

|K 〉 = 1

2n

2n−1∑

i=0

2n−1∑

j=0

|k7i, j k6i, j . . . k1i, j k0i, j 〉 ⊗ |i〉| j〉 (22)

|I 〉 = 1

2n

2n−1∑

i=0

2n−1∑

j=0

|c7i, j c6i, j . . . c1i, j c0i, j 〉 ⊗ |i〉| j〉 (23)

where kgi, j , c
g
i, j ∈ {0, 1} with g ∈ {0, . . . 7}.

2. The encrypted quantum image is produced by applying entrywise Ĉnot gates to
|I 〉, the NEQR representation of the original classical image, using entries of |K 〉
as control qubits. Let us denote the quantum encrypted image by |X〉, then each
entry |x7i, j x6i, j . . . x0i, j 〉 ⊗ |i〉| j〉 is computed according to Eq. (24)

|x7i, j x6i, j . . . x0i, j 〉 ⊗ |i〉| j〉 = Ĉ⊗8
not |k7i, j k6i, j . . . k0i, j 〉|c7i, j c6i, j . . . c0i, j 〉 ⊗ |i〉| j〉

= |Cnot(k
7
i, j , c

7
i, j )Cnot(k

6
i, j , c

6
i, j ) . . .Cnot(k

0
i, j , c

0
i, j )〉 ⊗ |i〉| j〉 (24)

for each pair of indices |i〉, | j〉. So,

|X〉 = 1

2n

2n−1∑

i=0

2n−1∑

j=0

|x7i, j x6i, j . . . x0i, j 〉 ⊗ |i〉| j〉. (25)

3.3 Quantum image decryption procedure

The decryption procedures of the proposed algorithm consist of the following steps.
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1. Take the encrypted image

|X〉 = 1

2n

2n−1∑

i=0

2n−1∑

j=0

|x7i, j x6i, j . . . x0i, j 〉 ⊗ |i〉| j〉

and the control image

|K 〉 = 1

2n

2n−1∑

i=0

2n−1∑

j=0

|k7i, j k6i, j . . . k1i, j k0i, j 〉 ⊗ |i〉| j〉

2. The decrypted quantum image |I 〉 is retrieved by applying entrywise Ĉnot gates
to |X〉, the encrypted NEQR image using entries of |K 〉 as control qubits. Entries
|c7i, j c6i, j . . . c0i, j 〉 ⊗ |i〉| j〉 are computed according to Eq. (26)

|c7i, j c6i, j . . . c0i, j 〉 ⊗ |i〉| j〉 = Ĉ⊗8
not |k7i, j k6i, j . . . k0i, j 〉|x7i, j x6i, j . . . x0i, j 〉 ⊗ |i〉| j〉

= |Cnot(k
7
i, j , x

7
i, j )Cnot(k

6
i, j , x

6
i, j ) . . .Cnot(k

0
i, j , x

0
i, j )〉 ⊗ |i〉| j〉 (26)

4 Numerical simulations based on classical computers

To simulate the proposed quantum encryption algorithm with quantum walks on a
circle, a laptop with Intel CoreT M i5 CPU 2.50 GHz and 6 GB RAM equipped with
MATLAB software R2017a is used to perform unitary transformations on quantum
walks and quantum operations on quantum images. Lena, Elaine, baboon, cameraman,
and boats are five images which are used as test images with size (256×256) (Fig. 7).
The key parameters used to run the quantum walks on a circle to generate the key
sequence are (m=[0110 1000 1000 1010 1111 1000 1111 1000], N = 257, r = 770,
α = 1, β = 0, θ1 = π/3, θ2 = π/4 and θ3 = π/6).

4.1 Statistical and differential analysis

The correlations between original and encrypted images can be determined by sta-
tistical analysis. In this manner, the encrypted image must be totally different from
the original one. To ensure the efficiency of the proposed quantum image encryption
algorithm against statistical attacks, the following statistical and differential analyses
have been performed on the proposed scheme to figure out if the encrypted image
releases any data about the original one or not: correlation of adjacent pixels, number
of pixel change rate, histogram analysis, Shannon entropy, and spectrum analysis.

4.1.1 Correlation of adjacent pixels

The correlation coefficient of adjacent pixels Cxy is used to measure the relation-
ship between the plain image and its cipher image. The correlation coefficients Cxy
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 7 The test results of the proposed quantum image encryption algorithm. The first row is the original
images of Lena, baboon, Elaine, cameraman, and boats. The second row is the encrypted images of the
first row. The third row is the decrypted images of the second row utilizing the key parameters used in the
encryption process

of normal images are close to 1 in each direction (which implies that neighboring
pixels exhibit high correlation), while in an encrypted image with a good encryption
approach should close to 0 (no relation between neighboring pixels). To calculate the
correlations coefficients in each direction in the encrypted and original images, we
selected randomly 10,000 pairs of neighboring pixels in each direction.

Cxy =

M∑
i=1

(xi − x̄) (yi − ȳ)

√
M∑
i=1

(xi − x̄)2
M∑
i=1

(yi − ȳ)2

(27)

where xi , yi refer to the values of adjacent pixels and M refers to the total number of
adjacent pixel pairs in each direction.

To test our protocol, we have computed the correlation coefficient of adjacent
grayscale values from plain and encrypted images. Results are shown in Table 1, where
we state the results ofCxy for two pairs of the encrypted image and their corresponding
original one, and Fig. 8 shows the correlation distribution of two neighboring pixels
in each direction for Lena image. Since Cxy values of the encrypted images are close
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Table 1 Coefficients of
correlations for adjacent pixels

Image Direction

Horizontal Vertical Diagonal

Lena 0.9767 0.9650 0.9460

Enc (Lena) − 0.0003 − 0.0013 − 0.0066

Elaine 0.9759 0.9722 0.9527

Enc (elaine) − 0.0032 − 0.0005 − 0.0063

baboon 0.8352 0.8767 0.7963

Enc (baboon) − 0.0078 − 0.0073 0.0073

cameraman 0.9555 0.9241 0.8990

Enc (cameraman) − 0.0126 − 0.0002 − 0.0047

boats 0.9444 0.9294 0.8830

Enc (boats) − 0.0096 − 0.0011 − 0.0031

Fig. 8 Correlation distribution of two adjacent horizontal, vertical, and diagonal pixels for Lena image. The
first row and the second row for the original and encrypted image, respectively

to 0, no useful information can be obtained about the original image by analysis on
the correlations of neighborhood pixels.

4.1.2 Number of pixel change rate

To measure the effect of changing pixel values in the original image on its corre-
sponding encrypted image, two tools are used: The first tool is the number of pixels
change rate (NPCR), and the other is the unified average changing intensity (UACI).
The NPCR and UACI can be defined as follows.

NPCR =
∑

i, j D(i, j)

M
× 100%, D(i, j) =

{
0 if X(i, j) = Y (i, j)
1 if X(i, j) �= Y (i, j)

(28)
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Table 2 UACI and NPCR test
results

Image NPCR% UACI%

Lena 99.58 34.08

Baboon 99.58 27.31

Elaine 99.58 28.46

Cameraman 99.58 34.76

Boats 99.58 28.31

(a) (b) (c) (d) (e)

(j)(i)(h)(g)(f)

Fig. 9 Histograms of original and encrypted images. The first row is the histogram of original images for
Lena, baboon, Elaine, cameraman, and boats. The second row is the histogram of the encrypted images

UACI = 1

M

⎛

⎝
∑

i, j

|X(i, j) − Y (i, j)|
2N − 1

⎞

⎠ × 100% (29)

where N refers to the number of bits used to represent the pixel values andM refers to
the total number of pixels used in the image. TheNPCR andUACI values are presented
in Table 2, and the NPCR values for all tested images are 99.58%, so that the proposed
quantum algorithm is very sensitive to small pixel changes in the original image.

4.1.3 Histogram analysis

The histogram of an image is defined as a histogram whose bins are pixel values.
Hence, in the case of grayscale images, histograms reflect the distribution of tonal
values from 0 to 255. Histogram analysis is a vital tool to evaluate the performance
of an encryption algorithm as it reflects the frequency distribution of pixel values in
an image. Any efficient encryption algorithm should ensure the uniform histograms
of different encrypted images to resistance against statistical attacks. Figure 9 gives
the histograms of several original images which are different from each other, while
the histograms of their corresponding encrypted images are uniform with each other.
Hence, our proposed quantum image encryption protocol could resist histogram anal-
ysis attacks.
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(a) (b) (c)

Fig. 10 In a, light grayscale pixels are more abundant than dark grayscale pixels. This property, together
with the spatial distribution of pixels across this image, allows us to identify its components. Pixels from b
have been produced using a uniform random noise source. Pixels from c have the same distribution of gray
levels, but their spatial correlation is different from that of (b). b, cwere taken from http://www.johnloomis.
org/ece563/notes/basics/entropy/entropy.html

4.1.4 Shannon entropy analysis

In information theory, entropy is the average amount of information obtained by
observing a source output [64] and it is defined in Eq. (30)

E(X) = −
n∑

j=1

p(a j ) log(p(a j )) (30)

where {a1, . . . , an} is the set of symbols produced by the source (i.e., the source output)
and X = {p(a1), . . . , p(an)} is a probability distribution of symbols {a1, . . . , an}. As
the magnitude of E(X) increases, more uncertainty is associated with the source. If
source symbols {a1, . . . , an} are equally probable, E(X) is maximized.

The notion of entropy is adopted in image cryptoanalysis by associating it with
the randomness of pixel value distribution in an image. Here, we refer only to the
frequency of finding pixel values in an image, regardless of the spatial distribution of
pixels across an image.

The intuition of entropy in image cryptoanalysis is as follows: The distribution of
pixel values in an image is key in order to produce visual representations of our world
that allow humans to easily extract useful information out of that image. Now, if the
probability of finding a pixel value is the same for all possible pixel values, i.e., if pixel
values are uniformly distributed, we are basically in front of an image which is either
random or with very simple patterns that are unlikely to provide useful information to
humans.

For instance, let us analyze the images presented in Fig. 10. In image (a), the relative
abundance of light grayscale pixels with respect to dark grayscale pixels, together with
the spatial distribution of both pixel sets, allows us to distinguish the components of a
man, a camera, and the elements in the background. As for images (b) and (c), pixels
of both images have the same grayscale frequency but different spatial distribution. In
particular, image b) has been produced using a random noise source. An encryption
protocol that transforms an arbitrary image into an image similar to Fig. 10b would
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Table 3 Information entropy of
original and encrypted images

Image Original image Encrypted image

Lena 7.3275 7.9967

Baboon 7.2269 7.9973

Elaine 7.4878 7.9976

Cameraman 6.9046 7.9967

Boats 7.1583 7.9973

be highly regarded because it would leave no visible trace of the information content
of the original image.

Information entropy, presented in Eq. (31), is a statistical measure of the pixel
values distribution in an image.

E(X) = −
2L−1∑

i=1

p(xi ) log2 (p(xi )) (31)

where xi are pixel values and p(xi ) is the probability distribution that is associated
with the frequency of each pixel value in the image. In our case, xi are grayscale values
and p(xi ) is the probability distribution that results from the relative frequency of each
grayscale pixel value.

The highest information entropy value for grayscale images is 8, which corre-
sponds to having the same frequency (i.e., the same probability of occurrence) for
each grayscale value. Since there are 256 = 28 different grayscale values xi and
p(xi ) = 1

28
corresponds to maximizing Eq. (31), then

E(X) = −
28∑

i=1

p(xi ) log2(p(xi )) = −
28∑

i=1

1

28
log2

(
1

28

)
= −

28∑

i=1

−8

28
= 8

Table 3 presents the values of information entropy of five images (Lena, baboon,
Elaine, cameraman, and boats) for both original and encrypted versions. The informa-
tion entropy values reported in Table 3 for encrypted images show that our protocol
has a good performance as information entropy values in all five cases are greater than
7.99, i.e., very close to 8.

4.1.5 Spectrum analysis

Spectrum analysis is another important tool to evaluate encrypted images, and it con-
sists of studying the properties of images via Fourier transform. Let f (x, y) be an
image, then the discrete Fourier transform F(u, v) of image f (x, y) is given by

F(u, v) =
N−1∑

x=0

N−1∑

y=0

f (x, y)e−2π i( uxN + vy
N )
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(a) (b)

(f) (g)

(c) (d)

(h) (i)

(e)

(j)

Fig. 11 Spectrum analysis of original and encrypted images. The first row is the spectrum analysis of
original images for Lena, baboon, Elaine, cameraman, and boats. The second row is the spectrum analysis
of the encrypted images

Table 4 The mean standard
deviation values of original and
encrypted images

Image Original image Encrypted image

Lena 41.0486 73.8650

Baboon 35.3705 73.8205

Elaine 42.1200 73.9132

Cameraman 50.5653 73.7061

Boats 42.4630 73.9906

The amplitude spectrum of F(u, v) = Freal(u, v) + i Fim(u, v) is given by

||F(u, v)|| =
√

(Freal(u, v))2 + (Fim(u, v))2 (32)

Spectrum analysis is used to evaluate the robustness of encryption algorithms
against statistical attacks. Any efficient encryption algorithm should have the spec-
trum amplitude of encrypted images nearly uniform, and their corresponding original
images are different. Figure 11 shows the spectrum analysis for the encrypted images
which are nearly uniform and different from their original ones. To ensure the uniform
distributions for the encrypted images, Table 4 states the values of mean standard
deviation which is close to 73.8 for all encrypted images. The results prove the good
distribution of pixels in encrypted image. Thus, the encryption algorithm is reasonably
secure against spectrum analysis attack.

4.2 Key space analysis

A requisite for a robust image encryption algorithm is to have access to a (very)
large number of keys, i.e., a large key space. This is because having access to a
modest number of keys would eventually force us to recycle keys and that is a typical
weakness to be used by hackers (in brute-force attacks, for instance) in order to impair
cryptography protocols and information technology systems in general.
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In our protocol, keys are produced by running quantum walks with key parameters
(N , r , α, β, θ1, θ2, θ3) according to the procedure presented in Subsec. (3.1) as well as
in the beginning of Sec. (3). Let us suppose that we run r-step quantum walks, where
r ∈ {r1, r2, . . . , rn} and r1 is a big enough number for key production (more about
it in the following lines). Then, by careful choices of parameters α, β, θ1, θ2, θ3, we
could produce 2ri quantum walks for each {r1, r2, . . . , rn}.

Bitcoin private keys are 256 bit long [65]; hence, the greatest decimal value that
corresponds to a Bitcoin private key is 2256 − 1, roughly 1.157 × 1077. So, letting
r1 = 256 would be a reasonable choice for current standards.

Let us now calculate the cardinality of a key space with keys produced by r-step
quantum walks, where r ∈ {r1, r2, . . . , rn}.

Since

rn∑

i=r1

2i =
rn∑

i=1

2i −
r1−1∑

i=1

2i and
n−1∑

i=0

2i = 2n − 1

then

r1−1∑

i=1

2i = 2r1 − 2 (33)

rn∑

i=1

2i = 2rn+1 − 2 (34)

Then, combining Eqs. (33) and (34), we find that

rn∑

i=r1

2i = 2rn+1 − 2r1 (35)

For instance, if r1 = 300 and rn = 700, then the cardinality of the key space would
be

Cardinality of the key space = 2701 − 2500 = 2500(2201 − 1) = O(2701) (36)

which is large enough for a solid cryptography protocol.
Table 5 presents a comparison of key spaces for the proposed quantum image

encryption algorithm and other classical/quantum image encryption algorithms [30–
33,49,53]. Table 5 shows that the key space of our proposed encryption protocol
performs well with respect to other encryption algorithms.

4.3 Key sensitivity analysis

Oneof the vital and essential tools for any secure quantum image encryption algorithms
is key sensitivity, which is known as the sensitivity of the secret key to encrypt and
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Table 5 Key space of our algorithm and other related algorithms

Algorithm Key generator Key space

Our algorithm 1D one-particle quantum walks on a
circle to encrypt quantum image
with key parameters
(m, N , r , α, β, θ1, θ2, θ3).

The cardinality of our key space is given by
2rn+1 − 2r1 = O(2rn ) for large enough
rn , r1. For instance, rn = 700 and rn = 500
make the cardinality of our key space equal
to O(2701)

Gong et al. [30] Chen’s hyper-chaotic system to
encrypt quantum image

The main key parameters (x0, y0, z0, w0) are
used to run Chen’s hyper-chaotic system.
Then, transform each generated sequence
into integer sequences x∗

i =
| f i x((xi− f i x(xi ))×1014) |mod 256. Each
of key parameters has key space 1014. So the
key space of whole system is 1056 and
depends on the power of 1014

Tan et al. [32] Chen’s hyper-chaotic system to
encrypt quantum color image

The main key parameters (x0, y0, z0, w0) are
used to run Chen’s hyper-chaotic system.
Then, transform each generated sequence
into integer sequences x∗

i =
| f i x((xi − f i x(xi ))×1015) |mod 256.
Each of key parameters has key space 1015.
So, the key space of whole system is 1060

and depends on the power of 1015

Liang et al. [31] Logistic map to encrypt quantum
image

Key parameters (L0, δ) are used to run logistic
map. Then, transform the generated
sequence into integer sequences
L∗
i = | f loor(Li × 2 ∧ 8) |mod 256. The

key parameters L0 have key space 28. In
addition to the decimal points of δ

Zhou et al. [33] 4D hyper-chaotic system to encrypt
quantum image

The main key parameters (x0, y0, z0, w0) are
used to run 4D hyper-chaotic system. The
key space of whole system is 1058

Yang et al. [49] 1-D two-particle quantum walks on a
circle to encrypt classical image

The key parameters (N , r , α1, β1, α2, β1, θ )
are used to run QWs. The key space for key
parameters is 2325

Yang et al. [53] 1-D two-particle quantum walks on a
circle to encrypt classical image

The key parameters (m, N , α1, β1, α2, β1) are
used to run QWs. The key space for key
parameters and initial states is 2325

decrypt effects. For a good secure encryption algorithm, any tiny changes in key
parameters lead to huge changes in the cipher image. Let plain image P encrypted
twice into cipher images C1 and C2 by two key parameters K1 and K2 with tiny
changes, respectively. Therefore, the key sensitivity for encryption process can be
expressed as follows:

K SE = diff (C1,C2)

Number of pi xels
× 100% (37)

where diff (C1,C2) refers to the total number of different pixels between two images
C1 and C2. Figure 12 shows the key encryption sensitivity for 120 images with size
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Fig. 12 Key encryption sensitivity for 120 plain images. Every plain image encrypted twice into cipher
images C1 and C2 by two key parameters K1 and K2 with tiny changes, respectively. Then, count the
number of different pixels between C1 and C2

Fig. 13 Key decryption sensitivity for 120 cipher images. Every cipher image decrypted twice into plain
images P1 and P2 by two key parameters K1 and K2 with tiny changes, respectively. Then, count the
number of different pixels between P1 and P2

256 × 256, and the average for key sensitivity is 99.6090%. On the other hand, let
cipher imageC decrypted twice into plain images P1 and P2 by two key parameters K1
and K2 with tiny changes, respectively. Therefore, the key sensitivity for decryption
process can be computed as follows:

K SD = diff (P1, P2)

Number of pi xels
× 100% (38)
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(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

(l)(k)(j)

Fig. 14 Decrypted image Lena with several keys
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Figure 13 shows the key decryption sensitivity for 120 images with size 256 × 256,
and the average is 99.6077%. Figures 12 and 13 show that our algorithm has high
key sensitivity. For more illustration to evaluate the key sensitivity of the proposed
algorithm, more tests were carried out to decrypt the cipher image Lena with several
keys as shown in Fig. 14.

5 Concluding remarks

This paper has introduced a new quantum NEQR image encryption and decryption
protocol based on controlled one-dimensional one-particle quantum walks on a cir-
cle, being the latter a source of large encryption and decryption keys. In addition to
full encryption and decryption quantum circuits, we have presented simulations and
numerical analyses that demonstrate that our proposed quantum encryption algorithm
is secure against most known attack techniques.
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