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Abstract
Multiparty quantum digital signatures play an important role in quantum networks
which sign and distribute message among users with information-theoretic security.
In this work, we give a cryptanalysis of a multiparty quantum digital signature scheme
and then propose a new attacks strategy, whereby dishonest participants can frame an
honest participant if they collude with each other. To prevent the framing attack, we
study the relations between the signing key and each verification key, as well as the
relations among different verification keys in this scheme, and then give the security
requirements on the relations among different keys, which is also very useful for the
next development ofmultiparty quantumdigital signature schemes. Finally, we present
a possible way to solve the security problem.

Keywords Unconditionally secure signature · Quantum digital signature · Framing
attack

1 Introduction

Digital signature is a fundamental cryptographic primitive, which has been applied
in many cases where the integrity and non-repudiation of messages are essential [1].
Nevertheless, the security of traditional digital signature schemes generally relies on
some unproven assumptions related to the intractability of certain difficult mathe-
matical problems, such as big number factorization problem and discrete logarithmic
problem. With the rapid development of computing technology, especially the emer-
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gence of advanced quantum algorithms [2], the security of traditional digital signature
schemes is facing serious challenge. Once quantum computers are produced, they
can be easily broken. The conception of unconditionally secure signature (USS) was
therefore introduced by Chaum and Roijakkers [3], which attracted much attention
due to the superiority of unconditional security, and then different proposals have also
been presented besides the scheme of Chaum and Roijakkers [4]. However, most of
these schemes depend on the assumption of either authenticated broadcast channels
or a trusted third party, and crucially, the use of secure channels is necessary in all
of them, which is not possible to realize with information-theoretic security by using
only classical communication in reality [5].

Fortunately, the security of quantum digital signatures is based on the fundamental
principles of quantum mechanics, and therefore it provides a new feasible way for
USS. So far, a lot of novel three-party USS proposals including both theoretical and
experimental aspects [6–19] have been continuously presented since the conception
of quantum digital signatures was firstly introduced in 2001 [20], which make USS
more and more practical. Contrast to the three-party case, the application of multi-
party quantum digital signature schemes is more extensive. Nevertheless, it is very
difficult to generalize three-party quantum digital signature scheme to multiparty case
because of its complex security. As a result, there are very few work on multiparty
quantum digital signature schemes. Recently, Arrazola et al gave the first security
framework suitable for quantum USS schemes involving an arbitrary number of par-
ticipants [21]. In addition, they generalize a three-party quantum digital signature
scheme to the multiparty case and then prove its security against forging, repudiation
and non-transferability.Most important of all, this generalized scheme retains the orig-
inal advantage of three-party case that can be implemented by using any point-to-point
quantum key distribution network and hence is easily realized in practice.

In this work, we analyze the security of the generalized multiparty quantum digital
signature scheme [21] and then propose a new attack strategy, that is a framing attack.
Using this attack, a certain number of dishonest participants can make an honest par-
ticipant be penalized without being caught cheating if they collude with each other. In
order to prevent the framing attack, we give the security requirements on the relations
between the signing key and each verification key, as well as the relations among dif-
ferent verification keys. Furthermore, if amultiparty quantum digital signature scheme
satisfies the given requirements, it is also secure against forging and repudiation, and
therefore this work is very useful to the next development of multiparty quantum dig-
ital signature schemes. On this basis, we present an effective way to deal with the
security problem at the end.

2 The generalizedmultiparty quantum digital signature scheme

Before presenting the security analysis of the generalized multiparty quantum digital
signature scheme, let us firstly give a simple introduction of this scheme. There are
a signer P0 and N recipients P1, P2, . . . , PN in this scheme, and the notations X =
{x1, x2, . . . , xM } and Σ = {0, 1}K denote the set of possible messages and the set of
possible signatures, respectively, where K = nN is a total signature’s length (n is an
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integer and divisible by N ). The fraction of dishonest participants can be defined as
d f = 1 − h/N , which determines the maximum verification level lmax by

(lmax + 1)d f <
1

2
, (1)

where h is the number of honest participants. Then the program of this scheme can be
described as follows.

(1) Every recipient Pi (i = 1, 2, . . . , N ) shares a secret key of nM bits with P0 and a
secret key of 2 nM

N (1+�log2n�) bits with each of the other recipients Pj ( j �= i),
which can be completed by quantum key distribution, whereM is a positive integer
and denotes the number of possible messages in X .

(2) For each possiblemessage x ∈ X , P0 selects a string σ x of K = nN bits uniformly
randomly and divides it into N sections {σ x

1 , σ x
2 , . . . , σ x

N }. P0 transmits σ x
i to Pi

(i = 1, 2, . . . , N ) via a secure channel by the shared secret keys.
(3) For each possible message x ∈ X , Pi randomly divides the set {1, 2, . . . , n} into N

disjoint subsets {pxi,1, pxi,2, . . . , pxi,N } and uses the bit values of σ x
i at the randomly

chosen positions pxi, j to form the string vxi, j .
(4) For all i �= j , every participant Pi sends the string vxi, j and the positions pxi, j to

participant Pj via a secure channel by their shared secret keys. Pi holds vxi,i and
pxi,i to himself.

(5) Every participant Pj defines a test for a section σ x
i as the following. They form a

shorter string σ x
i, j from σ x

i by choosing just the bits corresponding to the positions
pxi, j . Then the test is defined as

T x
i, j,l(σ

x
i ) =

{
1 if h(σ x

i, j , v
x
i, j ) < sl

n
N

0 otherwise
(2)

where h(σ x
i, j , v

x
i, j ) is the Hamming distance between σ x

i, j and vxi, j , and sl is a
defined fraction that satisfies

1

2
> s−1 > s0 > s1 > · · · > slmax . (3)

(6) The verification function for a message–signature pair is defined as

Ver(i,l)(x, σ )

=
{

True if
∑n

j=1 T
x
j,i,l(σ

x
j ) > N fl

Faulse otherwise
(4)

here fl is a threshold given by

fl = 1

2
+ (l + 1)d f . (5)

(7) Sign(x) = σx is the signature function.
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(8) The dispute resolution method is majority vote (MV).

3 The cryptanalysis

As mentioned in [21], the validity of a message–signature pair in traditional digital
signature schemes based on public-key cryptography is tested by a public verifica-
tion function, but different participants have different verification functions in USS
schemes, which makes it possible in principle for two or more participants to disagree
on the validity of a message–signature pair. Consequently, USS schemes must have
a mechanism to judge the authenticity of a message–signature pair when some sub-
set of users disagree whether a given message–signature pair should be accepted. In
particular, dispute resolution is necessary to convince an outsider of the authenticity
of a disputed message–signature pair. Anyone has an access to the public verification
method in traditional digital signature schemes, in the sense there are no outsiders to
the scheme. Furthermore, it has been shown that a USS scheme that satisfies the defi-
nition of unforgeability and has an appropriate dispute resolution method also satisfies
non-repudiation and transferability, both of which are also essential for any reasonable
signature scheme, which means that dispute resolution is very necessary and crucial
to a USS scheme.

A simple strategy for dispute resolution is to designate a trusted arbiter who has the
final word on the validity of a message–signature pair [22–24]. Obviously, the draw-
back of this strategy is the necessity of trust. Another strategy for dispute resolution is
MV, in which more than half of the users determine the valid of a message–signature
pair or not, and hence the security of the scheme does not depend on an arbiter any
longer by this way. Contributing to this advantage, it has been adopted in many quan-
tum digital signature schemes [6–19,21]. However, the MV strategy requires all the
participants to vote on the validity of amessage–signature pair, and therefore it is rather
complicated and resource expensive. Therefore, it is expected that dispute resolution
will be invoked relatively rarely, otherwise it will greatly decrease the efficiency and
restrict the application of this kind of quantum digital signature schemes in reality. To
attain this goal, somenecessary penalties should be introduced in the scheme, for exam-
ple, the participant who loses in MV will be responsible for the expensive resources.
By this way, whether a rational participant is honest or dishonest, he will avoid any
action that could lead to someone invoking it if he might lose the dispute resolution. In
this sense, the dispute resolution almost does not affect the effectiveness of the scheme.

To guarantee the security and reduce invoking dispute, two different types of thresh-
olds sl and fl are chosen in the generalized multiparty quantum digital signature
scheme, both rely on the verification level l and are determined by the real fraction
d f of dishonest participants. The first threshold sl is used to determine whether a
given part of the message–signature pair passes the test or not by Eq. (2). The second
threshold fl is used to determine how many parts of the message–signature pair need
to pass the test in order for it to be accepted at this level by Eq. (4). It is evident that two
honest participants can differ by at most d f N tests, and therefore it is thought that the
attack of making honest participants disagrees on the validity of a message–signature
pair can be effectively prevented by choosing fl and fl−1 such that
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fl − fl−1 > d f (6)

from Eq. (4). Nevertheless, to choose the proper thresholds fl and fl−1 that satisfy
Ineq. (6), the numbers of dishonest participants must be clarified for each recipient Pi
(i = 1, 2, . . . , N ).

Unfortunately, there is no way to discriminate a participant is honest or dishonest
except the parties concerned,whichmeans the real fraction d f of dishonest participants
is unknown to other participants. In general, both the threshold sl and fl should be
preset according to the security requirement of practical application. As a result, there
is no way to guarantee the thresholds fl and fl−1 must satisfy the Ineq. (6), which
will give a chance for dishonest participants to deceive. Specifically, here we propose
a new attack strategy, for simplicity, we name it a framing attack, whereby dishonest
participants can frame an honest participant in dispute resolution. Suppose that the
verification threshold fl is set in advance, and then the signer P0 can frame an honest
participant if he/she colludes with n′ dishonest participants, where n′ = N − [N fl ] −
1 < N

2 and [ ] is a function of extracting the integral part of a real number.
Without loss of generalization, suppose that the prior n′ participants P1, P2, . . . , Pn′

are dishonest, and they collude with P0 to frame an honest participant Pn′+1; the
framing attack can be described as follows.

(i) This step is the same as step (1).
(ii) This step is also the same as step (2) except that the signer P0 sends a fake section

σ x ′
n′+1 to Pn′+1.

(iii) This step is also the same as step (3).
(iv) For all i �= j , every participant Pi transmits the string vxi, j and the positions

pxi, j to participant Pj over a secure channel by using their shared secret keys

except that n′ dishonest participants P1, P2, . . . , Pn′ send a fake string vx
′

i,n′+1
(i = 1, 2, . . . , n′ + 1) to the participant Pn′+1, respectively. The participant Pi
keeps vxi,i and pxi,i to himself.

(v) The remaining steps are also the same as that in the generalized multiparty
quantum digital signature scheme.

From this attack, it can be seen that every participant Pi (i �= n′+1) holds N−1 nor-
mal strings vx1,i , v

x
2,i , . . . , v

x
n′,i , v

x
n′+2,i , . . . , v

x
N ,i and a fake string vxn′+1,i except that

the participant Pn′+1 holds N−n′−1normal stringsvxn′+2,n′+1, v
x
n′+3,n′+1, . . . , v

x
N ,n′+1

and n′ + 1 fake strings vx1,n′+1, v
x
2,n′+1, . . . , v

x
n′+1,n′+1. As does in the generalized

multiparty quantum digital signature scheme, all the normal strings can pass the ver-
ification at the level l in Formu. (2) because no extra errors are introduced, but the
fake strings can be made not pass the same verification by the dishonest participants
through flipping all or most of the bit values when sending them. Accordingly, for
each participant Pi (i = 1, 2, . . . , n′),

n∑
j=1

T x
j,i,l(σ

x
j ) = N − 1 > N fl . (7)
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As a result, the message–signature pair (x, σx ) can pass the verification of each par-
ticipant Pi (i = 1, 2, . . . , n′). Nevertheless, for the participant Pn′+1,

n∑
j=1

T x
j,n′+1,l(σ

x
j ) = N − (n′ + 1)

= N − (N − [N fl ] − 1 + 1)

= [N fl ]
< N fl , (8)

which means that the message–signature pair (x, σx ) cannot pass the participant
Pn′+1’s verification, and therefore there is a disagreement on the validity of the
message–signature pair (x, σx ). Asmentioned in [21], when the validity of amessage–
signature pair (x, σx ) is invoked, aMV dispute resolutionmethod MV(x; σx ) is defined
by the following rule:

1. MV(x; σx ) = Valid if Ver(i,−1)= True for more than half of the participants.
2. MV(x; σx ) = Invalid, otherwise, where Ver(i,−1) is the verification function at

the level l = −1.

Since s−1 > s0 > s1 > · · · > slmax , we can get h(σ x
i, j , v

x
i, j ) < s−1

n
N

from h(σ x
i, j , v

x
i, j ) < sl

n
N . Therefore, for each participant Pi (i = 1, 2, . . . , n′, n′ +

2, . . . , N ), Ver(i,−1)=True. Clearly, there are N −1 > N
2 participants who will vote

themessage–signature pair (x, σx ) is truewhen N > 2, and thusMV(x; σx )=Valid. As
mentioned above, the honest participant Pn′+1 who loses in the MV will be respon-
sible for the expensive resources. So far, the framing attack has been successfully
completed.

It should be noted that this attack is significative in practice, for example, suppose
that the honest participant Pn′+1 is a bank, and the signer P0 represents a company,
who signs a cheque, this cheque is refused by the bank Pn′+1 because it can not pass the
verification of the bank Pn′+1 according to this attack, which will have a bad influence
on the repudiation of the bank Pn′+1.

4 The relations among different keys

In this section, we will give the relations between the signing key and the verification
key, as well as the relations among different verification keys in the generalized mul-
tiparty quantum digital signature scheme, which are useful to deal with the framing
attack. For simplicity, assume that the signing key for the message x is K x

P0
, and the

corresponding verification key held by the recipient Pi (i = 1, 2, . . . , N ) is K x
Pi
.

Let us firstly analyze the relations between the signing key K x
P0

and the verifica-
tion key K x

Pi
in the generalized multiparty quantum digital signature scheme. As the

same requirements as that in traditional digital signature schemes based on public-
key cryptography, on the one hand, the signing key K x

P0
and the verification key K x

Pi
must be closely correlated in order to make the message–signature (x, σx ) pass the
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verification of recipient Pi , on the other hand, to prevent the repudiation of the signer
P0, the signing key K x

P0
must be different and cannot be elicited from the verification

key K x
Pi
. Furthermore, the signing key K x

P0
= σ x is factually the signature σx on the

message x , but the verification key K x
Pi
is just a part of K x

P0
, i.e.,

K x
Pi = σ x

i ||vx1,i ||vx2,i || · · · ||vxi−1,i ||vxi+1,i ||
· · · ||vxN−1,i ||vxN ,i , (9)

where the notation || denotes the concatenation of bit string. Clearly, the signer P0
does not know the remaining bits of K x

Pi
except σ x

i because he gains no access to the
precise position pxj,i of each section vxj,i ( j �= i) in K x

P0
. In other words, the signer

P0 holds all bits of the signing key K x
P0

and every recipient Pi only knows a fraction
of it, i.e.,

1

N
+ (N − 1)

1

N 2 = 2N − 1

N 2 , (10)

but the signer P0 does not know the part K x
Pi

held by Pi except σ x
i , which is similar

to establish an oblivious key between the signer P0 and the recipient Pi . Due to the
speciality, it is possible for multiple dishonest recipients to forge a valid message–
signature pair (x, σx ) if the fraction of the signing key K x

P0
they know is enough

large. As mentioned in the generalized multiparty quantum digital signature scheme
[21], when a dispute on the validity of a message–signature pair (x, σx ) appears,
dispute resolution is invoked and then it gives the final judgement outcome by the
MV strategy; specifically, if more than half of the participants vote “True” on (x, σx ),
all participants must accept it is valid. Additionally, a participant Pi votes “True” if
and only if Ver(i,−1)=True in MV, here choosing l = −1 is mainly to prevent the
repudiation of the signer P0, but in this case,

fl = f−1 = 1

2
+ (−1 + 1)d f = 1

2
. (11)

Consequently, the number of honest participants must be more than N
2 , which is in

accordwith the prior assumption on security. In reverse, only if the number of dishonest
participants is limited to less than N

2 , the security of the scheme can be guaranteed,
which means it can tolerant the worst case, i.e., there are N

2 −1 dishonest participants,
in the case, N

2 −1 dishonest participants can know the fraction of the signing key K x
P0

is

||
N
2 −1⋃
j=1

K x
Pi j

|| ÷ ||K x
P0 ||

= 1

N

(
N

2
− 1

)
+ 1

N 2

(
N

2
− 1

) (
N

2
+ 1

)

= 3

4
− N + 1

N 2 (12)
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where i j ∈ {1, 2, . . . , N } and the notation || || denotes the length of a bit string. The
fraction 3

4 − N+1
N2 approaches to 3

4 with the increase of the number N . Therefore, the
fraction of the signing key K x

P0
that allows dishonest participants to know is not more

than 3
4 − N+1

N2 in order to resist the joint forgery attack from them, and the upper bound

is close to 3
4 .

Secondly, let us analyze the relations among different verification keys K x
P1

, K x
P2

,

. . . , K x
PN

in the generalized multiparty quantum digital signature scheme. Because
each verification key K x

Pi
is a part of the signing key K x

P0
and the signature σx on a

message x is the signing key K x
P0
, any two verification keys K x

Pi
and K x

Pj
must be

different to prevent the forgery of dishonest participants. At the same time, any two
verification keys K x

Pi
and K x

Pj
must be closely correlated to guarantee the transfer-

ability of the message–signature pair (x, σx ). From Eq. (9), it can be seen that each
verification key K x

Pi
held by Pi constitutes of N sections, of which σ x

i directly comes
from the signer P0, and the remaining come from the other N − 1 recipients, respec-
tively. By simple deducing, it can be found that the communal part between any two
verification keys K x

Pi
and K x

Pj
are vxi, j and vxj,i , that is K

x
Pi

⋂
K x

Pj
= vxi, j ||vxj,i , which

takes up

||K x
Pi

⋂
K x

Pj
|| ÷ ||K x

Pi ||

= 2 × 1

N 2 ÷ 2N − 1

N 2

= 2

2N − 1
(13)

of them, respectively.
To sum up, in the generalized multiparty quantum digital signature scheme, the

relation between the signing key K x
P0

and each verification key K x
Pi

is an imperfect
oblivious key relation between the signer P0 and the recipient Pi , and the signing
key K x

P0
cannot be elicited more than 3

4 − N+1
N2 from N

2 − 1 different verification
keys. Furthermore, any two verification keys K x

Pi
and K x

Pj
have a communal part to

guarantee their correlation, but the fraction of the communal part between them is not
very large ( 2

2N−1 ) to prevent the forgery of dishonest participants.

5 The way to resist the framing attack

Now let us discuss how to prevent the proposed framing attack. FromSteps (ii) and (iv)
in Sect. 3, it can be seen that the key to the success of this attack is that the dishonest
participants P0, P1, P2, . . . , Pn′ can send fake sections of verification key to the honest
participant Pn′+1 without being caught cheating. By this way, they make the fraction
of fake sections in the verification key K x

Pn′+1
exceeds the allowable threshold 1− fl ,

which gives rise to Pn′+1’s disagreement on the validity of the message–signature
pair (x, σx ). At the same time, they make more than half of the participants vote the
message–signature pair (x, σx ) is true in dispute resolution by sending the real sec-
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tions to other participants. Thus, if there is a way for Pn′+1 to detect the deception
from these dishonest participants, the framing attack can be effectively prevented.
Nevertheless, his verification key K x

Pn′+1
= σ x

n′+1||vx1,n′+1||vx2,n′+1|| · · · ||vxn′,n′+1||
vxn′+2,n′+1|| · · · ||vxN−1,n′+1||vxN ,n′+1 directly comes from P0 and the other N−1 recip-
ients, which means everyone definitely knows the part sent by himself, and thus there
is no way for Pn′+1 to discriminate whether a received section is true or not in the dis-
tribution stage if the signer P0 colludes with the n′ recipients P1, P2, . . . , Pn′ . What’s
worse, there is also no way for Pn′+1 to prove the fake sections come from these
dishonest participants P0, P1, P2, . . . , Pn′ in dispute resolution. Therefore, this way
is not feasible with the present method of establishing the signing key and verification
keys in the generalized multiparty quantum digital signature scheme.

The second way for Pn′+1 is to avoid inducing disagreement on the validity of the
message–signature pair (x, σx ) by lowering the verification threshold fl . Nevertheless,
the number n′ of dishonest recipients is dependent on the threshold fl , and thus if the
threshold fl is set, there always exists such a number n′ that can make the inequation

n∑
j=1

T x
j,n′+1,l(σ

x
j ) < N fl (14)

is right no matter how small fl is. In addition, although the required number n′ of
dishonest recipients becomesmore andmore largewith the lowering of the verification
threshold fl , n′ is always less than N

2 under the condition that the threshold fl must be
not less than 1

2 . Therefore, the disagreement on the validity of the message–signature
pair (x, σx ) always can be made by these dishonest participants P0, P1, P2, . . . , Pn′ ,
which means this way is also not feasible.

The third way for Pn′+1 is to make at least N
2 participants approve the message–

signature pair (x, σx ) is invalid in MV. For each other honest participant Pi (i =
n′ + 2, . . . , N ),

∑n
j=1 T

x
j,i,l(σ

x
j ) = N − 1, if Pi votes “Faulse”, the verification

function Ver(i,−1)= True need be redefined as

Ver(i,l)(x, σ ) =
{

True if
∑n

j=1 T
x
j,i,l(σ

x
j ) = N

Faulse otherwise
(15)

which will give rise to the worst security problem of repudiation because fl = 1 �
f−1 = 1

2 . Accordingly, this way is also not feasible. Another possible way is not to
penalize the loser in dispute resolution, but this will greatly affect the effectiveness of
the scheme, and therefore a balance between the penalization and effectiveness should
be considered in a practical application.

From the above analysis, it can be seen that there is no good way to prevent the
framing attack with the present method of establishing the signing key and verification
keys in the generalized multiparty quantum digital signature scheme.

Finally, let us study how to resist the framing attack by establishing new signing
key and verification keys in multiparty quantum digital signature schemes. From the
perspective of the relations among different keys, the main reason for this security
problem is that the relation between the signing key K x

P0
and each verification key K x

Pi
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is not fully asymmetrical and each other recipient Pj ( j �= i) definitely knows one part
vxj,i of K

x
Pi
, which gives a chance for these dishonest participants P0, P1, P2, . . . , Pn′

to frame Pn′+1 by sending him fake sections σ x
n′+1||vx1,n′+1||vx2,n′+1|| · · · ||vxn′,n′+1.

Therefore, if a perfect oblivious key is established between the signer P0 and each
recipient Pi (i = 1, 2, . . . , N ), and any two verification keys K x

Pi
and K x

Pj
have a

communal part unknown to both Pi and Pj while the fraction of this part satisfies
some restriction, the framing attack can be effectively prevented. More specifically, to
prevent the framing attack and guarantee the security of signature against forging and
repudiation, the relations among different keys should satisfy the following security
requirements.

(a) The relation between the signing key K x
P0
and each verification key K x

Pi
is perfectly

oblivious, and
||K x

Pi
||

||K x
P0

|| ≥ 2N−1
N2 for i = 1, 2, . . . , N .

(b)
|| ⋃ N

2 −1
j=1 K x

Pi j
||

||K x
P0

|| ≤ 3
4 − N+1

N2 , i j ∈ {1, 2, . . . , N }.

(c) K x
Pi

⋂
K x

Pj
is unknown to both Pi and Pj , and 2

2N−1 ≤ ||K x
Pi

⋂
K x

Pj
||

||K x
Pi

|| ≤ ksl 
 1

for all i �= j , where the upper bound ≤ ksl depends on the verification threshold
sl .

The signing key K x
P0

and each verification key K x
Pi
that satisfy all the requirements

(a)–(c) can be established by an oblivious transfer from one tomany. It should be noted
that oblivious transfer has been realized and applied in quantum private queries [23–
28]. Furthermore, both the upper bound and the lower bound in these requirements are
obtained from the generalized multiparty quantum digital signature scheme, which
may be not optimal, and therefore these requirements are not necessary to design a
secure multiparty quantum digital signature scheme in the sense.

6 Conclusion

In conclusion, we analyze the security of a multiparty quantum digital signature
scheme and propose a framing attack. Using this attack, a certain number of dis-
honest recipients P1, P2, . . . , Pn′ can frame an honest participant Pn′+1 without being
caught cheating when they collude with the signer P0, which is in conflict with the
security requirements of USS. Furthermore, we study the relations among different
keys and then give the security requirements (a)–(c), which are sufficient to design
a secure multiparty quantum digital signature scheme. On this basis, we present an
effective way to deal with the security problem at the end. Finally, it should be noted
that this analysis method may be valid to many multiparty digital signatures under the
similar model as in [21], but it does not mean it can be extended to arbitrary multiparty
digital signatures. For example, in a multiparty digital signature scheme with a trusty
third party, the dispute is solved by the trusty third party but not MV, which excludes
the conditions that this analysis method can be applied. We hope this work shed some
light on the next development of multiparty quantum digital signatures.
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