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Abstract
We propose an efficient scheme for joint remote state preparation (JRSP) of arbitrary
multi-qubit states from two senders to one receiver with the 100% successful proba-
bility. Quantum channel is composed of maximally three-qubit entangled states, and
several special mutually orthogonal measurement basis are constructed without the
introduction of auxiliary particles. We also calculate the total classical communica-
tion cost required in the JRSP processes. The concrete JRSP procedures for remotely
preparing single-qubit and two-qubit states are illustrated to prove explicitly the fea-
sibility of this JRSP protocol.

Keywords Joint RSP · Successful probability · Arbitrary multi-qubit states

1 Introduction

It is an elementary problem to safely and securely transmit quantum states in quan-
tum network communication and quantum distributed computation. One of the most
remarkable schemes for the transmission of quantum states is the so-called quantum
teleportation, originally proposed by Bennett et al. [1], in which quantum states can
be transmitted between remote locations via quantum channel and classical commu-
nication. Afterward, Lo [2] investigated how to send quantum information using a
prior shared entanglement and the classical communication when the sender knows
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fully the transmitted state. This communication protocol is called remote state prepa-
ration (RSP). Compared with the usual teleportation [1,3–13], the RSP proposal can
be preformed with simpler measurement and using less classical information in some
special cases [14–20].

So far, lots of RSP proposals have been presented, including joint RSP [21–25],
controlled RSP [26–28], optimal RSP [29] and so on. In the process of joint remote
state preparation (JRSP), the senders separately own the partial classical information of
quantum state theywant to prepare. If and only if all of the senders cooperate with each
other, the JRSP scheme can be realized. The main advantage from the RSP protocol of
two-party is that each sender cannot have the final prepared state which is very useful
for security. Hence, the JRSP proposal has acquired lots of attention recently. The
deterministic controlled JRSP scheme [30] was presented to remotely prepare arbi-
trary single- and two-qubit states using partially entangled quantum channel. Chen
et al. [31] propose a scheme to perform joint remote preparation of an arbitrary two-
qubit state using a generalized seven-qubit brown state. Luo et al. presented that two
senders can jointly prepare three-qubit states [32] and four-qubit χ -states [33] to a
remote receiver via the shared GHZ states. Meanwhile, some JRSP schemes for spe-
cial kinds of multi-qubit states have been explored [34–38]. For example, Wang [34]
proposed a method to remotely prepare a two-qubit state via three bipartite entan-
glements, and generalized this method to the multi-qubit GHZ-class state case. Li
et al. [35] proposed a scheme for joint remote preparation of multi-qubit equatorial
states with unit successful probability. Long et al. [36] took advantages of the posi-
tive operator-valued measurement to perform multi-party joint remote preparation of
an arbitrary GHZ-class state. Nowadays, some theoretical and experimental schemes
of quantum information processing [39–42] have been investigated to promote the
physical realization of remote state preparation.

The purpose of this paper is to present a novel JRSP proposal for arbitrary multi-
qubit states from two senders to one receiver in a deterministic manner by using of
maximally three-qubit entangled states. The concrete processes for our JRSP proposal
are given, and some useful measurement basis are constructedwithout the introduction
of auxiliary particles. The total classical information cost and successful probability
regarding this JRSP scheme are calculated, respectively. It should be emphasized
that arbitrary multi-qubit states can be remotely prepared via our protocol with the
100% successful probability. This is the most important advantage of this novel JRSP
scheme.

The rest of this paper is organized as follows: In Sect. 2, an efficient scheme for
remote preparationof an arbitraryn-qubit state is presentedwith some specialmeasure-
ment basis, of which the solution expressions are shown in detail. The total successful
probability of this JRSP scheme can reach up to one, and the classical information
cost is equal to 3n bits. In Sect. 3, concrete realization processes for jointly preparing
single-qubit and two-qubit states are illustrated to demonstrate explicitly the feasibility
of our JRSP scheme. The paper concludes with Sect. 4.
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2 Deterministic JRSP of arbitrary multi-qubit states

Suppose that the senders Alice and Charlie want to help the receiver Bob remotely
prepare arbitrary n-qubit state

|ψ0
n 〉 =

2n−1∑

x=0

axe
iφx |dn . . . d2d1〉 di ∈ {0, 1}; x =

n∑

i=1

di · 2i−1. (1)

where ax , φx ∈ R (x = 0, 1, · · · , 2n − 1),
∑2n−1

x=0 |ax |2 = 1 and φ0 = 0. Usually,
ax can be considered as the amplitude factor of quantum state, and φx is known as
the (relative) phase parameter. The information of ax and φx are only available for
Alice and Charlie, respectively. Note that x is the decimal form of the binary string
dn . . . d2d1. Quantumchannel is composed of nmaximally entangled three-qubit states
below

|Ψ 〉AkCk Bk = 1√
2
(|000〉 + |111〉)AkCk Bk k = 1, 2 · · · n. (2)

Without loss of generality,Alice, Charlie andBobhave particles Ak ,Ck and Bk , respec-
tively. The concrete processes for our deterministic JRSP protocol can be elaborated
as follows:

Step 1: For the purpose to realize the JRSP, Alice needs to construct the special
projective measurements basis {|Γm〉 |m = 0, 1 · · · 2n − 1}, of which the form can be
presented as

[ |Γ0〉, |Γ1〉, · · · |Γ2n−2〉, |Γ2n−1〉
]T = U [n]

⎛

⎜⎜⎜⎜⎜⎝

|0 . . . 00〉
|0 . . . 01〉

...

|1 . . . 10〉
|1 . . . 11〉

⎞

⎟⎟⎟⎟⎟⎠
(3)

here

U [n] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 · · · a2n−1−1 a2n−1 a2n−1+1 · · · a2n−1

a1
. . . · · · · · · a2n−1+1 · · · · · · · · ·

...
...

. . . · · · · · · · · · · · · · · ·
a2n−1−1

...
...

. . . a2n−1 · · · · · · · · ·
a2n−1 −a2n−1+1

... −a2n−1 −a0 a1 · · · a2n−1−1

a2n−1+1
...

...
... −a1

. . . · · · · · ·
...

...
...

...
...

...
. . . · · ·

a2n−1
...

...
... −a2n−1−1

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)
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Let us begin with a brief statement of the elements of this matrix U [n] (For more
details, see Ref. [43]). If n = 1, i.e., some single states need to be prepared,U [1] could
be presented as [a0, a1; a0,−a1] from Eq. (4). When n ≥ 2, the (red) elements at the
upper left corner of U [n] can be determined by setting U [n](i, j) = U [n − 1](i, j),
here 2 ≤ i, j ≤ 2n−1. The element in the i-th row and j-th column of the complex
conjugate of thematrixU [n]would be denoted as the parameterU [n](i, j). According
to

∑2n
j=1U [Θn

n ](i, j) · U [Θn
n ](2n + 1, j) = 0 (2 ≤ i ≤ 2n−1), one can obtain the

(green) parameters at the upper right corner. Subsequently, the other (blue) coefficients
from the (2n−1 − 1)-th row to 2n-th row can be fulfilled in terms of

∑2n
i=1U [n](i, j) ·

U [n](i, k) = 0 (k = 1, 2n−1 + 1; 2 ≤ j ≤ 2n; j �= k). After that, we can obtain all
of the elements of the matrix U [n]. Furthermore, it could be find that

〈Γi |Γ j 〉 =
{
0, i �= j;
1, i = j .

2n−1∑

i=1

|Γi 〉〈Γi | = I2n (5)

where I2n is the identical 2n × 2n matrix. Hence, the orthogonal states {|Γm〉 |m =
0, 1 · · · 2n − 1} could be used as the projective measurement basis. When the result of
particles (A1A2 · · · An) is |Γm〉, particles (C1C2 · · ·Cn B1B2 · · · Bn) between Charlie
and Bob could collapse into |Φi 〉, which can be described as follows:

|Φm〉C1B1C2B2···Cn Bn

= [ |Γm〉A1A2···An ]†
[ |Ψ 〉A1C1B1 ⊗ |Ψ 〉A2C2B2 · · · |Ψ 〉AnCn Bn

]

=
(

1√
2

)n 2n−1∑

k=0

U [n](m, k) · |lnln · · · l2l2l1l1〉C1B1C2B2···Cn Bn (6)

It is should be emphasized that ln · · · l2l1 is the binary string of the number k. Hence,
the state |lnln · · · l2l2l1l1〉 can be determined as long as k is set. From Eqs. (4) and
(6), it could be found that |Φm〉 can be modified to |Θ〉 = ∑2n−1

x=0 ax |lnln · · · l2l2l1l1〉
by exchanging the relative positions of the factors of |Φm〉, here x = ∑n

i=1 li · 2i−1.
For instance, |Φ2n−1+1〉 can be transported into |Θ〉 using the permutation operation

S2
n−1+1

n = Sn[1, 2n−1 + 1; 2, 2n−1 + 2; 3, 2n−1 + 3; · · · ; 2n−1, 2n]:

|Θ〉 
 S2
n−1+1

n · |Φ2n−1〉

 Sn[1, 2n−1 + 1; 2, 2n−1 + 2; 3, 2n−1 + 3; · · · ; 2n−1, 2n] · |Φ2n−1〉 (7)

where Sn[i, j] (Sn[i, j])means the i-th column and j-th column of the identicalmatrix
I2n×2n have changed the positions (with a coefficient −1). Meanwhile, Sn[i, j; k, l]
equals to the product of Sn[i, j] and Sn[k, l].

Step 2: After the measurements {|Γm〉 |m = 0, 1 · · · 2n − 1}, Alice informs Bob
and Charlie of her measurement results via classical channel. Then, Charlie constructs
the projective measurements {|Ωm

k 〉 |k = 0, 1 · · · 2n − 1}, which can be given by
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⎛

⎜⎜⎜⎜⎝

|Ωm
0 〉

|Ωm
1 〉

· · ·
|Ωm

2n−2〉|Ωm
2n−1〉

⎞

⎟⎟⎟⎟⎠
=

(
1√
2

)n
Smn

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 exp (−iφ1) exp (−iφ2)

1 exp
(
iπ ·1·1
2n−1 − iφ1

)
exp

(
iπ ·2·1
2n−1 − iφ2

)

1 exp
(
iπ ·1·2
2n−1 − iφ1

)
exp

(
iπ ·2·2
2n−1 − iφ2

)

... . . . · · ·
1 exp

(
iπ ·1·(2n−1)

2n−1 − iφ1
)
exp

(
iπ ·2·(2n−1)

2n−1 − iφ1
)

· · · exp
(−iφ2n−1

)

· · · exp
(
iπ ·(2n−1)·1

2n−1 − iφ2n−1

)

· · · exp
(
iπ ·(2n−1)·2

2n−1 − iφ2n−1

)

. . .
...

· · · exp
(
iπ ·(2n−1)·(2n−1)

2n−1 − iφ2n−1

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

|0 . . . 00〉
|0 . . . 01〉

...

|1 . . . 10〉
|1 . . . 11〉

⎞

⎟⎟⎟⎟⎟⎠

(8)

The unitary transformation Smn is the corresponding permutation operation for the
measurement result |Γm〉. Thus, one can find that

|Δm
k 〉B1B2...Bn
= [ |Γm〉A1A2...An ⊗ |Ωm

k 〉C1C2...Cn ]† |Ψ 〉A1C1B1 ⊗ |Ψ 〉A2C2B2 · · · |Ψ 〉AnCn Bn

= 1

2n

2n−1∑

j=0

U [n](m, j) · exp
(
iφx − iπ · x · k

2n−1

)
|dn · · · d2d1〉B1B2...Bn (9)

here x = ∑n
i=1 di2i−1.After the projectivemeasurements {|Ωm

k 〉 |k = 0, 1 · · · 2n−1},
Charlie tells the results to Bob via classical channel. From Eq. (9), we can find that the
probability for each outcome |Δm

k 〉 is always equal to (1/2n)2 = 4−n . Based on the
quantum measurement postulate, we can get that the state of quantum channel after
the projective measurements would be known exactly if the measurement outcome
is obtained. Furthermore, the states of particles (B1, B2 · · · Bn) after projective mea-
surements are pure, and could be converted into the prepared states by using of some
unitary operations.

Step 3: According to the result |Ωm
k 〉 of Charlie, Bob need to introduce the unitary

operation Uk
n

Uk
n =

(
1 0
0 eiπk

)
⊗

(
1 0

0 ei
πk
2

)
⊗ · · · ⊗

(
1 0

0 ei
πk
2n

)
(10)

For the state in Eq. (9), Bob only need to perform the permutation operation Smn and
the unitary gateUk

n on particles (B1, B2 · · · Bn) to convert the initial multi-qubit state
shown as Eq. (1).

|ψ0
n 〉B1B2...Bn 
 Uk

n · Smn |Δm
k 〉B1B2...Bn (11)
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The successful probability and required classical communication cost play impor-
tant roles in the JRSP schemes. Note that the probability for each measurement
outcome |Δm

k 〉 (m, k = 0, 1 · · · 2n − 1) is (1/2n)2 = 4−n . So that the total successful
probability can be presented as

Ptotal =
2n−1∑

m=0

2n−1∑

k=0

4−n = 100% (12)

Based on the calculation method of classical information for RSP proposals in Refs.
[44,45], this classical information required in our three-party RSP proposal can be
divided into two transmittedprocesses.One is the classical information SA−BC (includ-
ing SA−C and SA−B) sent from Alice to Charlie and Bob, and the other is the classical
information SC−B from Charlie to Bob. In order to realize this JRSP proposal, Alice
would perform a projective measurement on particles A1A2 · · · An and informs them
of her measurement result. It should be emphasized that the measurement basis is
{|Γm〉 |m = 0, 1 · · · 2n − 1} shown as Eq. (3). Particles A1A2 · · · An after this mea-
surement will collapse into one of the 2n kinds of outcomes. Meanwhile, it can be
obtained that the 2n kinds of results have the same probability of 2−n . The classical
information SA−BC sent from Alice to Charlie and Bob could be presented as

SA−BC = SA−C + SA−B = − 1

2n

2n−1∑

m=0

log
1

2n
− 1

2n

2n−1∑

m=0

log
1

2n
= 2n bits (13)

According to the measurement result of A1A2 · · · An , Charlie measures particles
C1C2 · · ·Cn with the orthogonal states {|Ωm

k 〉 |k = 0, 1 · · · 2n − 1} in Eq. (8), and
informs Bob of his outcome. There are 2n kinds of measurement results with the same
probability of 2−n . Hence, the classical information cost from Charlie to Bob can be
given by

SC−B = − 1

2n

2n−1∑

k=0

log
1

2n
= n bits (14)

From the above discussions, we could find that arbitrary n-qubit states can be prepared
in a deterministic manner by using our proposal. Meanwhile, the required classical
communication cost of this JRSP protocol is equal to

Stotal = SA−BC + SC−B = 2n + n = 3n bits (15)

It should be noted that n maximally entangled three-qubit states are required for
remotely preparing one n-qubit state, whatever the prepared state is entangled or not.
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3 Examples of JRSP

To illustrate our scheme for deterministic joint remote state preparation explicitly, we
will study how to remotely prepare arbitrary single- and two-qubit states, which are
elementary resources for quantum information.

3.1 JRSP of arbitrary single-qubit states

Suppose that the senders Alice and Charlie want to help the receiver Bob remotely
prepare the following single-qubit state

|ψ〉 = a0|0〉 + a1e
iφ1 |1〉 (16)

where a0, a1, φ1 are real, and |a0|2 + |a1|2 = 1. Quantum channel is composed of
the maximally entangled three-qubit states below

|Ψ 〉ACB = 1√
2

(|000〉 + |111〉)ACB (17)

The subscript A, C and B denote that the particles belong to Alice, Charlie and Bob,
respectively. The concrete processes can be presented as follows:

Step 1: Due to transmit the initial state given by Eq. (16), the projective measure-
ment { |Γm〉 | m = 0, 1 } need to be performed by Alice on particle A.

( |Γ0〉
|Γ1〉

)
=

(
a0 a1
a1 −a0

) ( |0〉
|1〉

)
(18)

After that, particles C and B would collapse into one of two kinds of outcomes below

|Φ0〉CB 
 [ |Γ0〉A ]† |Ψ 〉ACB = 1√
2
(a0|00〉 + a1|11〉)CB (19)

|Φ1〉CB 
 [ |Γ1〉A ]† |Ψ 〉ACB = 1√
2
(a1|00〉 − a0|11〉)CB (20)

Meanwhile, Alice informs Bob and Charlie of her measurement results using classical
information. From the analysis of Step 1 in Sect. 2, one can obtain that

S01 = I2 S11 = S1[1,−2] = σz (21)

Step 2:Charlie need to perform the following projective measurement { |Ωm
k 〉 | k =

0, 1 } on particle C in terms of Alice’s measurement result |Γm〉.
⎛

⎜⎜⎝

|Ω0
0 〉

|Ω0
1 〉

|Ω1
0 〉|Ω1
1 〉

⎞

⎟⎟⎠ = 1√
2

⎛

⎜⎜⎝

1 e−iφ1

1 −e−iφ1

−e−iφ1 1
e−iφ1 1

⎞

⎟⎟⎠

( |0〉
|1〉

)
(22)
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Table 1 The results on particles (A,C) and the unitary gates on particles B

Measurement results on Probabilities Operations Uk
1 S

m
1 on particle B

Particle A Particle C

|Γ0〉 |Ω0
0 〉 1/4 I

|Ω0
1 〉 1/4 σz

|Γ1〉 |Ω1
0 〉 1/4 σx

|Ω1
1 〉 1/4 iσy

Meanwhile, Eqs. (17) and (18) would become

|Δ0
0〉B = [ |M0〉A|N 0

0 〉C ]† |Q〉ACB = 1

2
(a0|0〉 + a1e

iφ1 |1〉)B (23)

|Δ0
1〉B = [ |M0〉A|N 0

1 〉C ]† |Q〉ACB = 1

2
(a0|0〉 − a1e

iφ1 |1〉)B (24)

|Δ1
0〉B = [ |M1〉A|N 1

0 〉C ]† |Q〉ACB = 1

2
(−a1e

iφ1 |0〉 + a0|1〉)B (25)

|Δ1
1〉B = [ |M1〉A|N 1

1 〉C ]† |Q〉ACB = 1

2
(a1e

iφ1 |0〉 + a0|1〉)B (26)

The measurements results of particle C can be transmitted from Charlie to Bob via
classical channel.

Step 3: Based on the outcomes { m, k = 0, 1 } of Alice and Charlie, Bob performs
the relative unitary operationUk

2 S
m
2 to prepare the original state. Table 1 indicates how

to select the unitary transformation for particle B based on the measurements results
of particles A and C . The unitary operationUk

1 (k = 0, 1) in Table 1 can be presented
as

Uk
n =

(
1 0
0 eiπk

)
(27)

here { σx , σy, σz, I } are the Pauli matrices. From Table 1, it can be found that our
scheme for joint remote state preparation of arbitrary single-qubit states can be realized
with the 100% successful probability at the cost of 3 bits classical information. The
results about successful probability are in agreement with the probabilities of Refs.
[21,30].

3.2 JRSP of arbitrary two-qubit states

The two-qubit states prepared from the senders Alice and Charlie to the receiver Bob
can be presented as

|ψ〉 = a0|00〉 + a1e
iφ1 |01〉 + a2e

iφ2 |10〉 + a3e
iφ3 |11〉 (28)
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where ai (i = 0, 1 · · · 3) and φ j ( j = 1, 2, 3) are real, and Σ3
x=0|ax |2 = 1. Assume

that Alice has the information of ax , and Charlie has φy . The three-qubit GHZ states
shared along Alice and Charlie with Bob are presented as

|Ψ 〉A1C1B1 = 1√
2
(|000〉 + |111〉)A1C1B1 (29)

|Ψ 〉A2C2B2 = 1√
2
(|000〉 + |111〉)A2C2B2 (30)

Note that Alice, Charlie and Bob have particles A j , C j and Bj respectively, here
j = 1, 2. Moreover, the detailed processes of our JRSP proposal for arbitrary two-
qubit states are elaborated as follows:

Step 1: For the purpose to remotely prepare two-qubit state, Alice needs to perform
the projective measurements { |Γm〉 | m = 0, 1, 2, 3 } on her particles A1 and A2.

⎛

⎜⎜⎝

|Γ0〉
|Γ1〉
|Γ2〉
|Γ3〉

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

a0 a1 a2 a3
a1 −a0 a3 −a2
a2 −a3 −a0 a1
a3 a2 −a1 −a0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

|00〉
|01〉
|10〉
|11〉

⎞

⎟⎟⎠ (31)

Thus, quantum channel composed of the three-qubit GHZ states could be rewritten as

|Ψ 〉A1C1B1 ⊗ |Ψ 〉A2C2B2 = 1

2
·
2n−1∑

j=0

|Γ j 〉A1A2 ⊗ |Φ j 〉C1B1C2B2 (32)

here

|Φ0〉 = a0|0000〉 + a1|0011〉 + a2|1100〉 + a3|1111〉
|Φ1〉 = a1|0000〉 − a0|0011〉 + a3|1100〉 − a2|1111〉
|Φ2〉 = a2|0000〉 − a3|0011〉 − a0|1100〉 + a1|1111〉
|Φ3〉 = a3|0000〉 + a2|0011〉 − a1|1100〉 − a0|1111〉 (33)

Meanwhile, Alice informs Bob and Charlie of her measurement results using classical
information. From the analysis of Step 1 in Sect. 1 and Eq. (29), it can be find that

S02 = I4 S12 = Sn[1, 2; 3, 4] = I2 ⊗ iσy

S22 = Sn[1, 3; 2, 4] = iσy ⊗ σz S32 = Sn[1, 4; 2, 3] = iσy ⊗ σx
(34)

Step 2:Charlie need to perform the following projective measurement { |Ωm
k 〉 | k =

0, 1 } on particles C1 and C2 in terms of Alice’s measurement result |Γm〉.
⎛

⎜⎜⎝

|Ωm
0 〉

|Ωm
1 〉

|Ωm
2 〉

|Ωm
3 〉

⎞

⎟⎟⎠ = 1

2
Sm2

⎛

⎜⎜⎝

1 e−iφ1 e−iφ2 e−iφ3

1 ie−iφ1 −e−iφ2 −ie−iφ3

1 −e−iφ1 e−iφ2 −e−iφ3

1 −ie−iφ1 −e−iφ2 ie−iφ3

⎞

⎟⎟⎠

⎛

⎜⎜⎝

|00〉
|01〉
|10〉
|11〉

⎞

⎟⎟⎠ (35)
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Thus, one can find that

|Δ0
0〉B1B2 = 1/4 · (a0|00〉 + a1e

iφ1 |01〉 + a2e
iφ2 |10〉 + a3e

iφ3 |11〉)B1B2
|Δ0

1〉B1B2 = 1/4 · (a0|00〉 + a1ie
iφ1 |01〉 − a2e

iφ2 |10〉 − a3ie
iφ3 |11〉)B1B2

|Δ0
2〉B1B2 = 1/4 · (a0|00〉 − a1e

iφ1 |01〉 + a2e
iφ2 |10〉 − a3e

iφ3 |11〉)B1B2
|Δ0

3〉B1B2 = 1/4 · (a0|00〉 − a1ie
iφ1 |01〉 − a2e

iφ2 |10〉 + ia3e
iφ3 |11〉)B1B2

|Δ1
0〉B1B2 = 1/4 · (−a0|01〉 + a1e

iφ1 |00〉 − a2e
iφ2 |11〉 − a3e

iφ3 |10〉)B1B2
|Δ1

1〉B1B2 = 1/4 · (−a0|01〉 + a1ie
iφ1 |00〉 + a2e

iφ2 |11〉 + a3ie
iφ3 |10〉)B1B2

|Δ1
2〉B1B2 = 1/4 · (−a0|01〉 − a1e

iφ1 |00〉 − a2e
iφ2 |11〉 + a3e

iφ3 |10〉)B1B2
|Δ1

3〉B1B2 = 1/4 · (−a0|01〉 − a1ie
iφ1 |00〉 + a2e

iφ2 |11〉 − ia3e
iφ3 |10〉)B1B2

|Δ2
0〉B1B2 = 1/4 · (−a0|10〉 + a1e

iφ1 |11〉 + a2e
iφ2 |00〉 − a3e

iφ3 |01〉)B1B2
|Δ2

1〉B1B2 = 1/4 · (−a0|10〉 + a1ie
iφ1 |11〉 − a2e

iφ2 |00〉 + a3ie
iφ3 |01〉)B1B2

|Δ2
2〉B1B2 = 1/4 · (−a0|10〉 − a1e

iφ1 |11〉 + a2e
iφ2 |00〉 + a3e

iφ3 |01〉)B1B2
|Δ2

3〉B1B2 = 1/4 · (−a0|10〉 − a1ie
iφ1 |11〉 − a2e

iφ2 |00〉 − ia3e
iφ3 |01〉)B1B2

|Δ3
0〉B1B2 = 1/4 · (−a0|11〉 − a1e

iφ1 |10〉 + a2e
iφ2 |01〉 + a3e

iφ3 |00〉)B1B2
|Δ3

1〉B1B2 = 1/4 · (−a0|11〉 − a1ie
iφ1 |10〉 − a2e

iφ2 |01〉 − a3ie
iφ3 |00〉)B1B2

|Δ3
2〉B1B2 = 1/4 · (−a0|11〉 + a1e

iφ1 |10〉 + a2e
iφ2 |01〉 − a3e

iφ3 |00〉)B1B2
|Δ3

3〉B1B2 = 1/4 · (−a0|11〉 + a1ie
iφ1 |10〉 − a2e

iφ2 |01〉 + ia3e
iφ3 |00〉)B1B2

(36)

Meanwhile, Table 2 shows the relationship between the measurement results
{ m, k | m, k = 0, 1, 2, 3 } with the unitary transformation Uk

2 · Sm2 on particles
B1 and B2.

here, { Sm2 |m = 0, 1, 2, 3 } are given by Eq. (30), and { Uk
2 |k = 0, 1, 2, 3 } can be

presented as

U 0
2 = I4 U 1

2 = σz ⊗
(
1 0
0 i

)

U 2
2 = I2 ⊗ σz U 3

2 = σz ⊗
(
1 0
0 −i

) (37)

From the above discussions, we can obtain that arbitrary two-qubit states can be
transmitted deterministically by using our scheme. It should be emphasized that the
successful probability is equal to one. In this JRSP scheme, Alice needs 4 bits clas-
sical information to tell the measurement outcomes to Charlie and Bob. Meanwhile,
2 bits classical communication cost is required for Charlie to inform Bob of his mea-
surement results. Thus, the total classical information is equal to 6 bits. We would
like to point out that an efficient three-party RSP scheme for entangled two-qubit
states from a sender to either of two receivers is presented by Dai et al. [44]. It is
shown that total classical communication costs of such a RSP scheme in a general
case and two particular cases via the maximally entangled channel are 2.5 bits and
5 bits, respectively. The classical information costs are less than our RSP protocol for
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Table 2 The results {m, k} and the unitary gates Uk
2 · Sm2 on particles (B1, B2)

Measurement results on State of particles
B1B2

Probabilities OperationsUk
2 ·Sm2

on particles B1B2

Particles A1A2 Particles C1C2

|Ψ0〉 |Ω0
0 〉 |Δ0

0〉 1/4 U0
2 · S02

|Ω0
1 〉 |Δ0

1〉 1/4 U1
2 · S02

|Ω0
2 〉 |Δ0

2〉 1/4 U2
2 · S02

|Ω0
3 〉 |Δ0

3〉 1/4 U3
2 · S02

|Ψ1〉 |Ω1
0 〉 |Δ1

0〉 1/4 U0
2 · S12

|Ω1
1 〉 |Δ1

1〉 1/4 U1
2 · S12

|Ω1
2 〉 |Δ1

2〉 1/4 U2
2 · S12

|Ω1
3 〉 |Δ1

3〉 1/4 U3
2 · S12

|Ψ2〉 |Ω2
0 〉 |Δ2

0〉 1/4 U0
2 · S22

|Ω2
1 〉 |Δ2

1〉 1/4 U1
2 · S22

|Ω2
2 〉 |Δ2

2〉 1/4 U2
2 · S22

|Ω2
3 〉 |Δ2

3〉 1/4 U3
2 · S22

|Ψ3〉 |Ω3
0 〉 |Δ3

0〉 1/4 U0
2 · S32

|Ω3
1 〉 |Δ3

1〉 1/4 U1
2 · S32

|Ω3
2 〉 |Δ3

2〉 1/4 U2
2 · S32

|Ω3
3 〉 |Δ3

3〉 1/4 U3
2 · S32

two-qubit states. Actually, the classical message required in RSP proposals is primar-
ily determined by the initial condition, communication task, entanglement sources,
implement steps and so on. Compared with our novel protocol, the sender of former
scheme has the whole information of quantum state they want to prepare, while the
senders of current JRSP scheme separately have partial information. The communi-
cation task in Ref. [44] is to prepare entangled two-qubit states from one sender to
either of two receiver, and arbitrary two-qubit states from two senders to one receiver
can be prepared via our RSP protocol, whatever the prepared state is entangled or
not. Quantum channel in Ref. [44] is the combination of a non-maximally entangled
two-qubit state and a partially entangled three-qubit state, and two maximally entan-
gled three-qubit states are required for remotely preparing one two-qubit state in this
novel proposal. The implement steps of the former scheme include one single-qubit
measurement and one two-qubit measurement, only the two-qubit measurement is rel-
ative with the information of the prepared state, and two kinds of two-qubit quantum
measurements, both of which are corresponding to the prepared two-qubit state, would
be performed by the two senders in our scheme, respectively. Additionally, the pro-
jective measurements of previous scheme are mutually independent, meanwhile they
are simpler than ones of our JRSP scheme. These features are useful for the physical
realization. The new method in this paper and the former proposal complement each
other.
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4 Discussion and conclusions

In summary, we put forward a general proposal to deterministically prepare arbitrary
multi-qubit states by using of maximally three-qubit entangled states. Two special
kinds of mutually orthogonal measurement basis, of which the analytical expressions
are presented in the form of iterative process, are constructed without the introduction
of auxiliary particles. Furthermore, the realization procedures of this novel protocol are
elaborated in detail, and the total classical communication cost required in our JRSP
scheme is also calculated. In contrast to previous methods, the significant advantage is
that the successful probability of this JRSP proposal for arbitrarymulti-qubit states can
reach up to 100%. Frankly speaking, it is a prerequisite of this advantage that quantum
channel is composed ofmaximally three-qubit entangled state in our scheme.Actually,
there are several protocols presented for RSP via various quantum entanglement chan-
nels. Further research will focus on the schemes for preparing arbitrary multi-qubit
states by using partially entangled states.
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