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Abstract
The quantum Fourier transform (QFT) is perhaps the furthermost central building
block in creation quantum algorithms. In this work, we present a new approach to
compute the standard quantum Fourier transform of the length N � 2r , r > 1,
which also is called the r-qubit discrete Fourier transform. The presented algorithm is
based on the paired transform developed by authors. It is shown that the signal-flow
graphs of the paired algorithms could be used for calculating the quantum Fourier
and Hadamard transform with the minimum number of stages. The calculation of all
components of the transforms is performed by the Hadamard gates and matrices of
rotations and all simple NOT gates. The new presentation allows for implementing the
QFT (a) by using only the r Hadamard gates and (b) organizing parallel computation
in r stages. Also, the circuits for the length-2r fast Hadamard transform are described.
Several mathematical illustrative examples of the order the N � 4, 8, and 16 cases
are illustrated. Finally, the QFT for inputs being two, three and four qubits is described
in detail.

Keywords Quantum Fourier transform · Quantum computing · Quantum Hadamard
transform · Paired transform · Fast Fourier transform

1 Introduction

QuantumFourier transform (QFT) is analogues to the discrete Fourier transform (DFT)
and is one of the essential operations in quantum computing. The QFT is a linear
transformation on quantum bits. The QFT is a basic part of many quantum algorithms,
including the Shor’s algorithm for factoring, Deutsch and Simon algorithms, the dis-
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crete logarithm, the quantumphase estimation algorithm for estimating the eigenvalues
of a unitary operator, algorithms for the hidden subgroup problem and others [1–3].
Additionally, the quantum QFT plays an essential role on the exponential speed-up
over the best classical algorithms for integer factorization. The QFT also is considered
in color image encryption, processing and representation of quantum images [4–9].

The r-qubit QFT can be completed resourcefully on a quantum computer, with

• a certain decomposition into a product of sparse unitary and diagonal matrices.
• a quantum circuit consisting of only O

(
r2

)
Hadamard gates and controlled phase

shift gates, where r is the number of input qubits.

The critical issue of the quantum information processing algorithm is to create algo-
rithms that are far superior in asymptotic running time to any “classical” counterparts
known to date which solve the same problems. Shor presented the QFT computation
“mixed-radix” method [1]. Coppersmith showed that in the N � 2r case, there exist
quantum circuits performing the QFT with O

(
r2

)
gates [10]. This complexity is small

when comparingwith O(r2r ) for the Cooley–Tukey fast Fourier transform (FFT) [11].
These circuits are based on a recursive description of the QFT that is analogous to the
description of the DFT exploited by the fast transforms. Different FFT algorithms have
their advantages and can lead to different effective circuits for the QFT. Practically,
the QFT offers a different way to make arithmetic operations on a quantum computer.
The QFT algorithm represents a significant perfection in the complexity of the com-
monly used FFT algorithm, from O

(
N log2N

)
to O

(
log22N

)
[10, 12]. The QFT can be

implemented approximately by eliminating the rotation gates with smaller a certain
threshold value angle. Recently, several approximate QFT computation algorithms
have been developed [10, 13–19]. For example, Coppersmith presented an approxi-
mate QFT computation, with complexity O

(
N log2N

)
, where 1 ≤ m ≤ log2N is the

parameter that defines a degree of approximation, usually taken as O
(
log2log2N

)
.

Lately, an implementation of the QFT by using multiple-valued quantum gates (by
replacing the Walsh–Hadamard gate with the so-called Chrestenson quantum gates)
was proposed [20].

In this paper, we build quantum circuits for the r -qubit QFT from the N -point fast
Fourier transform (FFT), when N � 2r .We describe and analyze signal-flowgraphs of
the paired FFT and circuits that can be implemented for calculating the discrete Fourier
transform in a quantum computer. The method of paired transform is used [21–23].
This technique may provide insight into the development of new quantum algorithms.
The quantumDFT for inputs being two, three and four qubits is described in detail. The
resulting unitary matrices can be interpreted as quantum logic gates. The circuits for
calculating the fast discrete Hadamard transform (DHT) are also considered. In paired
representation, the DFT is reduced to the DHT, when omitting all twiddle factors [24,
25]. Therefore, for instance, the circuit for the 16-point DFT can easily be simplified
for the 16-point DHT. The rest of the paper is organized in the following way. In
Sect. 2, a brief background information related to the FFT and QFT is given. Section 3
introduces the concept of the discrete paired transform and its fast algorithm by the
Hadamard gates. Examples with the 2-qubit DFT and DHT are described. Sections 4
and 5 present the 8- and 16-point paired FFTs and the corresponding circuits for the
3- and 4-qubit DFTs. The conclusion is given in Sect. 6.
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2 Background

The concept of the discrete Fourier transform is used widely in different areas of
signal processing and communication systems. Many fast algorithms were developed,
which are called the fast Fourier transforms (FFT), and one of them is the split radix
N-point FFT, when N � 2r , r > 1; it is the well-known decimation-in-frequency
FFT (Cooley–Tukey 1965). This algorithm splits the transform by two length-N /2
transforms, and such process is continued for theN /2-point DFTs and so on. One of the
first FFTs used for quantum circuits was the decimation-in-time algorithm, wherein
N /2 butterflies over two N /2 DFTs define the values of the N-point DFT. We also
mention the paired FFT, or the FFTby the paired transform (Grigoryan 1986) that splits
recursively the transform by the N /2, N /4, N /8…, 4, 2, 1-point DFTs. This splitting
requires m(N ) � N/2(r − 3) + 2 operations of complex multiplication [21–24].
The concept of the DFT was also applied in quaternion and octonion arithmetic, fast
algorithms were developed and applied for color image processing [26]. The DFT
became important in quantum computing and used in many different algorithms [17,
27–31].

When comparing the quantum DFT and the classical FFT, it should be noted the
following:

1. The concept of theN-point DFTwas moved formally from the complex arithmetic
to quantum computing. It is not a transform on N qubits; it is a transform of
amplitudes of theN-dimensional state of r qubits. The classical DFT has a physical
meaning; it is the spectral characteristic of the signal. As a system, this transform
presents a beautiful and real process of rotation of data around circles in the
complex plane. In general, the DFT exists with rotation around ellipses; we call
such transforms the elliptic DFTs [24, 32]. The Fourier transform was originated
from the concept of the Fourier series of discrete periodic signals. Does the concept
of periodic discrete qubit signals exist in quantum computing? The geometric
interpretation of the DFT in quantum computing is unclear. It is possible that the
definition of the Fourier transform on qubits will be found and clearly justified in
future.

2. All fast algorithms of the DFT were developed on real and complex inputs, as
well as for quaternions and octonions [26, 33–35]. In matrix representation, any
FFT algorithm presents a decomposition of the DFT matrix by simple and sparse
unitary matrices plus a few diagonal matrices that contains a small number of
twiddle factors. The first known circuit of the quantum r-qubit DFT, which is
shown in Fig. 1 for the 3-qubit DFT [2], is not exception.

3. The analysis of the paired FFT shows that, with optimal organization and parallel
computing, the splitting of the FFT in the classical computer can be performed
for 2log2(N ) steps, including the reordering of the output. In quantum computing,

the DFT can be accomplished by about
(
log2N

)2 elements, or steps. For instance,
the 3-qubit DFT, or the 8-point inverse DFT that is shown in Fig. 1 uses seven
elements.

4. The FFT has been used in classical computers for many decades and applied in
many areas of engineering, and the QFT exits only in the theory. To this day,
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Fig. 1 The known circuit for the 3-qubit DFT

the concept of the QFT is used as a theoretical tool for solving different tasks in
quantum computing. There are no real practical examples of accomplishment of
the QFT in the quantum computer.

5. Simplest gate on one qubit is called the Hadamard gate which is shown in Fig. 1
as the H gate.

3 Fast discrete paired transform

In this section, we briefly describe the concept of the paired representation of the signal
and the splitting of theDFT. The discrete paired transform (DPT) is the frequency–time
representation of the signal that corresponds to a special splitting of both discrete
Fourier andHadamard transforms. TheHadamardmatrix is considered in the recursive
form of Sylvester’s construction as

A2 �
[
1 − 1
1 1

]
, (1)

A4 �

⎡

⎢
⎢
⎣

1 − 1 − 1 1
1 1 − 1 − 1
1 − 1 1 − 1
1 1 1 1

⎤

⎥
⎥
⎦ �

[
A2 − A2
A2 A2

]
,

AN �
[
AN/2 −AN/2
AN/2 AN/2

]
, N � 2r , r > 2. (2)

The basic 2×2 matrix A2 is considered without the normalized coefficient 1/
√
2.

The determinant of this matrix is 2, and the inverse matrix is

A−1
2 � 1

2
A

′
2 � 1

2

[
1 1

− 1 1

]
.
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The normalized matrix 1/
√
2A2 is unitary, which is important to mention since

in quantum computing the operations on one qubit are described by only unitary
transforms. The matrix A2 is similar to the Walsh–Hadamard matrix

H �
[
1 1
1 − 1

]
, (3)

with different order of rows. The matrix A2 can be described by the NOT gate X and
gate H,

A2 �
[
1 − 1
1 1

]
�

[
0 1
1 0

][
1 1
1 − 1

]
� XH . (4)

Thus, the matrix A2 is the same Hadamard gate that is used in quantum computing
(or the matrix H in Fig. 1), but with different order of output. In the graphs, this matrix
will be shown by the following butterfly:

The normalized coefficient is omitted because theN-point DFT is defined in digital
signal processing as

Fp �
N−1∑

n�0

fnW
np
N �

N−1∑

n�0

fne
−i2πnp/N , p � 0, 1, 2, . . . , (N − 1). (5)

The inverse transform is calculated by

fn � 1

N

N−1∑

p�0

FpW
−np
N � 1

N

N−1∑

p�0

Fpe
i2πnp/N , n � 0, 1, 2, . . . , (N − 1). (6)

It should be noted that in many publications of quantum computing [2, 28], the dis-
crete Fourier transform is defined in a different way, namely with clock-wise rotation
of input data and normalized coefficient,

(7)

The paired FFT splits the transform of order N � 2r , r > 1, by the set of (r + 1)
DFTs of lengths N/2, N/4, N/8, . . . , 2, 1, 1 [24, 36].

Example 1 The signal-flow graph of the 4-point DFT is shown in Fig. 2.
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Fig. 2 Signal-flow graph of the
paired 4-point FFT

Fig. 3 Signal-flow graph of the
4-point DFT

The transform is split by the 4- and 2-point discrete paired transforms (DPT) with
the matrices [24]

χ ′
4 �

⎡

⎢⎢
⎣

1 0 − 1 0
0 1 0 − 1
1 − 1 1 − 1
1 1 1 1

⎤

⎥⎥
⎦ and χ ′

2 � A2 �
[
1 − 1
1 1

]

as follows:
⎡

⎢⎢
⎣

F3
F1
F2
F0

⎤

⎥⎥
⎦ �

⎡

⎢⎢
⎣

1 − 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0 0 0
0 − i 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0 − 1 0
0 1 0 − 1
1 − 1 1 − 1
1 1 1 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

f0
f1
f2
f3

⎤

⎥⎥
⎦.

The graph of the 4-point DFT given in Fig. 2 can be redrawn, as shown in Fig. 3.
Therefore, the transform can be written as

⎡

⎢⎢
⎣

F3
F1
F2
F0

⎤

⎥⎥
⎦ �

⎡

⎢⎢
⎣

1 − 1 0 0
1 1 0 0
0 0 1 − 1
0 0 1 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0 0 0
0 − i 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0 − 1 0
0 1 0 − 1
1 0 1 0
0 1 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

f0
f1
f2
f3

⎤

⎥⎥
⎦.

Considering the matrix of permutation of outputs

S4 �

⎡

⎢⎢
⎣

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤

⎥⎥
⎦,
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the matrix of the 4-point DFT can be presented as

F4 � S4

⎡

⎢⎢
⎣

1 − 1 0 0
1 1 0 0
0 0 1 − 1
0 0 1 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0 0 0
0 − i 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0 − 1 0
0 1 0 − 1
1 0 1 0
0 1 0 1

⎤

⎥⎥
⎦.

Direct calculations show that

F4 � S4

⎡

⎢⎢
⎣

1 i −1 − i
1 − i − 1 i
1 −1 1 −1
1 1 1 1

⎤

⎥⎥
⎦ �

⎡

⎢⎢
⎣

1 1 1 1
1 − i − 1 i
1 −1 1 − 1
1 i − 1 − i

⎤

⎥⎥
⎦.

Let W2 be the matrix of rotation

W2 �

⎡

⎢
⎢
⎣

1 0 0 0
0 − i 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦,

and let A0,2;1,3 and A0,1;2,3 be, respectively, the matrices

A0,2;1,3 �

⎡

⎢
⎢
⎣

1 0 − 1 0
0 1 0 − 1
1 0 1 0
0 1 0 1

⎤

⎥
⎥
⎦ and A0,1;2,3 �

⎡

⎢
⎢
⎣

1 − 1 0 0
1 1 0 0
0 0 1 − 1
0 0 1 1

⎤

⎥
⎥
⎦.

Each of these matrices is described by two Hadamard gates,

A0,2;1,3 � A0,2A1,3 �

⎡

⎢⎢
⎣

1 0 − 1 0
0 1 0 0
1 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 − 1
0 0 1 0
0 1 0 1

⎤

⎥⎥
⎦

A0,1;2,3 � A0,1A2,3 �

⎡

⎢
⎢
⎣

1 − 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 − 1
0 0 1 1

⎤

⎥
⎥
⎦.

Here and hereinafter, we denote by Ak,l the identity matrix with two additional
coefficients equal 1 and − 1 at positions (k, l) and (l, k), respectively, when k �� l.
Thismatrix describes theHadamard gatewith inputs being the k th and l th components
of data.

Thus, the matrix of the 4-point DFT can be decomposed as

F4 � S4A0,1A2,3W2A1,3A0,2, (8)
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Fig. 4 Circuit for the 4-point DFT

or

F4 � S4A0,1W2 A2,3A0,2A1,3︸ ︷︷ ︸
. (9)

Here, the product of three matrices is the matrix of the 4-point paired transform, χ ′
4.

Figure 4 shows the circuit of the 4-point DFTwith four Hadamard gates and one trivial
rotation matrix. Each Hadamard gates requires one addition and one subtraction.

A two-qubit state is described by four complex or real numbers of four-dimensional
vector

with the condition that | f00|2+| f01|2+| f10|2+| f11|2� 1. These numbers are called the
amplitudes of the 2-qubit state. The two-qubit DFT state

is calculated by

F00 � f00 + f01 + f10 + f11,

F01 � f00 − i f01 − f10 + i f11,

F10 � f00 − f01 + f10 − f11,

F11 � f00 + i f01 − f10 − i f11.

The circuit for calculating the 4-point DFT, or 2-qubit DFT by the paired transforms
is shown in Fig. 5.

In quantum computing, the states |00〉 , |01〉 , |10〉 and |11〉 are numbered simply
by 0, 1, 2, and 3, as these numbers presented in binary form. The 2-qubit state
can be written as the vector , and the same for the Fourier transform,

. Therefore, there is no difference between the circuits in Figs. 4
and 5, which are shown for the complex data and amplitudes of qubits, respectively.
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Fig. 5 Circuit for the 2-qubit DFT with three stages

Fig. 6 Circuit for the 2-qubit FHT with two stages

Example 2 We consider the discrete Hadamard transform [37]. When omitting the
diagonal matrix in this decomposition in Eq. 8, the transform becomes the 4-point
discrete Hadamard transform (DHT), i.e.,

⎡

⎢⎢
⎣

1 − 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0 − 1 0
0 1 0 − 1
1 − 1 1 − 1
1 1 1 1

⎤

⎥⎥
⎦ �

⎡

⎢⎢
⎣

1 − 1 − 1 1
1 1 − 1 − 1
1 − 1 1 − 1
1 1 1 1

⎤

⎥⎥
⎦.

The circuit for the 4-point fast Hadamard transform (FHT), or the 2-qubit FHT, is
shown in Fig. 6.

When considering the 4-point DFT with the normalized coefficient,

Fp � 1

2

3∑

n�0

fnW
np
4 � 1

2

3∑

n�0

fne
−i2πnp/4, p � 0, 1, 2, 3,

the above signal-flow graphs and circuits can be used with the normalized matrix, i.e.,
in the circuit we need make changes A2 → A2/

√
2.
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Fig. 7 Signal-flow graphs of the 4- and 8-point DPTs

4 Circuits for length-8 Fourier and Hadamard transforms

In general case of N � 2r , r > 1, the discrete paired transform requires only 2
(N − 1) operations of addition and subtraction [38]. The transform has a matrix with
only 0 and±1 coefficients. For the N � 8 case, the matrix equals

[
χ ′
8

] �

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

1 0 0 0 − 1 0 0 0
0 1 0 0 0 − 1 0 0
0 0 1 0 0 0 − 1 0
0 0 0 1 0 0 0 − 1
1 0 − 1 0 1 0 − 1 0
0 1 0 − 1 0 1 0 − 1
1 − 1 1 − 1 1 − 1 1 − 1
1 1 1 1 1 1 1 1

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

. (10)

The rows of this matrix, or basic functions of the 8-point DPT, are not normalized.
The normalization of the matrix is performed by multiplication with the diagonal
matrix D � diag(1/

√
2,1/

√
2,1/

√
2,1/

√
2,1/2, 1/2, 1/

√
8, 1/

√
8). The matrix D[

χ ′
8

]
has determinant 1 and is unitary, i.e., its inverse matrix equals the transpose

matrix.
For N � 4 and 8, the signal-flow graphs of fast DPT are shown in Fig. 7. One can

see that the transforms can be calculated by 7 and 3 butterflies.
In the general case, the DPT can be calculated by (N − 1) butterflies or Hadamard

matrices A2. The matrix of the high-order discrete paired transform can be defined in
recursive form

[
χ ′
16

] �
[

I8 − I8[
χ ′
8

] [
χ ′
8

]
]
,

[
χ ′
32

] �
[

I16 − I16[
χ ′
16

] [
χ ′
16

]
]
, . . . , (11)

where IM denotes the identity matrix M × M .

Example 3 The signal-flow graph of the 8-point DFT by the paired transforms is shown
in Fig. 8.

123



Paired quantum Fourier transform with log2N Hadamard gates Page 11 of 26 217

Fig. 8 Signal-flow graph of the paired 8-point FFT

Fig. 9 Signal-flow graph of the 8-point DFT

Here, the twiddle factors are W 1 � W 1
8 � e−i2π/8 � 0.7071(1 − i), and W 3 �

W 3
8 � e−i2π/8 � 0.7071(−1 − i). According to this signal-flow graph, the matrix of

the 8-point DFT can be written as [24, 36]

F8 � S8

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

⎡

⎣
χ ′
2
1
1

⎤

⎦diag

⎧
⎪⎪⎨

⎪⎪⎩

1
−i
1
1

⎫
⎪⎪⎬

⎪⎪⎭
χ ′
4

︸ ︷︷ ︸

χ ′
2
1
1

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

diag

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
W 1

8−i
W 3

8
1
−i
1
1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

χ ′
8, (12)

where the matrix S8: (7, 3, 5, 1, 6, 2, 4, 0) → (0, 1, 2, 3, 4, 5, 6, 7) corresponds to the
permutation of outputs. Using the full graphs of the 8- and 4-point DPTs, we can draw
the signal-flow graph of the 8-point DFT, as shown in Fig. 9.

By separating the multiplications by twiddle coefficients, we obtain the signal-flow
graph that is shown in Fig. 10. Three stages in this graph correspond to the calculation
of the different lengths of butterflies.
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Fig. 10 Signal-flow graph of the 8-point DFT with three groups of butterflies

The matrix of the 8-point DFT can be written as

F8 � S8AIIIW IIAIIW IAI. (13)

The matrices in this decomposition are described as follows. The first stage of
calculation can be written in matrix form as

AI � A2 ⊗ I4 �
[
I4 −I4
I4 I4

]
.

Here, the operation ⊗ denotes the Kronecker product of matrices from the right.
The matrix AI describes the operation with four butterflies, or Hadamard gates,

AI � A0,4;1,5;2,6;3,7 � A0,4A1,5A2,6A3,7. (14)

On the second stage, the calculations are described by the matrix

AII � I2 ⊗ (A2 ⊗ I2) �

⎡

⎢⎢
⎣

I2 − I2
I2 I2

I2 − I2
I2 I2

⎤

⎥⎥
⎦.

This is another operation with four butterflies,

AII � A0,2;1,3;4,6;5,7 � A0,2A1,3A4,6A5,7. (15)

On the last stage, we consider the matrix

AIII � I4 ⊗ A2 �

⎡

⎢⎢
⎣

A2
A2

A2
A2

⎤

⎥⎥
⎦
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that describes the performance of four butterflies

AIII � A0,1;2,3;4,5;6,7 � A0,1A2,3A4,5A6,7. (16)

Also, we introduce the diagonal matrices that describe the multiplications by twid-
dle factors W 1, W 2 � − i, and W 3,

W1
8 �

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

1 0 0 0 0 0 0 0
0 W 1

8 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

� diag

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
W 1

8
1
1
1
1
1
1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

W2
8 � diag{1, 1,− i, 1, 1, 1, 11}, and

W3
8 �

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 W 3

8 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

� diag

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1
1
W 3

8
1
1
1
1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

These rotation matrices describe three multiplications by the twiddle factors
between Stages I and II, and we denote by W I the product

W I � W1
8W

2
8W

3
8.

For two trivial multiplications by − i after Stage II, we introduce the following
diagonal matrix:

W II � I2 ⊗ W1
4 � I2 ⊗ diag{1,− i, 1, 1}.

All abovematricesW are matrices of rotation. The last matrix we need is the matrix
of the permutation

S8 �
(
01234567
73516240

)
� (07)(13)(25)(46).

The result of the above reasoning is shown in Fig. 11. It is the circuit for calculating
the 8-point complex FFT that can be used in quantum computing with 12 Hadamard
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Fig. 11 Circuit for the quantum 8-point complex FFT

gates and five matrices of rotations (three of them are trivial). The 3-qubit state is
described as

with condition | f0|2+| f1|2+ · · · + | f7|2� 1. We consider the new 3-qubit state

The components of this state, which is called the 3-qubit DFT , are calculated by

Fp �
7∑

n�0

fnW
np
8 �

7∑

n�0

fne
−i2πnp/8, p � 0, 1, . . . , 7. (17)

One can notice from this circuit, as well as from Eq. 13, that the 8-point FFT
includes six stages of parallel computing fn → S8AIIIW IIAIIW IAI( fn) :

1 stage. Perform four Hadamard gates in AI,
2 stage. Perform three multiplications by rotation matrices of W I,
3 stage. Perform four Hadamard gates in AII,
4 stage. Perform two multiplications by rotation matrices of W II,
5 stage. Perform four Hadamard gates in AIII,
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6 stage. Reorder the outputs in accordance with the matrix S8.

Thus, there is only six steps and 6 � 2log2N � 2 × 3.

Comments The circuits for the quantum DFT are usually drawn with lines that denote
the qubits, as shown in Fig. 1. The circuit in Fig. 11 is given in the traditional form
with the input and output components, fn and Fp, respectively. Let us find out if the
circuits in these two figures really differ. The matrix AI with four Hadamard gates is

AI � A0,4;1,5;2,6;3,7 �

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

1 0 0 0 − 1 0 0 0
0 1 0 0 0 − 1 0 0
0 0 1 0 0 0 − 1 0
0 0 0 1 0 0 0 − 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

. (18)

and it presents the block H, i.e., the Hadamard gate but on the 3rd qubit, not the 1st
qubit in the circuit in Fig. 1. Only block H should be changed by the equivalent A2.
Similarly, the matrix AII with other four Hadamard gates

AII � A0,2;1,3;4,6;5,7 �

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢
⎣

1 0 − 1 0 0 0 0 0
0 1 0 − 1 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 − 1 0
0 0 0 0 0 1 0 − 1
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥
⎦

(19)

is similar to the secondblockH on the2ndqubit, as inFig. 1.Also, in the decomposition
of the Fourier matrix in Eq. 13, the matrix AIII with four Hadamard gates describes
the block A2 applied on the 1st qubit, and not on the last qubit, as shown in Fig. 1. The
same correspondence has place for the rotation matrices in the figures. The diagonal
matrix with the twiddle factors in the paired FFT is

diag

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
W 1

8− i
W 3

8
1

− i
1
1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� diag

⎧
⎪⎪⎨

⎪⎪⎩

1
W 1

8− i
W 3

8

⎫
⎪⎪⎬

⎪⎪⎭
⊕ diag

{
1

− i

}
⊕ diag

{
1
1

}
.
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Fig. 12 The order of amplitudes of the input and output in the paired 8-point FFT

Fig. 13 The circuit for the 3-qubit direct DFT by the paired splitting

Here, the first 4×4 diagonal sub-matrix describes the rotations (similar to blocks
S and T in Fig. 1) over the 3rd qubit;

diag

⎧
⎪⎪⎨

⎪⎪⎩

1
W 1

8−i
W 3

8

⎫
⎪⎪⎬

⎪⎪⎭
� T1 ⊗ T2 � diag

{
1
−i

}
⊗ diag

{
1
W 1

8

}
.

The difference between these diagonal matrices, T1 and T2, and matrices S and T
in Fig. 1 is in the fact that − i is substituted by i , since the circuit in Fig. 1 is for the
inverse DFT not the direct DFT. Now, we consider the order of qubits in the input and
output of the circuit for the 3-qubit DFT when splitting by the paired transform. The
orders of amplitudes and qubits are shown in Fig. 12.

Here, to change the order of amplitudes in qubits, the quantum NOT gate can be
used; X � [01; 10]. Fig. 13 shows the circuit of the paired algorithm for the 3-qubit
DFT.
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Fig. 14 The circuit for the 3-qubit direct DFT by the paired splitting

When comparing the circuits in Figs. 1 and 13, the following can be noted:

1. The qubits in inputs are given in reversal order;
2. The gates A2 are used in circuit of Fig. 13, instead of gates H in circuit of Fig. 1;
3. The same NOT gate is used for each qubit on the last stage of the circuit in Fig. 13.

In the circuit of Fig. 1, the permutation P of amplitudes of the 8-dimensional
vector of the 3-qubit state is used. The matrix of this permutation equals

P �

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

.

Since the A2 gate is the composition of two gates, A2 � XH , we can change the last
gate A2 with the gate X by one H gate or draw the above circuit withWalsh–Hadamard
gates, as shown in Fig. 14. It is not difficult to notice, that the last operations on the
1st output qubit can be written as

XA2 � XXH � H .

Example 4 When splitting by the paired transform, the matrix of the 8-point discrete
Hadamard transform (DHT) is represented as [24, 39]

A8 � S8

⎡

⎢
⎢⎢⎢⎢⎢
⎣

⎡

⎣
χ ′
2
1
1

⎤

⎦χ ′
4

χ ′
2
1
1

⎤

⎥
⎥⎥⎥⎥⎥
⎦

χ ′
8,

(
χ ′
2 � A2

)
. (20)
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Fig. 15 The circuit for calculating the 8-point DHT with three stages

Here, the matrix of the transformation is considered to be equal

The circuit in Fig. 11 with omitted all matrices of rotation is shown in Fig. 15. It is
the circuit for calculating the 8-point discrete Hadamard transform.

Thus, there are only 4 stages in computing the 8-point DHT, fn → S8AIIIAIIAI
( fn):

1 stage. Perform four Hadamard gates in AI,
2 stage. Perform four Hadamard gates in AII,
3 stage. Perform four Hadamard gates in AIII,
4 stage. Reorder the outputs in accordance with matrix S8.

The circuit for this 3-qubit DHT is given in Fig. 16.
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Fig. 16 The circuit for the 3-qubit direct DHT by the paired splitting

Fig. 17 The circuit for the 3-qubit direct DHT by the paired splitting with Walsh–Hadamard gates

The same circuit but with Walsh–Hadamard gates H instead of A2 is shown in
Fig. 17. Thus, we have two circuits for the same discrete Hadamard transform, one
is written for calculation in the classical computer, and another for calculation in the
quantum computer.

5 Sixteen-point Fourier and Hadamard transforms

The circuit for calculating the DFT of high order can be described in a way similar
to the above considered cases N � 4 and 8. The paired transform splits recursively
the DFT into a minimum number of short transforms. It is difficult to expect a recur-
sive calculation in a quantum computer. Therefore, all Hadamard gates in the paired
transforms should be grouped by stages, as in the above case N � 8 (in Fig. 10).
Figure 18 shows the splitting of the 16-point DFT by the paired transforms, namely
by one 16- and 8-point DPTs, two 4-point DPTs, and four 2-point DPT which are the
butterflies 2×2 [24, 36]. There are only 10 non-trivial twiddle coefficients; seven are
trivial multiplications by− i . Thus, only 17 rotationmatrices are used in the circuit for
the 16-point FFT. The number of Hadamard gates (2× 2 butterflies) for each 2k-point
DPT equals (2k − 1). Therefore, the total number of Hadamard gates in the N -point
FFT equals N/2log2N , or 32 for the 16-point FFT.
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Fig. 18 Block-scheme of calculation of the 16-point paired FFT

When opening this block-diagram in detail, by calculating the paired transforms by
theHadamardgates,weobtain the circuit that is shown inFig. 19. It is not difficult to see
that the calculation of the 16-point FFT includes only 8 stages of parallel computing,
including the last operation of reordering the output.

This is the circuit for the 16-point DFT for the classical computer. The same circuit
for calculating the 4-qubit DFT in the quantum computer is given in Fig. 20. The
performance of 32 operators A2 is equivalent to 4 gates A2 in the quantum circuit. As
in the case of 3-qubit DFT, the permutations of outputs are performed inside each qubit
by the NOT gate. It is considered that the diagonal matrix with the twiddle factors in
the paired 16-point FFT is

diag

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
W 1

16
W 2

16
W 3

16− i
W 5

16
W 6

16
W 7

16

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⊕ diag

⎧
⎪⎪⎨

⎪⎪⎩

1
W 1

8− i
W 3

8

⎫
⎪⎪⎬

⎪⎪⎭
⊕ diag

{
1

− i

}
⊕ diag

{
1
1

}
.
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Fig. 19 Circuit for computing the 16-point FFT

Here, the first 8×8 diagonal sub-matrix can be written as

diag

{
1

− i

}
⊗ diag

⎧
⎪⎪⎨

⎪⎪⎩

1
W 1

16
W 2

16
W 3

16

⎫
⎪⎪⎬

⎪⎪⎭
� T1 ⊗ T2 ⊗ T3 � diag

{
1

− i

}

⊗ diag

{
1
W 1

8

}
⊗ diag

{
1

W 1
16

}
.
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Fig. 20 The circuit for the 4-qubit direct DFT by the paired splitting

Fig. 21 The circuit for the 4-qubit direct DHT by the paired splitting

As it was done for the N � 8 case, the circuit in Fig. 20 can be reduced to the
circuit for calculating the 16-point Hadamard, by removing all multiplications by the
twiddle factors. For that, the same circuit can also be used, when setting all rotations
matrices T k to the 2×2 identity matrix. Figure 21 shows this circuit for calculating
the 4-qubit DHT.

The equivalent circuit in the classical computer for calculating the 16-point fast
Hadamard Transform (FHT) is shown Fig. 22. For high length N � 2r , r > 4, the
circuits for computing the N -point FFT and FHT by paired can be described in a
similar way.

In the general case when N � 2r , r ≥ 1, a r -qubit state as the N -dimensional
vector of amplitudes is described as

(21)

with condition that | f0|2+| f1|2+| f2|2+ · · · + | f2r−1 |2� 1. The components of the new
state, which is called the r-qubit DFT ,

(22)
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Fig. 22 Circuit for computing the quantum 16-point FHT

are defined as

Fp � 1√
N

N−1∑

n�0

fnW
np
N � 1√

N

N−1∑

n�0

fne
−i2πnp/N , p � 0, 1, . . . , (N − 1). (23)

As stated in [16], the QFT performs the task different from the FFT that computes a
newcomplexvector. TheQFTchanges the state of r qubits. If the result ofmeasurement
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is |n〉 with probability | fn|2, the same value in the new state of the quantum DFT
may occur, or can be measured with probability |Fn|2. In Eq. 23, the normalized
coefficient 1/

√
N is needed, in order to have the same condition |F0|2+|F1|2+ · · · +

|F2r−1 |2� 1 for the new state . Therefore, in all above circuits for calculating
the r -qubit DFT and DHT, the matrix A2 should be considered with the normalized
coefficient 1/

√
2.

5.1 Brief comparison with quantum circuits

The above analysis of the method was described in detail and compared with the first
quantum circuit for the QFT [2], which is given in Fig. 1 for three qubits. The main
difference is in using the gate A2 instead of the Walsh–Hadamard gate H , and also
in a simple permutation of the output qubits, by using only NOT X gates. The paired
transform splits the DFT by a set of short DFTs which are processed separately. In
contrast to such a splitting, the above QFT is based on the frequency-in-time algorithm
and uses a number of butterflies over the short DFTs, which requires the sequence of
SWAP gates.

Similar to the known method of approximation of the QFT with a bounded error,
which is performed by removing a few rotation gates from the circuit (Coppersmith
1994), the proposed circuit could be used in a similarway to approximate the transform.
We also mention four quantum circuits for the QFT that are described in [28]. One of
these quantum circuits is the quantum circuit for the QFT [2] (which we used above for
comparison with the paired QFT), but completed with the bit-reversal circuit. Other
three complete circuits are similar to the first one; all four circuits are based on the
same iteration formula (Eq. 20 in [28]) of the FFT but with different implementations,
wherein the permutation between components of qubits is performed in the beginning
or between the intermediate stages. In our opinion, such permutations do not make
the circuits more effective than the first circuit, and moreover, the proposed circuit.

6 Conclusion

In this paper, the circuits for computing the length N � 2r fast Fourier and Hadamard
transformswith splitting by the paired transformwere described and analyzed in detail
for the N � 4, 8, and 16 cases. It was shown that the signal-flow graphs of the paired
algorithms can be used for calculating the quantum Fourier and Hadamard transforms
with minimum number of stages. The calculation of all components of the transforms
is performed by the Hadamard gates and matrices of rotations and all simple NOT
gates for permutation of output qubits. The author hopes that this paper will be useful
for the advance of new-paired transform-based resourceful quantum algorithms.
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