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Abstract
In this paper, we study a class of skew constacyclic codes over the ring R = Fq +
u1Fq+· · ·+u2mFq , where u2i = ui , uiu j = u jui = 0, for i, j = 1, 2, . . . , 2m , i �= j
and q = ps , and derive the generator polynomials of this class of codes over R. Also,
by using Calderbank–Shor–Steane construction, some new non-binary quantum codes
have been obtained. Moreover, new quantum codes [[225, 201, 5]]9, [[351, 333, 4]]9,
[[405, 393, 3]]9, [[405, 381, 5]]9 have been constructed.

Keywords Linear codes · Gray map · Skew constacyclic codes · Quantum codes

Introduction

Linear codes over finite rings have recently raised a great interest for their new role in
algebraic coding theory and for their successful application in combined coding and
modulation. Recent developments have contributed toward achieving the reliability
required by today’s high-speed digital systems, and the use of coding for error control
has become an integral part in the design of modern communication systems and
digital computers.

Constacyclic codes consist of an algebraically rich family of error-correcting codes
and are generalizations of cyclic and negacyclic codes. These codes can be easily
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encoded using shift registers and can be easily decoded due to their rich algebraic
structure, which justify their preferred role from engineering perspective.

Boucher et al. [11] generalized the notion of cyclic codes to skew cyclic codes
by using generator polynomials in (non-commutative) skew polynomial rings. Since
skew polynomial rings are left and right Euclidean, the obtained codes share most
properties of cyclic codes. Since there are much more skew cyclic codes, this new
class of codes allows to systematically search for codes with good properties.

Jitman et al. [22] defined skew constacyclic codes by defining the skew polynomial
ring with coefficients from finite chain rings, especially the ring Fpm + uFpm where
u2 = 0. Further, the structural properties of skew cyclic codes through the decompo-
sition method over Fq + vFq , where v2 = v and q = pm , were given by Gursoy et al.
[18]. Ashraf andMohammad [1] studied the skew cyclic codes over the ring Fq +vFq
with v2 = 1 by taking the automorphism as θ : v �→ −v. Recently, AL-Ashker
and Abu-Jafar [6] investigated the structure of skew constacyclic codes over the ring
Fp + vFp with v2 = v. Later on, Ashraf and Mohammad [2] gave the construction
of skew constacyclic codes over the ring Fq + vFq + v2Fq , where v3 = v. Motivated
by this study, in this paper, we study (1− 2u1 − 2u2 − · · · − 2um)-skew constacyclic
codes over the ring Fq + u1Fq + · · · + u2mFq , where u2i = ui , uiu j = u jui = 0, for
i, j = 1, 2, . . . , 2m ; i �= j and q = ps .

Quantumerror-correcting codes play a prominent role in both quantumcommunica-
tion and quantum computation. Quantum error-correcting codes provide an efficient
way to overcome decoherence. Shor discovered the first quantum error-correcting
code in [31]. Later on, a method to obtain quantum error-correcting codes from clas-
sical error-correcting codes was given by Calderbank et al. [14]. Recently, the theory
of quantum error-correcting codes has been developed rapidly. Many good quantum
error-correcting codes have been constructed by using classical cyclic codes over
finite field Fq (q is a power of prime number) with self-orthogonal or dual containing
properties (for references see [7,19–21,24–26,32]).

The construction for finding quantum codes from cyclic codes of odd length over
the finite chain ring F2 + uF2 with u2 = 0 was first given by Qian et al. [27]. Later
on, Kai and Zhu [23] gave a construction for obtaining quantum codes from cyclic
codes of odd length over the finite chain ring F4 + uF4 with u2 = 0. Further, Qian
[28] provided a new method of constructing quantum error-correcting codes from
cyclic codes over the finite non-chain ring F2 + vF2 with v2 = v of arbitrary length.
Motivated by this study, Ashraf and Mohammad [3–5] obtained non-binary quantum
codes from cyclic codes over different types of finite rings. A lot of work has been
done in this direction (see [9,15–17,29]). In this paper, we obtain quantum codes over
Fq from skew constacyclic codes over the ring R = Fq + u1Fq + · · · + u2mFq using
decomposition method.

1 Preliminaries

Let R be the ring Fq + u1Fq + · · · + u2mFq , where u2i = ui , uiu j = u jui = 0,
for i, j = 1, 2, . . . , 2m ; i �= j and q = ps . It is a commutative ring with q2m+1

elements. Here, Fq denotes the finite field with q elements.
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Recall that a linear code C of length n over R is a R-submodule of Rn . Elements
of C are called code words. Let x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1)

be two elements of Rn . Then, the Euclidean inner product of x and y is defined
as x · y = x0y0 + x1y1 + · · · + xn−1yn−1. The dual code C⊥ of C is defined as
C⊥ = {x ∈ Rn| x · y = 0, ∀ y ∈ C}. A code C is called self-orthogonal if C ⊆ C⊥
and self-dual if C = C⊥.

Any element of R can be written as a0 + u1a1 + u2a2 + · · · + u2ma2m = a0(1 −
u1 − u2 − · · · − u2m) + u1(a0 + a1) + u2(a0 + a2) + · · · + u2m(a0 + a2m).

Let

η0 = 1 − u1 − u2 − · · · − u2m,

η1 = u1, η2 = u2, . . . , η2m = u2m .

It is easy to see

2m∑

i=0

ηi = 1, η2i = ηi and ηi .η j = 0 for i, j = 0, 1, 2, . . . , 2m and i �= j .

Thus, R = η0R ⊕ η1R ⊕ · · · ⊕ η2m R. Therefore, any arbitrary element of R can be
uniquely expressed as x = η0a0 +η1a1 +· · ·+η2ma2m , where a0, a1, . . . , a2m ∈ Fq .
Now, we define a gray map � from R to F2m+1

q defined as

�(x) = (a0, a1, . . . , a2m).

It is easy to see that this is a linear map and can be extended component-wise.
For any element x = η0a0 + η1a1 + · · · + η2ma2m ∈ R, we define the Lee weight
of x as wL(x) = wH(�(x)), where wH(�(x)) denotes the Hamming weight of �(x)
over Fq , where the Hamming weight of any elements is defined as the number of
nonzero components. We define the Lee weight of x as wL(x) = ∑n−1

i=0 wL(xi ). The
Lee distance between x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) ∈ Rn is
defined by dL(x, y) = wL(x − y) = ∑n−1

i=0 wL(xi − yi ). The Lee distance of C is
defined as dL(C) = min dL(x, y) for any x �= y.

Let Ai ; i = 0, 1, 2, . . . , 2m be code over R. We denote A0 ⊕ A1 ⊕ · · · ⊕ A2m =
{a0 + a1 + · · · + a2m | ai ∈ Ai , i = 0, 1, 2, . . . , 2m} and A0 ⊗ A1 ⊗ · · · ⊗ A2m =
{(a0, a1, . . . , a2m) | ai ∈ Ai , i = 0, 1, 2, . . . , 2m}. For a linear code C of length n
over R, define

C0 = {a0 ∈ Fn
q | η0a0 + η1a1 + · · · + η2ma2m ∈ C, ai ∈ Fn

q , i = 1, 2, . . . , 2m},
C1 = {a1 ∈ Fn

q | η0a0 + η1a1 + · · · + η2ma2m ∈ C, ai ∈ Fn
q , i = 0, 2, . . . , 2m},

. . . . . . . . .

C2m = {a2m ∈ Fn
q | η0a0 + η1a1 + · · · + η2ma2m ∈ C, ai ∈ Fn

q ,

i = 0, 1, 2, . . . , 2m − 1}.
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Here, Ci are linear codes over Fn
q for i = 0, 1, 2, . . . , 2m. Then, Ci are q-ary linear

codes of length n. Hence, a linear codeC of length n over R can be uniquely expressed
as C = η0C0 ⊕ η1C1 ⊕ · · · ⊕ η2mC2m and |C | = |C0||C1| · · · |C2m | and dH(C) =
min{dH(Ci ), i = 0, 1, 2, . . . , 2m}.

A matrix is called generator matrix of C if the rows generate C . If Mi are the
generator matrices of q-ary linear codes Ci , i = 0, 1, . . . , 2m, respectively, then the
generator matrix of C is

M =

⎛

⎜⎜⎝

η0M0
η1M1
. . .

η2mM2m

⎞

⎟⎟⎠

and the generator matrix of �(C) is

�(M) =

⎛

⎜⎜⎝

�(η0M0)

�(η1M1)

. . .

�(η2mM2m)

⎞

⎟⎟⎠ .

Here, we define an automorphism on R as

θt : R −→ R

defined by

θt (a0 + ua1 + u2a2 + · · · + u2ma2m) = (a pt

0 + u1a
pt

1 + u2a
pt

2 + · · · + u2ma
pt

2m)

for all a0, a1, . . . , a2m ∈ Fq . Also, the automorphism θt acts on Fq as follows:

θt : Fq −→ Fq

θt (a) = a pt .

The order of this automorphism is |〈θt 〉| = s/t .

Definition 1.1 The set R[x, θt ] = {a0 + a1x + a2x2 + · · · + anxn| ai ∈ R, n ≥ 0}
forms a non-commutative ring under usual addition of polynomials, andmultiplication
is defined by the rule (axi )(bx j ) = aθ it (b)x

i+ j . This ring is called skew polynomial
ring. This ring was first introduced by Ore. The ring has no nonzero divisors; the units
of this ring are exactly the units of the ring R.

Definition 1.2 A subset C of Rn is called a λ-skew constacyclic code of length n if

(1) C forms an R-submodule of Rn and
(2) If c = (c0, c1, . . . , cn−1) ∈ C , thenσλ(c) := (θt (λcn−1), θt (c0), . . . , θt (cn−2)) ∈

C .
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Defining a map, ψ : Rn −→ Rn = R[x, θt ]/〈xn − λ〉 as c = (c0, c1, . . . , cn−1) −→
c0 + c1x + · · · + cn−1xn−1. Each code word c = (c0, c1, . . . , cn−1) ∈ Rn can be
identified with the polynomial c(x) = c0 + c1x + · · · + cn−1xn−1 in Rn . This map
is a R-module isomorphism. By this identification, C is a λ-skew constacyclic code
over Rn if and only if C is a left R[x, θt ]-submodule of R[x, θt ]/〈xn − λ〉.

2 Results on graymap and linear codes over R

Proposition 2.1 Let � be the gray map defined in the preliminary section. Then,

(1) � is a Fq-linear distance preserving map from Rn (Lee distance) to F (2m+1)n
q

(Hamming distance).
(2) If C is a [n, k, dL] linear code over R, then �(C) is a [(2m + 1)n, k, dH] linear

code over Fq , where dL = dH.

Proof Let x1 = a0η0 +a1η1 +· · ·+a2mη2m and x2 = b0η0 +b1η1 +· · ·+b2mη2m ∈
Rn . �(x1 + x2) = (a0 + b0, a1 + b1, . . . , a2m + b2m) = (a0, a1, . . . , a2m) +
(b0, b1, . . . , b2m) = �(x1) + �(x2) and �(cx1) = (ca0, ca1, . . . , ca2m) = c�(x)
for c ∈ Fq . Therefore, � is a Fq -linear map.
Since dL(c1, c2) = wL(c1 − c2) = wH(�(c1 − c2)) = wH(�(c1) − �(c2)) =
dH(�(c1),�(c2)), � is a Fq -linear distance preserving map.

By the first part, � is a distance preserving linear map so dL = dH. Also, as � is
bijection, therefore |C | = |�(C)| = qk . Hence, the result follows. ��
Proposition 2.2 Let C be a linear code of length n over R.

(1) Then, C is self-orthogonal, if and only if C j are self-orthogonal over Fq , for
j = 0, 1, 2, . . . , 2m.

(2) If C is a self-orthogonal, then �(C) is also self-orthogonal.

Proof (1) Let C be a self-orthogonal linear code over R and x = a0η0 + a1η1 +· · ·+
a2mη2m be any element of C , where a j ∈ C j for j = 0, 1, 2, . . . , 2m. Since C is self
orthogonal,

x · x = (a0η0 + a1η1 + · · · + a2mη2m) · (a0η0 + a1η1 + · · · + a2mη2m)

= a20η0 + a21η1 + · · · + a22mη2m = 0.

This implies a20 = a21 = · · · = a22m = 0. Hence, a j ∈ C⊥
j , for j = 0, 1, 2, . . . , 2m.

Therefore, C j are self orthogonal over Fq , for j = 0, 1, 2, . . . , 2m.
(2)Let x1 = a0η0+a1η1+· · ·+a2mη2m and x2 = b0η0+b1η1+· · ·+b2mη2m ∈ C ,

where a j , b j ∈ Fq , for j = 0, 1, 2, . . . , 2m. Now by inner product of x1 and x2, we
have x1 · x2 = a0b0η0 + a1b1η1 + · · · + a2mb2mη2m . Since C is self-orthogonal,
a0b0 = a1b1 = · · · = a2mb2m = 0.
On the other hand, �(x1) · �(x2) = (a0, a1, . . . , a2m) · (b0, b1, . . . , b2m) = a0b0 +
a1b1 + · · · + a2mb2m = 0. Hence, �(C) is self-orthogonal. ��
Theorem 2.1 Let C be a linear code of length n over R. Then, �(C) = C0 ⊗ C1 ⊗
· · ·C2m.
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3 Properties of skew constacyclic codes over R

Theorem 3.1 Let C = ⊕ jη jC j be a linear code of length n over R for j =
0, 1, 2, . . . , 2m.

(1) Then, C is a (1−2u1−2u2−· · ·−2um)-skew constacyclic code of length n over R
if and only if C0,Cm+1,Cm+2, . . . ,C2m are skew cyclic and C1,C2,C3, . . . ,Cm

are skew negacyclic codes of length n over Fq .
(2) Let the order of the automorphism divides n. If C is a (1−2u1−2u2−· · ·−2um)-

skew constacyclic code of length n over R, then the dual C⊥ = ⊕ jη jC⊥
j is a

(1 − 2u1 − 2u2 − · · · − 2um)-skew constacyclic code of length n over R, for
j = 0, 1, . . . , 2m.

Proof (1) Let C be a (1−2u1 −2u2 −· · ·−2um)-skew constacyclic code of length n
over R and let c = (c0, c1, . . . , cn−1) ∈ C , where ci = c0i η0 + c1i η1 + · · · + c2mi η2m ,

c ji ∈ Fq for i = 0, 1, . . . , n−1 and j = 0, 1, 2, . . . , 2m. So (c j0 , c
j
1 , . . . , c

j
n−1) ∈ C j .

Since C is a (1 − 2u1 − 2u2 − · · · − 2um)-skew constacyclic code of length n over
R, we have

σλ(c) = (θt (1 − 2u1 − 2u2 − · · · − 2um)cn−1), θt (c0), . . . , θt (cn−2)) ∈ C .

Note that

(1 − 2u1 − 2u2 − · · · − 2um)ηl = −ηl for l = 1, 2, . . . ,m

and

(1 − 2u1 − 2u2 − · · · − 2um)ηk = ηk for k = 0,m + 1, . . . , 2m.

Therefore,

σλ(c) = η0(θt (c
0
n−1), θt (c

0
0), . . . , θt (c

0
n−2))

+
m∑

j=1

η j (−θt (c
j
n−1), θt (c

j
1), . . . , θt (c

j
n−2))

+
2m∑

j=m+1

η j (θt (c
j
n−1), θt (c

j
0), . . . , θt (c

j
n−2)).

Hence,

(−θt (c
j
n−1), θt (c

j
1), . . . , θt (c

j
n−2)) ∈ C j for j = 1, 2, . . . ,m,

and

(θt (c
j
n−1), θt (c

j
1), . . . , θt (c

j
n−2)) ∈ C j for j = 0,m,m + 1,m + 2, . . . , 2m.
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Therefore, C0,Cm+1,Cm+2, . . . ,C2m are skew cyclic and C1,C2,C3, . . . ,Cm are
skew negacyclic codes of length n over Fq .

Conversely, suppose that C0,Cm+1,Cm+2, . . . ,C2m are skew cyclic and C1,C2,

C3, . . . ,Cm are skew negacyclic codes of length n over Fq . Then, considering the
above notations,

(−θt (c
j
n−1), θt (c

j
1), . . . , θt (c

j
n−2)) ∈ C j for j = 1, 2, . . . ,m,

and

(θt (c
j
n−1), θt (c

j
1), . . . , θt (c

j
n−2)) ∈ C j for j = 0,m,m + 1,m + 2, . . . , 2m.

Since

σλ(c) = (θt (c
0
n−1), θt (c

0
0), . . . , θt (c

0
n−2)) +

m∑

j=1

(−θt (c
j
n−1), θt (c

j
1), . . . , θt (c

j
n−2))

+
2m∑

j=m+1

(θt (c
j
n−1), θt (c

j
0), . . . , θt (c

j
n−2)) ∈ C,

we find that C is a (1 − 2u1 − 2u2 − · · · − 2um)-skew constacyclic code of length n
over R.

(2) We have C⊥ = ⊕ jη jC⊥
j for j = 0, 1, . . . , 2m. As the order of the automor-

phism divides n, the dual code of every skew constacyclic code over Fq is also skew
constacyclic [12,13], by (1) of this theorem,C⊥ is a (1−2u1−2u2−· · ·−2um)-skew
constacyclic code. ��

Theorem 3.2 Let C = ⊕iηiCi be a (1 − 2u1 − 2u2 − · · · − 2um)-skew constacyclic
code of length n over R. Suppose fi are the monic generator polynomials of Ci for
i = 0, 1, 2, . . . , 2m.

(1) Then, C = 〈η0 f0, η1 f1, . . . , η2m f2m〉 and |C | = q(2m+1)n−(
∑2m

i=0 deg( fi )).
(2) There exists a polynomial f (x) ∈ R[x, θt ] such that C =< f (x) >, where

f (x) = η0 f0(x)+η1 f2(x)+· · ·+η2m f2m(x) and f (x)|(xn − (1−2u1 −2u2 −
· · · − 2um)).

Proof (1) Let C be a (1− 2u1 − 2u2 − · · · − 2um)-skew constacyclic code of length
n over R. Then, by Theorem 3.1 we get, C0,Cm+1,Cm+2, . . . ,C2m are skew cyclic
and C1,C2,C3, . . . ,Cm are skew negacyclic codes of length n over Fq . So we can
write Ck = ( fk(x)) ⊆ Fq [x, θt ]/(xn − 1), for k = 0,m + 1,m + 2, . . . , 2m, and
Cl = ( fl(x)) ⊆ Fq [x, θt ]/(xn + 1), for l = 1, 2, . . . ,m. Also as C = ⊕iηiCi , we
can write C as
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C = { f (x) : f (x) = η0 f0(x) + η1 f1(x) + · · · + η2m f2m(x),

where fi (x) ∈ Ci for i = 0, 1, . . . , 2m}.

This implies C ⊆ < η0 f0, η1 f1, . . . , η2m f2m > ⊆ R[x, θt ]/(xn − (1 − 2u1 −
2u2 − · · · − 2um)).
On the other hand, let

∑2m
i=0 ηi fi (x)gi (x) ∈< η0 f0, η1 f1, . . . , η2m f2m >, where

gi (x) are elements of R[x, θt ]/(xn − (1−2u1−2u2−· · ·−2um)). Then, there exists

rk(x) ∈ Fq [x, θt ]/(xn − 1) for k = 0,m + 1,m + 2, . . . , 2m

and

rl(x) ∈ Fq [x, θt ]/(xn + 1) for l = 1, 2, . . . ,m

such that ηi gi (x) = ηi ri (x) for i = 0, 1, . . . , 2m. Therefore, < η0 f0, η1 f1, . . . ,
η2m f2m > ⊆ C . Hence, C =< η0 f0, η1 f1, . . . , η2m f2m >.

For the other part, it is worth noting that |�(C)| = |C |, and hence

|C | = |C0||C1| · · · |C2m | = qn−deg( f0)qn−deg( f1) . . . qn−deg( f2m )

= q
(2m+1)n−

(∑2m
i=0 deg( fi )

)

.

(2)LetC be a (1−2u1−2u2−· · ·−2um)-skew constacyclic code of length n over R
and suppose fi are monic generator polynomials ofCi for i = 0, 1, . . . , 2m. Then, we
can write C =< η0 f0, η1 f1, . . . , η2m f2m >. Suppose C ′ =< η0 f0(x) + η1 f1(x) +
· · · + η2m f2m(x) >, then it is obvious that C ′ ⊆ C . As ηi (η0 f0(x) + η1 f1(x) + · · · +
η2m f2m(x)) = ηi fi for i = 0, 1, . . . , 2m, this implies C ⊆ C ′. Therefore, C = C ′,
and C =< f (x) >, where f (x) = η0 f0(x) + η1 f1(x) + · · · + η2m f2m(x).

Now suppose fi is the monic generator polynomial of Ci for i = 0, 1, . . . , 2m.
Then, fk divides xn − 1 for k = 0,m + 1, . . . , 2m and fl divides xn + 1 for l =
1, . . . ,m.

xn − (1 − 2u1 − 2u2 − · · · − 2um) =
(

2m∑

i=0

ηi gi (x)

) (
2m∑

i=0

ηi fi (x)

)

for gi ∈ Ci , for i = 0, 1, . . . , 2m. Therefore, xn − (1 − 2u1 − 2u2 − · · · − 2um) =
(η0g0(x) + η1g1(x) + · · · + η2mg2m(x)) f (x). Hence, f (x)|(xn − (1− 2u1 − 2u2 −
· · · − 2um)). ��
Corollary 3.1 Let the order of the automorphism divides n and C = ⊕iηiCi be a
(1− 2u1 − 2u2 − · · · − 2um)-skew constacyclic code of length n over R and suppose
fi are the generator polynomials of Ci for i = 0, 1, 2, . . . , 2m. Then,

(1) C⊥ =< η0h∗
0, η1h

∗
1, . . . , η2mh

∗
2m > and |C⊥| = q(

∑2m
i=0 deg( fi ))

(2) There exists a polynomial h∗(x) such that C⊥ =< h∗(x) > where h∗(x) =
η0h∗

0(x) + η1h∗
1(x) + · · · + η2mh∗

2m(x).
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The polynomial hi (x) and h∗
i (x) are defined as xn − 1 = hi (x) fi (x), where fi , hi ∈

Fq [x, θt ]. If fi (x) = a0 + a1x + · · · + asxs and h(x) = b0 + b1x + · · · + bn−s xn−s ,
then the dual code of C is generated by h∗

i (x), where h
∗
i (x) = bn−s + θt (bn−s−1)x +

· · · + θn−s
t (b0)xn−s .

4 Necessary and sufficient condition of self-dual skew cyclic and skew
negacyclic codes over R

By Theorem 3.1, any (1−2u1 −2u2 −· · ·−2um)-skew constacyclic code over R is a
direct product of skew cyclic and skew negacyclic codes over Fq . Here, in this section,
we study the necessary and sufficient condition for skew cyclic codes to contain its
dual.

In [30], it has shown that if gcd(n, k) = 1, then a skew cyclic (skew negacyclic)
code C of length n over any finite field is equivalent to a cyclic (negacyclic) code,
where k is the order of the automorphism of the finite field. Further, this result has
been extended over a finite ring in [8]. Therefore, if gcd(n, k) = 1, then a skew cyclic
(skew negacyclic) code C of length n over R is equivalent to a cyclic (negacyclic)
code of length n over R.

Lemma 4.1 [14]LetC be a linear cyclic or negacyclic codewith generator polynomial
g(x) over Fp. Then, C contains its dual code if and only if

xn − λ ≡ 0(mod g(x)g∗(x)),

where g∗(x) is the reciprocal polynomial of g(x) and λ = ±1.

Theorem 4.1 LetC = ⊕iηiCi be a (1−2u1−2u2−· · ·−2um)-skew constacyclic code
of length n over R, gcd(n, k) = 1 and Ci = 〈gi (x)〉 for i = 0, 1, . . . , 2m, where k is
the order of the automorphism θt . Then, C⊥ ⊆ C if and only if xn−1 ≡ 0 (mod f j f ∗

j ),
xn + 1 ≡ 0 (mod fl f ∗

l ), where j = 0,m + 1,m + 2, . . . , 2m and l = 1, 2, . . . ,m.

Proof Let xn − 1 ≡ 0 (mod f j f ∗
j ), x

n + 1 ≡ 0 (mod fl f ∗
l ), where j = 0,m +

1,m + 2, . . . , 2m and l = 1, 2, . . . ,m. Since gcd(n, k) = 1, each C j are equivalent
to cyclic code for j = 0,m + 1,m + 2, . . . , 2m and Cl are equivalent to negacyclic
code l = 1, 2, . . . ,m Now, using Lemma 4.1, we have C⊥

i ⊆ Ci , i = 0, 1, . . . , 2m.

Therefore, ηiC⊥
i ⊆ ηiCi , i = 0, 1, 2, . . . , 2m. Thus, ⊕iηiC⊥

i ⊆ ⊕iηiCi . Hence,
C⊥ ⊆ C .

Conversely, as gcd(n, k) = 1, a λ-skew constacyclic code C of length n over R is
equivalent to a λ-constacyclic code of length n over R. Suppose that C⊥ ⊆ C . Then,
⊕iηiC⊥

i ⊆ ⊕iηiCi . Since Ci are linear codes over Fq such that ηiCi ≡ C(mod ηi ),
for i = 0, 1, 2, . . . , 2m, C⊥

i ⊆ Ci for i = 0, 1, 2, . . . , 2m. Therefore, xn − 1 ≡
0 (mod f j f ∗

j ), x
n + 1 ≡ 0 (mod fl f ∗

l ), where j = 0,m + 1,m + 2, . . . , 2m and
l = 1, 2, . . . ,m. ��
Corollary 4.1 Let C = ⊕iηiCi be a (1 − 2u1 − 2u2 − · · · − 2um)-skew constacyclic
code of length n over R and gcd(n, k) = 1, where k is the order of the automorphism
θt . Then, C⊥ ⊆ C if and only if C⊥

i ⊆ Ci , i = 0, 1, . . . , 2m.
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5 Quantum codes from (1− 2u1 − 2u2 − · · · − 2um)-skew constacyclic
codes over R

Let H be a q-dimensional Hilbert space over the complex numbers C. Define H⊗n to
be n-fold tensor product of the Hilbert space H , that is, H⊗n = H ⊗ H ⊗ · · ·⊗ H (n-
times). Then, H⊗n is a Hilbert space of qn dimension. A quantum code of length n and
dimension k over Fq is defined to be the Hilbert subspace of H⊗n . A quantum code
with length n, dimension k andminimum distance d over Fq is denoted by [[n, k, d]]q .

Theorem 5.1 [14] (CSS Construction) Let C1 and C2 be [n, k1, d1]q and [n, k2, d2]q
linear codes over Fq , respectively, with C⊥

2 ⊆ C1. Furthermore, let d = min{d1, d2}.
Then, there exists a quantum error-correcting code C with parameters [[n, k1 + k2 −
n, d]]q . In particular, if C⊥

1 ⊆ C1, then there exists a quantum error-correcting code
C with parameters [[n, 2k1 − n, d1]].
Theorem 5.2 Let C = ⊕iηiCi be a (1 − 2u1 − 2u2 − · · · − 2um)-skew constacyclic
code of length n over R and gcd(n, k) = 1. If C⊥

i ⊆ Ci , i = 0, 1, . . . , 2m, then
C⊥ ⊆ C and there exists a quantum error-correcting code with parameters [[(2m +
1)n, 2k − (2m + 1)n, dL]], where dL denotes the minimum Lee weight of the code C
and k denotes the dimension of the code �(C).

Proof LetC⊥
i ⊆ Ci for i = 0, 1, . . . , 2m. Then, by theCorollary 4.1, we getC⊥ ⊆ C .

Now let x ∈ �(C⊥) = �(C)⊥, then there exists y ∈ C⊥ such that x = �(y), where
y · y′ = 0 for all y′ ∈ C . Since C⊥ ⊆ C and y ∈ C⊥, we have y ∈ C . Hence,
x = �(y) ∈ �(C). Therefore,�(C)⊥ ⊆ �(C).As�(C) is a [(2m+1)n, k, dL] linear
code over Fq . Then, byCSSConstruction, there exists a quantum error-correcting code
with parameters [[(2m + 1)n, 2k − (2m + 1)n, dL]]. ��
Example 5.1 Let R = F9 + u1F9 + u2F9 and λ = (1 − 2u1). Let θ(a) = a3 for
a ∈ F9.

x33 − 1 = (2+2x+x2+2x3+x5)3(2 + x2 + 2x3 + x4 + x5)3(2 + x)3 ∈ F9[x, θ ].

Let fi (x) = (2+ x2 + 2x3 + x4 + x5)2. Then Ci = 〈 fi (x)〉 are skew cyclic codes
over F9 with parameters [33, 23, 3]. As gcd(33, 2) = 1 so Ci are equivalent to cyclic
codes, also as fi (x) f ∗

i (x) divide x33 − 1, by Lemma 4.1, C⊥
i ⊆ Ci , where i = 0, 2.

x33 + 1 = (1+2x+2x2+2x3+x5)3(1+2x2+2x3+2x4+x5)3(1 + x)3 ∈ F9[x, θ ].

Let f1(x) = (1+2x2+2x3+2x4+ x5)2. ThenC1 = 〈 f1(x)〉 is a skew negacyclic
code over F9 with parameter [33, 23, 3]. As gcd(33, 2) = 1 so C1 is equivalent to
negacyclic code, also as f1(x) f ∗

1 (x) divides x33+1, by Lemma 4.1, we getC⊥
1 ⊆ C1.

Then

C = 〈γ0 f0(x)〉, γ1 f1(x), γ2 f2(x)〉
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is a λ-skew constacyclic code of length 33 over R. Thus, �(C) is a code over F9 with
parameters [99, 69, 3]. As C⊥

i ⊆ Ci for i = 0, 1, 2, we get C⊥ ⊆ C . Now using
Theorem 5.2, we get a quantum code with parameter [[99, 39, 3]].
Example 5.2 Let R = F81 + u1F81 + u2F81 and λ = (1 − 2u1). Let θ(a) = a3 for
a ∈ F81.

x13 − 1 = (2 + x)(2 + x2 + x3)(2 + 2x + x3)(2 + 2x + 2x2 + x3)

(2 + x + x2 + x3) ∈ F81[x, θ ].

Let f0(x) = (2 + 2x + x3)(2 + 2x + 2x2 + x3) and f2(x) = (2 + x2 + x3)(2 +
x + x2 + x3). Then Ci = 〈 fi (x)〉 are skew cyclic codes of length 13 over F81 with
parameters [13, 7, 4].As gcd(13, 4) = 1, soCi are equivalent to cyclic codes of length
13 and fi (x) f ∗

i (x) divide x13 − 1, by Lemma 4.1, we get C⊥
i ⊆ Ci , for i = 0, 2.

x13 + 1 = (1 + x)(1 + 2x2 + x3)(1 + 2x + x3)(1 + 2x + x2 + x3)

(1 + x + 2x2 + x3) ∈ F81[x, θ ].

Let f1(x) = (1+2x2+x3)(1+2x+x2+x3). ThenC1 = 〈 f1(x)〉 is skewnegacyclic
code over F81 with parameter [13, 7, 4]. As gcd(13, 4) = 1, so C1 is equivalent
to negacyclic code of length 13 and as f1(x) f ∗

1 (x) divides x13 + 1. Therefore, by
Lemma 4.1, we get C⊥

1 ⊆ C1. Thus,
Then

C = 〈γ0 f0(x), γ1 f1(x), γ2 f2(x)〉

is a λ-skew constacyclic code of length 13 over R. Thus, �(C) is a code over F25
with parameters [39, 21, 4]. As C⊥

i ⊆ Ci for i = 0, 1, 2, we get C⊥ ⊆ C . Now, using
Theorem 5.2, we get a quantum code with parameter [[39, 3, 4]]. This quantum code
is new in the literature.

Example 5.3 Let R = F27+u1F27+u2F27+u3F27+u4F27 and λ = (1−2u1−2u2).
Let θ(a) = a3 for a ∈ F27.

x11 − 1 = (2 + x)(2 + x2 + 2x3 + x4 + x5)(2 + 2x + x2 + 2x3 + x5) ∈ F27[x, θ ].

Let fi (x) = (2 + x2 + 2x3 + x4 + x5). Then Ci = 〈 fi (x)〉 are skew cyclic codes
over F27 with parameters [11, 6, 5]. As gcd(11, 3) = 1 so Ci are equivalent to cyclic
codes, also as fi (x) f ∗

i (x) divide x11 − 1, by Lemma 4.1, we get C⊥
i ⊆ Ci , where

i = 0, 3, 4.

x11 + 1 = (1 + x)(1 + 2x2 + 2x3 + 2x4 + x5)(1 + 2x + 2x2 + 2x3 + x5)

∈ F27[x, θ ].

Let f j (x) = (1+ 2x + 2x2 + 2x3 + x5). Then C j = 〈 f j (x)〉 are skew negacyclic
codes over F27 with parameters [11, 6, 5]. As gcd(11, 3) = 1 so C j are equivalent to

123



270 Page 12 of 15 T. Bag et al.

negacyclic codes, also as f j (x) f ∗
j (x) divide x

11+1, by Lemma 4.1, we getC⊥
j ⊆ C j ,

where j = 1, 2.
Then

C = 〈γ0 f0(x)〉, γ1 f1(x), · · · , γ4 f4(x)〉

is a λ-skew constacyclic code of length 11 over R. Thus,�(C) is a code over F27 with
parameters [55, 30, 5]. As C⊥

i ⊆ Ci for i = 0, 1, . . . , 4, we get C⊥ ⊆ C . Now using
Theorem 5.2, we get a quantum code with parameter [[55, 5, 5]]. This quantum code
is new in the literature.

Example 5.4 Let R = F49 + u1F49 + · · · + u6F49 and λ = (1 − 2u1 − 2u2 − 2u3).
Let θ(a) = a7 for a ∈ F49.

x15 − 1 = (3 + x)(5 + x)(6 + x)(1 + x + x2 + x3 + x4)(4 + x + 2x2 + 4x3 + x4)
×(2 + x + 4x2 + 2x3 + x4) ∈ F49[x, θ ].

Let fi (x) = (4+ x + 2x2 + 4x3 + x4)(5+ x). Then Ci = 〈 fi (x)〉 are skew cyclic
codes over F49 with parameters [15, 10, 3]. As gcd(15, 2) = 1 so Ci are equivalent
to cyclic codes, also as fi (x) f ∗

i (x) divide x15 − 1, by Lemma 4.1, we get C⊥
i ⊆ Ci ,

where i = 0, 4, 5, 6.

x15 + 1 = (1 + x)(2 + x)(4 + x)(1 + 6x + x2 + 6x3 + x4)
×(4 + 6x + 2x2 + 3x3 + x4)(2 + 6x + 4x2 + 5x3 + x4) ∈ F49[x, θ ].

Let f j (x) = (2 + 6x + 4x2 + 5x3 + x4)(4 + x). Then C j = 〈 f j (x)〉 are skew
negacyclic codes over F49 with parameters [15, 10, 3]. As gcd(15, 2) = 1 so C j are
equivalent to negacyclic codes, also as f j (x) f ∗

j (x) divide x
15 + 1, by Lemma 4.1, we

get C⊥
j ⊆ C j , where j = 1, 2, 3.

Then

C = 〈γ0 f0(x)〉, γ1 f1(x), · · · , γ6 f6(x)〉

is a λ-skew constacyclic code of length 15 over R. Thus, �(C) is a code over F49
with parameters [105, 70, 3]. As C⊥

i ⊆ Ci for i = 0, 1, . . . , 6, we get C⊥ ⊆ C . Now
using Theorem 5.2, we get a quantum code with parameter [[105, 35, 3]].
Example 5.5 Let R = F121 + u1F121 + · · ·+ u10F121 and λ = (1− 2u1 − · · ·− 2u5).
Let θ(a) = a11 for a ∈ F121.

x15 − 1 = (2 + x)(6 + x)(7 + x)(8 + x)(10 + x)(9 + 3x + x2)(5 + 4x + x2)
×(4 + 9x + x2)(3 + 5x + x2)(1 + x + x2) ∈ F121[x, θ ].

Let fi (x) = (4 + 9x + x2)(5 + 4x + x2)(6 + x)(8 + x). Then Ci = 〈 fi (x)〉 are
skew cyclic codes over F49 with parameters [15, 9, 5]. As gcd(15, 2) = 1 so Ci are
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equivalent to cyclic codes, also as fi (x) f ∗
i (x) divide x15 − 1, by Lemma 4.1, we get

C⊥
i ⊆ Ci , where i = 0, 6, 7, 8, 9, 10.

x15 + 1 = (1 + x)(3 + x)(4 + x)(5 + x)(9 + x)(9 + 8x + x2)(5 + 7x + x2)
×(4 + 2x + x2)(3 + 6x + x2)(1 + 10x + x2) ∈ F121[x, θ ].

Let f j (x) = (5 + 7x + x2)(3 + x)(4 + 2x + x2)(5 + x). Then C j = 〈 f j (x)〉 are
skew negacyclic codes over F121 with parameters [15, 9, 5]. As gcd(15, 2) = 1 so C j

are equivalent to negacyclic codes, also as f j (x) f ∗
j (x) divide x

15 +1, by Lemma 4.1,

we get C⊥
j ⊆ C j , where j = 1, 2, 3, 4, 5.

Then

C = 〈γ0 f0(x)〉, γ1 f1(x), · · · , γ10 f10(x)〉

is a λ-skew constacyclic code of length 15 over R. Thus, �(C) is a code over F121
with parameters [165, 99, 5]. As C⊥

i ⊆ Ci for i = 0, 1, . . . , 10, we get C⊥ ⊆ C .
Now, using Theorem 5.2, we get a quantum code with parameter [[165, 33, 5]]. This
quantum code is new in the literature.

The following table contains some new quantum error-correcting codes over F9.
Let R = F9 + u1F9 + u2F9, first column of the table denotes the length of (1− 2u1)-
skew constacyclic codes over R, second column denotes the generator polynomials of
skew cyclic codes Ci for i = 0, 2, column third denotes the generator polynomial of
skew negacyclic code C1, column four denotes the parameters of the gray images of
(1−2u1)-skew constacyclic codes over R, and the last column denotes the parameters
of the associated quantum codes. We write coefficients of generator polynomials in
descending order, for example, the polynomial x8 + α2x6 + x5 + αx4 + αx3 + x2 +
α2x + α5 is represented by 10α21αα1α2α5.

n f0(x) = f2(x) f1(x) �(C) [[n, k, d]]
27 111 121 [81, 75, 3] [[81, 69, 3]]
75 11111 12121 [225, 213, 5] [[225, 201, 5]]
91 1112 1211 [273, 264, 4] [[273, 255, 4]]
99 102122 102221 [297, 282, 5] [[297, 267, 5]]
117 1112 1121 [351, 342, 4] [[351, 333, 4]]
135 111 121 [405, 399, 3] [[405, 393, 3]]
135 11111 12121 [405, 393, 5] [[405, 381, 5]]

Comparison: Compared to previously known quantum error-correcting codes in
the references [10,19,20], some of our quantum error-correcting codes [[(2m +
1)n, 2k − (2m + 1)n, dL]] are new. In the above table, our quantum codes
[[225, 201, 5]], [[351, 333, 4]], [[405, 393, 3]] and [[405, 381, 5]] have better param-
eters than the known quantum codes [[224, 196, 5]], [[352, 329, 4]], [[401, 389, 3]]
and [[401, 369, 5]], respectively, in [10].
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6 Conclusion

In this paper, we have given the structural properties of (1− 2u1 − 2u2 − · · · − 2um)-
skew constacyclic codes over the ring R = Fq+u1Fq+· · ·+u2mFq . As an application
of this class of codes over R, we have obtained some new quantum codes over the
field Fq . For future work, it would be interesting to find quantum codes over Fq by
taking another gray map over R.
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