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Abstract
The collective noises, which include the collective-dephasing noise and the collective-
rotation noise, are the topical noises in quantum key agreement (QKA). How to
eliminate the influence of the collective noises on quantum communication is a prob-
lem to be solved urgently. In this paper, based on logical quantum states, by using
controlled-Z, controlled-NOT and unitary operations, two QKA protocols which can
be immune to the collective-dephasing noise and the collective-rotation noise are pro-
posed, respectively. The security analysis indicates that these two protocols can resist
participant attack and outsider attacks which include Trojan-horse attacks, intercept-
resend attack, measure-resend attack and entangle-measure attack. By comparing with
the proposed two-party QKA protocols against the collective noises, it is clear that
our protocols are more efficient.

Keywords Quantum key agreement · Collective noise · Bell states · Cluster states

1 Introduction

Quantum cryptography has aroused researcher’s wide concern after Bennett and Bras-
sard introduced quantum key distribution (QKD) protocol in 1984 [1]. It can realize
unconditional security based on theory of quantum mechanisms and quantum princi-
ples. Shor et al. [2] proposed a key distribution protocol with entanglement purification
and proved the security of BB84. Then, a series of quantum cryptographic protocols
were designed, including quantum key distribution [3–6], quantum dialogue [7], quan-
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tum communication [8], quantum signature [9–12] and so on. Recently, quantum key
agreement (QKA) is proposed as a new branch of quantum cryptography. Since QKA
protocol can achieve the fairness, it has attracted the attentions of more and more
researchers. Different from QKD, QKA allows two-party or multiparty to agree a
final shared key fairly.

Zhou et al. [13] first designed a QKA protocol by using quantum teleportation
technique. However, it was not a secure QKA protocol as shown by Tsai et al.’s pro-
tocol [14]. Later, Chong and Hwang [15] introduced an efficient QKA protocol based
on BB84, which used the delayed measurement technique. He et al. [16] put forward a
two-party QKAprotocol based on five-particle entangled states. It was secure in resist-
ing participant and outsider attacks. However, the above QKA protocols [13–16] only
involved two-party case. In addition, some multiparty QKA (MQKA) protocols were
proposed. Shi et al. [17] first presented an MQKA protocol based on entanglement
swapping and EPR pairs. However, Liu et al. [18] pointed out that Shi et al.’s protocol
is unable to resist the participant attack and proposed a new MQKA agreement using
single particles. Later, Xu et al. [19] put forward a new three-party and an arbitrary
multiparty QKA protocols based on GHZ states without decoy particles. Jiang and
Xu [20] proposed an MQKA protocol based on locally indistinguishable orthogonal
product states.

Obviously, the above QKA protocols were discussed based on the ideal quantum
channel. Actually, when the participants transferred particles through the quantum
channel, the particles will be affected by noise. Therefore, the particles will be changed
due to noise.Moreover, the attackers may hide his attack by using noise. So it is hard to
distinguish whether errors are caused by noise or by attackers. Currently, the influence
of the collective noises on quantum communication is a common problem [21–24].
Walton et al. [25] presented the decoherence-free subspace (DFS) which could resist
the collective noises because the particles were changeless under the collective noise
channels. Huang et al. [22] first introduced two corresponding variables under the
collective noise channels. At the same time, Huang et al. [26] presented a QKA pro-
tocol which could resist collective decoherence. He et al. [27] proposed two robust
QKA protocols with the logical GHZ states. Gao et al. [28] proposed a two-party
QKA agreement with Bell states and four-particle GHZ states under collective noise
channels. However, there are few QKA protocols resisting the collective noises.

In this paper, two-party QKA protocols are proposed with Bell states and Cluster
states under the collective-dephasing noise and collective-rotation noise channels,
respectively. The fairness is guaranteed by using the delayed measurement technique.
The security is ensured by using the decoy logical particles method. Security analysis
indicates that these two protocols can resist the dishonest participant and outside
eavesdropper attacks.

The rest of the paper is organized as follows. In Sect. 2, we introduce some prelim-
inary knowledge. In Sect. 3, we propose two QKA protocols against collective noise.
In Sects. 4 and 5, we discuss security analysis and efficiency analysis, respectively. In
Sect. 6, we give a short conclusion.
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2 Preliminaries

This section introduces unitary operations, the collective noises, the logical particles
immune to collective-dephasing noise and the logical particles immune to collective-
rotation noise.

2.1 The unitary operations and the collective noises

First, the unitary operations used in this paper are denoted as:

U0 = I = |0〉〈0| + |1〉〈1|,
U1 = Z = |0〉〈0| − |1〉〈1|,
U2 = iY = |0〉〈1| − |1〉〈0|.

Second, the collective noises include the collective-dephasing noise and the
collective-rotation noise. The collective-dephasing noise can be denoted as [29]:

Udp|0〉 = |0〉,Udp|1〉 = eiϕ |1〉.

where ϕ is the noise parameter and it fluctuates with time. In order to make the
particles against the collective-dephasing noise, logical particles |0dp〉 and |1dp〉 are
formed by two physical qubit tensor product states |01〉 and |10〉, respectively. They
can be denoted as:

|0dp〉 = |01〉, |1dp〉 = |10〉.
The states |+dp〉 and |−dp〉 are described as follows:

|+dp〉 = 1√
2
(|0dp〉 + |1dp〉) = 1√

2
(|01〉 + |10〉),

|−dp〉 = 1√
2
(|0dp〉 − |1dp〉) = 1√

2
(|01〉 − |10〉).

The collective-rotation noise can be denoted as:

Ur |0〉 = cos θ |0〉 + sin θ |1〉,Ur |1〉 = − sin θ |0〉 + cos θ |1〉.

The parameter θ is the noise parameter and it fluctuates with time in the quantum
channel. In order to make the particles against the collective-rotation noise, logical
particles |0r 〉 and |1r 〉 are formed by two physical qubit tensor product states |Φ+〉
and |Ψ −〉, respectively. They can be denoted as:

|0r 〉 = |Φ+〉 = 1√
2
(|00〉 + |11〉), |1r 〉 = |Ψ −〉 = 1√

2
(|01〉 − |10〉).
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The states |+r 〉 and |−r 〉 are described as follows:

|+r 〉 = 1√
2
(|0r 〉 + |1r 〉) = 1√

2
(|Φ+〉 + |Ψ −〉),

|−r 〉 = 1√
2
(|0r 〉 − |1r 〉) = 1√

2
(|Φ+〉 − |Ψ −〉).

2.2 The logical particles immune to collective-dephasing noise

The Bell states used in this paper can be expressed as follows:

|Ψ +〉12 = 1√
2
(|01〉 + |10〉)12 = 1√

2
(|0dp〉 + |1dp〉)12,

|Ψ −〉12 = 1√
2
(|01〉 − |10〉)12 = 1√

2
(|0dp〉 − |1dp〉)12.

where the subscripts 1, 2 denote the first particle and the second particle of the Bell
states, respectively.

Take state |Ψ +〉12 as an example, when the first and the second particles of |Ψ +〉12
pass through the collective-dephasing noise channel, |Ψ +〉12 can be expressed in the
following equation:

|Ψ +〉12 = 1√
2
(|01〉 + |10〉)12

under collective-dephasing noise−−−−−−−−−−−−−−−−−−−−−−−−−→
= 1√

2
eiϕ(|01〉 + |10〉)12 = eiϕ |Ψ +〉12.

As a result, it is clear that these two Bell states are immune to the collective-dephasing
noise.

2.3 The logical particles immune to collective-rotation noise

The Cluster states used in this agreement can be depicted as [30]:

|C1〉1234 = 1

2
(|0000〉 + |0011〉 + |1100〉 − |1111〉)1234,

|C2〉1234 = 1

2
(|0000〉 + |0011〉 − |1100〉 + |1111〉)1234,

|C3〉1234 = 1

2
(−|0001〉 + |0010〉 + |1101〉 + |1110〉)1234,

|C4〉1234 = 1

2
(−|0001〉 + |0010〉 − |1101〉 − |1110〉)1234.
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where the subscripts 1, 2, 3, 4 denote the first particle, the second particle, the third
particle and the fourth particle of the Cluster states, respectively.

Then, we perform controlled-NOT (CNOT) operation (CNOT = (|00〉〈00| +
|01〉〈01| + |10〉〈11| + |11〉〈10|)) on the Cluster states by using the second particle as
the control qubit and the fourth particle as the target qubit. Cluster states become the
following equations:

|C1〉′1234 = U 2,4
CNOT |C1〉1234 = 1

2
(|0000〉 + |0011〉 + |1101〉 − |1110〉)1234

= 1√
2
(|00〉12|0r 〉34 + |11〉12|1r 〉34),

|C2〉′1234 = U 2,4
CNOT |C2〉1234 = 1

2
(|0000〉 + |0011〉 − |1101〉 + |1110〉)1234

1√
2
(|00〉12|0r 〉34 − |11〉12|1r 〉34),

|C3〉′1234 = U 2,4
CNOT |C3〉1234 = 1

2
(−|0001〉 + |0010〉 + |1100〉 + |1111〉)1234

= 1√
2
(−|00〉12|1r 〉34 + |11〉12|0r 〉34),

|C4〉′1234 = U 2,4
CNOT |C4〉1234 = 1

2
(−|0001〉 + |0010〉 − |1100〉 − |1111〉)1234

= 1√
2
(−|00〉12|1r 〉34 − |11〉12|0r 〉34).

As shown in the above equations, the third and the fourth particles of |C1〉′1234,|C2〉′1234, |C3〉′1234 and |C4〉′1234 are immune to the collective-rotation noise. Take
|C1〉′1234 as an example, when the third and the fourth particles of |C1〉′1234 pass through
the collective-rotation noise channel, the state |C1〉′1234 can be expressed in the equa-
tion:

|C1〉′1234 = 1√
2
(|00〉12|Φ+〉34 + |11〉12|Ψ −〉34)

= 1

2
[|00〉12(|00〉 + |11〉)34 + |11〉12(|01〉 − |10〉)34]

the third and f ourth particles under collective-rotation noise−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
= 1

2
[|00〉12((cosθ |0〉 + sinθ |1〉)3(cosθ |0〉 + sinθ |1〉)4

+ (−sinθ |0〉 + cosθ |1〉)3(−sinθ |0〉 + cosθ |1〉)4)
+ |11〉12((cosθ |0〉 + sinθ |1〉)3(−sinθ |0〉 + cosθ |1〉)4
− (−sinθ |0〉 + cosθ |1〉)3(cosθ |0〉 + sinθ |1〉)4)]

= 1

2
[|00〉12(cos2θ |00〉 + cosθsinθ |01〉 + cosθsinθ |10〉 + sin2θ |11〉

+ sin2θ |00〉 − sinθcosθ |01〉 − cosθsinθ |10〉 + cos2θ |11〉)34]
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+1

2
[|11〉12(−cosθsinθ |00〉 + cos2θ |01〉 − sin2θ |10〉 + cosθsinθ |11〉

+ cosθsinθ |00〉 + sin2θ |01〉 − cos2θ |10〉 − cosθsinθ |11〉)34]
= 1

2
[|00〉12(|00〉 + |11〉)34 + |11〉12(|01〉 − |10〉)34]

= |C1〉′1234.

Obviously, the third and the fourth particles of state |Ct 〉′1234(t = 1, 2, 3, 4) are unaf-
fected under the collective-rotation noise.

3 The QKA protocols against collective noise

This section is composed of two subsections. In Sect. 3.1, the QKA protocol against
collective-dephasing noise is introduced. In Sect. 3.2, the QKA protocol against
collective-rotation noise is described.

3.1 The QKA protocol against collective-dephasing noise

Suppose that Alice and Bob want to generate a common key K fairly. First, Alice and
Bob randomly generate the bit strings KA and KB as their secret keys, respectively.

KA = k1A||k2A|| . . . ||kiA|| . . . ||knA,

KB = k1B ||k2B || . . . ||kiB || . . . ||knB .

where kiA, kiB ∈ {0, 1}, kiA(kiB) represents the i th private information of KA(KB),
for i = 1, 2, . . . , n. The final key K can be denoted as: K = H(KA, KB) =
(k1A||k1B)|| . . . ||(knA||knB).

1. Alice and Bob randomly choose the k positive integers which are different, respec-
tively. NA = (n1A, . . . , nkA), NB = (n1B, . . . , nkB), where NA denotes the set of k
positive integers which are selected by Alice, NB denotes the set of k positive
integers which are selected by Bob.

2. Alice and Bob generate n-dimension vectors θA = (θ1A, . . . , θnA) and θB =
(θ1B, . . . , θnB), respectively, where θ iA = π

2n
j
A−1

and θ iB = π

2n
j
B−1

, 1 ≤ i ≤ n;

n j
A ∈ NA, n

j
B ∈ NB .

3. Alice and Bob prepare n states {|ψ1
A〉, . . . , |ψ i

A〉, . . . , |ψn
A〉} and {|ψ1

B〉, . . . , |ψ i
B〉,

. . . , |ψn
B〉} respectively, where |ψ i

A〉 = {ai1, ai2} and |ψ i
B〉 = {bi1, bi2}, i =

1, 2, . . . , n. |ψ i
A〉 and |ψ i

B〉 are the state |Ψ +〉. Let ai1, bi1 represent the first particles
of |Ψ +〉 and ai2, bi2 represent the second particles of |Ψ +〉.

4. Alice executes the rotation operation R(θ iA) on ai1. Meanwhile, Bob executes
the unitary operation R(θ iB) on bi1, where R(θ iA) = cosθ iA(|0〉〈0| + |1〉〈1|) +
sinθ iA(|1〉〈0| − |0〉〈1|), R(θ iB) = cosθ iB(|0〉〈0| + |1〉〈1|) + sinθ iB(|1〉〈0| −
|0〉〈1|). After that, Alice and Bob can obtain the new sequences S′

A =
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{|ψ1
A〉′, |ψ2

A〉′, . . . , |ψn
A〉′} and S′

B = {|ψ1
B〉′, |ψ2

B〉′, . . . , |ψn
B〉′}, respectively,

where S′
A ∈ {ai ′1 , ai2}, S′

B ∈ {bi ′1 , bi2}.
5. Alice executes unitary operation UtiA

on ai
′
1 according to KA, where the subscript

t iA = kiA. So Alice can get the encoded message sequence S
′∗
A . Similarly, Bob

executes unitary operation UtiB
on bi

′
1 according to KB , where the subscript t iB =

kiB . Then, Bob gets the encoded message sequence S
′∗
B .

6. Alice and Bob prepare n
2 decoy logical particles which are randomly selected from

{|0dp〉, |1dp〉, |+dp〉, |−dp〉}, respectively. After that, Alice and Bob insert decoy
logical particles into the sequences S

′∗
A and S

′∗
B to get the new sequences S

′′∗
A and

S
′′∗
B , respectively. Afterwards, Alice sends the new sequence S

′′∗
A to Bob, and Bob

sends the new sequence S
′′∗
B to Alice.

7. After Alice and Bob receive the new sequences S
′′∗
B , S

′′∗
A , respectively, they inform

each other through classical channels. When they confirm that the other party has
received the sequence, they disclose the position of the decoy logical particles and
the corresponding measurement bases. Then, they measure decoy logical particles
by utilizing the correct measurement bases. If the error rate is smaller than the
selected threshold, they continue to perform the next step. Otherwise, they give up
the protocol.

8. After Alice removes the decoy logical particles, she can obtain the sequence S
′∗
B .

Similar to Alice, Bob can also obtain the sequence S
′∗
A . After they confirm that

the other party has received the sequence, Alice and Bob announce the unitary
operations R(θ iA) and R(θ iB), respectively. Then, Alice executes unitary operation
R−1(θ iB) on bi1 of sequence S

′∗
B . Next, by using Bell measurement, Alice can infer

KB . Similarly, Bob can also conclude KA by executing unitary operation R−1(θ iA)

on ai1 of sequence S
′∗
A and Bell measurement. Therefore, they can generate a

common key K = H(KA, KB), simultaneously.

3.2 The QKA protocol against collective-rotation noise

1. Alice prepares n states {|ψ1〉, . . . , |ψi 〉, . . . , |ψn〉} and {|ϕ1〉, . . . , |ϕi 〉, . . . , |ϕn〉},
respectively, where |ψi 〉 = {ai1, ai2, ai3, ai4}, |ϕi 〉 = {ai5, ai6}. |ψi 〉 is the state
|C1〉1234. Let ai1, ai2, ai3, ai4 represent the first, second, third, fourth particles of
the |C1〉1234 state, respectively. If kiA = 0, |ϕi 〉 = |Φ+〉; kiA = 1, |ϕi 〉 = |Ψ −〉.
Let ai5, a

i
6 represent the first, second particles of the state |ϕi 〉. |ϕi 〉 denotes of the

message qubits |Φ+〉 or |Ψ −〉. Then, Alice performs two CNOT operations and a
controlled-Z (CZ) operation (CZ = (|00〉〈00| + |01〉〈01| + |10〉〈10| − |11〉〈11|))
on the n Cluster states and the message qubits, where ai2 as the control bit, and
ai4, a

i
6 as the target bit of the CNOT operation, respectively. And, ai1 is treated

as the control qubit, and ai5 is the target qubit of the CZ operation, respectively.
After that, |C1〉1234 is entangled with the message qubits. The result states can be
showed as follows:
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|C (0)
1 〉123456 = CZ(1, 5)CNOT (2, 6)CNOT (2, 4)|C1〉1234 ⊗ |Φ+〉56

= CZ(1, 5)CNOT (2, 6)|C1〉′1234 ⊗ |Φ+〉56
= CZ(1, 5)CNOT (2, 6)

1√
2
(|00〉12|Φ+〉34|Φ+〉56

+ |11〉12|Ψ −〉34|Φ+〉56)
= 1√

2
(|00〉12|Φ+〉34|Φ+〉56 + |11〉12|Ψ −〉34|Ψ −〉56),

|C (1)
1 〉123456 = CZ(1, 5)CNOT (2, 6)CNOT (2, 4)|C1〉1234 ⊗ |Ψ −〉56

= CZ(1, 5)CNOT (2, 6)|C1〉′1234 ⊗ |Ψ −〉56
= CZ(1, 5)CNOT (2, 6)

1√
2
(|00〉12|Φ+〉34|Ψ −〉56

+ |11〉12|Ψ −〉34|Ψ −〉56)
= 1√

2
(|00〉12|Φ+〉34|Ψ −〉56 + |11〉12|Ψ −〉34|Φ+〉56).

2. Alice prepares n
2 decoy logical particles which are randomly selected from

{|0r 〉, |1r 〉, |+r 〉, |−r 〉}. Then, Alice inserts n
2 decoy logical particles into the

sequence SA(34) = {ai3, ai
′
4 } to obtain the new sequence S′

A(34). After that, Alice
transmits S′

A(34) to Bob.
3. After Alice confirms that Bob has received the sequence S′

A(34), she discloses the
position of the decoy logical particles and the corresponding measurement bases.
Then, Bob measures decoy logical particles by utilizing the correct measurement
bases. If the error rate is smaller than the selected threshold, they continue to
perform the next step. Otherwise, they give up the protocol.

4. After Bob removes the decoy logical particles, he can get the sequence SA(34).
Then, Bob executes unitary operation U2t iB

on ai
′
4 according to KB , where the

superscript t iB = kiB . So Bob can gain the encoded message sequence S∗
A(34).

Then, Bob inserts n
2 decoy logical particles into S∗

A(34) to get the new sequence
S∗∗
A(34). After that, Bob performs a permutation operator

∏
n on S∗∗

A(34), and makes
∏

n S
∗∗
A(34) = S∗∗′

A(34). Last, Bob transmits S∗∗′
A(34) to Alice.

U0|C (0)
1 〉123456 = I 4

1√
2
(|00〉12|Φ+〉34|Φ+〉56 + |11〉12|Ψ −〉34|Ψ −〉56)

= 1√
2
(|00〉12|Φ+〉34|Φ+〉56 + |11〉12|Ψ −〉34|Ψ −〉56)

= 1√
2
(|C1〉′1256|+r 〉34 + |C2〉′1256|−r 〉34),

U2|C (0)
1 〉123456 = iY 4 1√

2
(|00〉12|Φ+〉34|Φ+〉56 + |11〉12|Ψ −〉34|Ψ −〉56)
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= 1√
2
(|11〉12|Φ+〉34|Ψ −〉56 − |00〉12|Ψ −〉34|Φ+〉56)

= 1√
2
(|C4〉′1256|+r 〉34 + |C3〉′1256|−r 〉34),

U0|C (1)
1 〉123456 = I 4

1√
2
(|00〉12|Φ+〉34|Ψ −〉56 + |11〉12|Ψ −〉34|Φ+〉56)

= 1√
2
(|00〉12|Φ+〉34|Ψ −〉56 + |11〉12|Ψ −〉34|Φ+〉56)

= 1√
2
(|C3〉′1256|+r 〉34 + |C4〉′1256|−r 〉34),

U2|C (1)
1 〉123456 = iY 4 1√

2
(|00〉12|Φ+〉34|Ψ −〉56 + |11〉12|Ψ −〉34|Φ+〉56)

= 1√
2
(|11〉12|Φ+〉34|Φ+〉56 − |00〉12|Ψ −〉34|Ψ −〉56)

= 1√
2
(|C2〉′1256|+r 〉34 + |C1〉′1256|−r 〉34).

5. Bob performs eavesdropping detection as Alice does in step 3.
6. Alice discloses KA. Bob concludes the final key K = H(KA, KB).
7. Bob declares the permutation operator

∏
n . Then, Alice can obtain the encoded

message sequence S∗
A(34). Next, Alice performs CNOT operation U 2,6

CNOT , mea-

sures the particles {ai1, ai2, ai5, ai6} by using Cluster states, and measures the
particles {ai3, ai4} with logical X-basis. The result states are denoted as follows:

U 2,6
CNOTU0|C (0)

1 〉123456 = 1√
2
(U 2,6

CNOT |C1〉′1256|+r 〉34 +U 2,6
CNOT |C2〉′1256|−r 〉34)

= 1√
2
(|C1〉1256|+r 〉34 + |C2〉1256|−r 〉34),

U 2,6
CNOTU2|C (0)

1 〉123456 = 1√
2
(U 2,6

CNOT |C4〉′1256|+r 〉34 +U 2,6
CNOT |C3〉′1256|−r 〉34)

= 1√
2
(|C4〉1256|+r 〉34 + |C3〉1256|−r 〉34),

U 2,6
CNOTU0|C (1)

1 〉123456 = 1√
2
(U 2,6

CNOT |C3〉′1256|+r 〉34 +U 2,6
CNOT |C4〉′1256|−r 〉34)

= 1√
2
(|C3〉1256|+r 〉34 + |C4〉1256|−r 〉34),

U 2,6
CNOTU2|C (1)

1 〉123456 = 1√
2
(U 2,6

CNOT |C2〉′1256|+r 〉34 +U 2,6
CNOT |C1〉′1256|−r 〉34)

= 1√
2
(|C2〉1256|+r 〉34 + |C1〉1256|−r 〉34).

By Table 1, Alice infers the secret key KB and the final key K = H(KA, KB).
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Table 1 The relationship among message bits, unitary operations and measurement results

KA Message
qubits

KB Unitary
operation

The result of Cluster
states measurement

The result of logical
X-basis measurement

0 |Φ+〉 0 I |C1〉 |+r 〉
0 |Φ+〉 0 I |C2〉 |−r 〉
0 |Φ+〉 1 iY |C4〉 |+r 〉
0 |Φ+〉 1 iY |C3〉 |−r 〉
1 |Ψ −〉 0 I |C3〉 |+r 〉
1 |Ψ −〉 0 I |C4〉 |−r 〉
1 |Ψ −〉 1 iY |C2〉 |+r 〉
1 |Ψ −〉 1 iY |C1〉 |−r 〉

4 Security analysis

The QKA protocol mainly involves two kinds of attacks: participant attack and out-
sider attacks (Trojan-horse attacks, Intercept-resend attack,Measure-resend attack and
Entangle-measure attack). In order to prove the security of these protocols, we will
discuss them according to these two kinds of attacks.

4.1 Participant attack

In the protocol against collective-dephasing noise, we ensure the security of the
sequences S

′∗
A and S

′∗
B by inserting decoy logical particles in step 6 and perform-

ing eavesdropping check in step 7. Because Alice (Bob) obtains the KB(KA) after she
(he) sends the encoded message sequences to Bob (Alice), she (he) cannot change the
final key as she (he) expected. Therefore, this protocol can resist the participant attack.

In the protocol against collective-rotation noise, the delayedmeasurement technique
guarantees that Alice obtains KB after he announces KA. Thus, Alice cannot change
KA according to KB . On the other hand, because Bob obtains KA after he sends the
encoded message sequence S∗

A(34), he cannot change the final key as he expected.
Therefore, this protocol can also resist the participant attack.

4.2 Outsider attack

Trojan-horse attacks: In the protocol against collective-dephasing noise, because each
qubit in quantum channel is delivered only once, the protocol is immune to two kinds of
Trojan-horse attacks [31]. However, in the protocol against collective-rotation noise,
the same particles are deliveredmore than once. In order to avoid Trojan-horse attacks,
Alice and Bob can use the qubit number splitter (PNS: 50/50) and wavelength filter.
They can divide each signal into two pieces by using qubit number splitter. If a multi-
qubit signal appears an irrational high rate, the attack can be found [32,33].

Intercept-resend attack: Take the protocol against collective-dephasing noise as an
example, when Eve wants to perform the intercept-resend attack on the sequences S

′′∗
A
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and S
′′∗
B , shemust intercept the two sequences in step6 and send the twopseudo-random

sequences to Bob and Alice, respectively. However, Eve does not know the position
of the decoy logical particles and the corresponding measurement bases before the
eavesdropping check. Therefore, when performing the eavesdropping check in step 7,
the probability of detecting the intercept-resend attack is 1 − ( 12 )

n
2 , where n

2 denotes
the number of decoy logical particles.

Measure-resend attack: Take the protocol against collective-dephasing noise as an
example, when Eve performs the measure-resend attack on the sequences S

′′∗
A and

S
′′∗
B in step 6, Eve does not know the position of the decoy logical particles and

the corresponding measurement bases before the eavesdropping check. Thus, Eve’s
measurement would change the states of decoy logical particles in the sequences
S

′′∗
A and S

′′∗
B . When performing the eavesdropping check in step 7, the probability of

discovering Eve’s attack is 1 − ( 34 )
n
2 , where n

2 denotes the number of decoy logical
particles.

Entangle-measure attack: In these two protocols, suppose that Eve executes
entangle-measure attack by using the unitary operation ÛE . We can get the results
as follows:

ÛE |0dp〉|ε〉E = a00|00〉|ε00〉E + a01|01〉|ε01〉E + a10|10〉|ε10〉E + a11|11〉|ε11〉E ,

ÛE |1dp〉|ε〉E = b00|00〉|ε′
00〉E + b01|01〉|ε′

01〉E + b10|10〉|ε′
10〉E + b11|11〉|ε′

11〉E ,

ÛE |+dp〉|ε〉E = 1√
2
(ÛE |0dp〉|ε〉E + ÛE |1dp〉|ε〉E )

= 1

2
[|Φ+〉(a00ε00〉E + a11|ε11〉E + b00|ε′

00〉E + b11|ε′
11〉E )

+ |Φ−〉(a00|ε00〉E − a11|ε11〉E + b00|ε′
00〉E − b11|ε′

11〉E )

+ |Ψ +〉(a01|ε01〉E + a10|ε10〉E + b01|ε′
01〉E + b10|ε′

10〉E )

+ |Ψ −〉(a01||ε01〉E − a10|ε10〉E + b01|ε′
01〉E − b10|ε′

10〉E )],
ÛE |−dp〉|ε〉E = 1√

2
(ÛE |0dp〉|ε〉E − ÛE |1dp〉|ε〉E )

= 1

2
[|Φ+〉(a00|ε00〉E + a11|ε11〉E − b00|ε′

00〉E − b11|ε′
11〉E )

+ |Φ−〉(a00|ε00〉E − a11|ε11〉E − b00|ε′
00〉E + b11|ε′

11〉E )

+ |Ψ +〉(a01|ε01〉E + a10|ε10〉E − b01|ε′
01〉E − b10|ε′

10〉E )

+ |Ψ −〉(a01|ε01〉E − a10|ε10〉E − b01|ε′
01〉E + b10|ε′

10〉E )].

where |a00|2 +|a01|2 +|a10|2 +|a11|2 = 1, |b00|2 +|b01|2 +|b10|2 +|b11|2 = 1. |ε〉E
denotes an ancillary system. If Eve does not want to be detected in the eavesdropping
check, the ÛE must satisfy four conditions: a01 = b10 = 1, a00 = a10 = a11 = 0,
b00 = b01 = b11 = 0 and |ε01〉E = |ε′

10〉E . Obviously, Eve does not introduce any
errors only when the ancillary state and the target particle {|0dp〉, |1dp〉} are product
states. That is, she cannot obtain useful information about KA and KB . Thus, the two
protocols can resist the outsider attacks.
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5 Efficiency analysis

Cabello [34] introduced the qubit efficiency which is given as

η = c

q + b
,

where c, q, b denote the length of the final key, the number of the used particles, and
the number of classical bits exchanged for decoding of the message, respectively.

In the protocol against collective-dephasing noise, the length of the final key
K = H(KA, KB) = (k1A||k1B)|| . . . ||(knA||knB) is c1 = 2n. Alice and Bob prepare
n quantum states, and use n

2 decoy logical particles in step 6 respectively, where a
quantum state and a decoy logical particle are composed of two particles, respec-
tively. Therefore, the number of the used particles is q1 = 4n + n

2 · 2 · 2 = 6n. Alice
and Bob encode their private information by using unitary operation on n-bit single
particle sequences in step 5, respectively. So the number of classical bits exchanged
for decoding of the message is b1 = 2n. Thus, the qubit efficiency of the protocol
against collective-dephasing noise is calculated as

η1 = c1
q1 + b1

= 2n
(
4n + n

2 · 2 · 2) + 2n
= 2

8
= 25%.

In the protocol against collective-rotation noise, the length of the final key
K = H(KA, KB) = (k1A||k1B)|| . . . ||(knA||knB) is c2 = 2n. Alice prepares n four-
particle states and n two-particle states, and uses n

2 decoy logical particles in step 2
and step 4, where a decoy logical particle is composed of two particles. Therefore, the
number of the used particles is q2 = 4n+2n+2 ·( n2 + n

2 ) = 8n. Alice encodes her pri-
vate information by using unitary operation on n-bit single particle sequences in step 4.
So the number of classical bits exchanged for decoding of themessage is b2 = n. Thus,
the qubit efficiency of the protocol against collective-rotation noise is calculated as

η2 = c2
q2 + b2

= 2n
(
4n + 2n + 2 · ( n

2 + n
2

)) + n
= 2

9
≈ 22.22%.

Table 2 Comparison between our protocols and the other two-party protocols against the collective noises

QKA protocol Quantum resource Quantum measurement
basis

Qubit
efficiency (%)

Huang et al.’s
protocol [22]

Logical Bell states Z-basis and X-basis 16.67

Huang et al.’s
protocol [26]

Four-qubit DF states ZZXX-basis and XZXZ-basis 10

He et al.’s protocol [23] Logical χ -states ZZ-basis and Bell basis 21.05

He et al.’s protocol [27] Logical GHZ states ZZ-basis and Bell basis 21.05

Our first protocol Bell states Bell basis 25

Our second protocol Cluster states Cluster basis and logical X-basis 22.22

123



Quantum key agreement with Bell states and Cluster states… Page 13 of 14 190

The comparison between our protocols and the other two-party protocols against the
collective noises is shown in Table 2. From Table 2, we conclude that our agreements
are more efficient.

6 Conclusion

The influence of the collective noises on quantum communication is a common
problem. However, there are few QKA protocols resisting the collective noises. In
this paper, based on logical quantum states, we propose two QKA protocols which
can be immune to the collective-dephasing noise and the collective-rotation noise,
respectively. By using the decoy logical particles method [35–42], the security of the
protocols are guaranteed. By comparison between our protocols and the other two-
party protocols against collective noise, it is quite obvious that our protocols are more
efficient.
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