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Abstract
The quantum Fisher information matrix provides us with a tool to determine the
precision, in any multiparametric estimation protocol, through quantum Cramér–Rao
bound. In this work, we study simultaneous and individual estimation strategies using
the density matrix vectorization method. Two special Heisenberg XY models are
considered. The first one concerns the anisotropic XY model in which the temperature
T and the anisotropic parameter γ are estimated. The second situation concerns the
isotropic XY model submitted to an externalmagnetic field B inwhich the temperature
and the magnetic field are estimated. Our results show that the simultaneous strategy
of multiple parameters is always advantageous and can provide a better precision than
the individual strategy in the multiparameter estimation procedures.

Keywords Quantum estimation · Quantum Fisher information matrix · Quantum
Heisenberg XY model

1 Introduction

The parameter estimation is of paramount importance in the development of high
precision devices in several areas of technology [1–3]. Recently, quantum metrology
has attracted considerable attention by employing the quantum effects to improve the
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precision limit and to develop new methods to measure physical parameters beyond
the classical metrological methods [4,5]. Now, there exists several applications of
quantum metrology. One may quote clock synchronization [6], the maximization of
the sensitivity of gravitational waves detector [7], the obtention of the bounds on the
optimal estimation of phases [8–10], the estimation of space–time parameters [11–
13], electromagnetic field sensing [14,15] and the optimal estimation of the reservoirs
temperature [16–18]. The quantum metrology protocols can substantially improve
the estimation precision by taking advantage of quantum correlations existing in a
multipartite system: entanglement [19–21], quantum discord [22–24].

The limit of the precision of measurement of a set of parameters θ̂ in quantum
metrology is usually framed by the inequality called the quantum Cramér–Rao bound
[25] which writes Cov(θ̂) ≥ F−1, where Cov(θ̂) denotes the covariance matrix of an
estimation vector which contains the parameters to be estimated and F denotes the
quantumFisher informationmatrix (QFIM) [26]. Obviously, the Cramer–Rao inequal-
ity reduces, in the case of a single parameter θ , to Var(θ) ≥ F−1, where Var(θ) is
the variance that corresponds to the square of the standard deviation and F denotes
the quantum Fisher information quantity (QFI) [3,27,28]. More precision is obtained
for small variance. So, the ultimate goal in any quantum metrology protocol is to
reach the smallest value of the variance. In this direction, it is clear that the inverse
of QFIM for many unknown parameters (or the inverse of the quantity QFI for one
unknown parameter) provides the lower error limit of the estimation the parameters.
Therefore, the way to increase QFIM (or QFI) is a challenging issue in quantum
metrology [25]. The Cramer–Rao inequality associated with the estimation of a sin-
gle parameter has been studied extensively [29,30]. The single-parameter estimation
plays an important role in many ways, because of the existence of an optimal probe
state containing a maximum amount of QFI [31–33]. Realistic problems can usually
involve several parameters, because there is no optimal probe state in which QFIM is
larger than the other states [34]. In addition, the Cramer–Rao inequality is not always
saturable because the measurements for different parameters may be incompatible
[35,36]. Therefore, the simultaneous estimation of several parameters becomes an
important task in quantum metrology. Recently, studies on multiparameter estimation
have attracted a great deal of interest. Simultaneous estimation of several parame-
ters can give a better precision than their individual estimation. It has been shown
that entanglement of several particles can improve multiphase estimation processes
[37,38]. In addition, two-mode entangled coherent states are proposed for estimating
linear and nonlinear phase shifts [39].

It has been recently reported in several studies that quantum correlations present
in a physical system can be considered as an essential resource to improve precision
in quantum metrology [40]. In this respect, the investigation whether the increase in
QFIM (or QFI) can be used as indicator of the existence of quantum correlations in
a multipartite system and to quantify the quantum correlations in terms of quantum
Fisher information. Some works were developed in this direction [41–43]. However,
it must be stressed the understanding of quantum correlations and entanglement in
quantum metrology and their role in achieving the highest precision of the estimated
parameter, is far from complete.
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This paper is structured as follows. In Sect. 2, we discuss the basics of multipa-
rameter quantum estimation theory and the essential mathematical tools to derive the
quantum Fisher information matrix. A special attention is devoted to the vectorization
method of density matrix. In Sect. 3, we examine the precision of the multiparametric
estimation using QFIM in Heisenberg XY model. We consider two special situations
[44]. The first one concerns the anisotropic XY model and the second deals with
the isotropic XY model submitted to an external magnetic field. We derive the cor-
responding symmetric logarithmic derivatives and conditions for saturability of the
quantum Cramér–Rao bound which gives the ultimate precision. We also analyze the
simultaneous and individual strategies. This is done by introducing the ratio between
the minimal amounts of total variances for each estimating protocol. We end up the
paper with concluding remarks.

2 Quantum Fisher informationmatrix

In this section, we review some mathematical tools that are essential to derive the
quantum Fisher informationmatrix. In this sense, we consider an algebraic application
that transforms a matrix into a column vector to define the elements of the quantum
Fisher information matrix without diagonalizing the density matrix. LetMn × n denote
the space of n × n real (or complex) matrices. For any matrix A ∈ M

n × n , the vec-
operator is defined as [45]

vec [A] = (a11, . . . , an1, a12, . . . , an2, . . . , a1n, . . . , ann)
T. (1)

Furthermore, using the expression A = ∑n
k,l=1 akl |k〉 〈l|, the vec-operator rewrites

vec [A] = (In × n ⊗ A)

n∑

i=1

ei ⊗ ei , (2)

where ei denotes the elements of the computational basis of Mn × n . This means that
the vec-operator creates a column vector from a matrix A by stacking the column
vectors of A below one another. Using the properties of the Kronecker product [46],
one gets

vec [AB] = (In ⊗ A) vec [B] =
(
BT ⊗ In

)
vec [A] , (3)

tr
(
A†B

)
= vec[A]†vec [B] . (4)

vec [AXB] =
(
BT ⊗ A

)
vec [X ] , (5)

for any matrices A, B and X . Before giving the explicit expression of the quantum
Fisher information matrix using the vec-operator associated with the density matrix
ρ, we will review some elements of the concept of quantum Fisher information matrix
(QFIM) to estimate several parameters {θi } = {θ1, θ2, . . . , θn}. The quantum Fisher
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information is the maximum amount of information about estimating a parameter
obtained from optimal measurements. For states ρθ , dependent on a single parameter
θ , the quantumFisher information is defined byF (ρθ ) = Tr

{
ρθ Lθ

2
}
, where Lθ is the

symmetric logarithmic derivative. In situationswheremore parameters θi are involved,
the relevant object, in the estimation problem, is given by the so-called quantum Fisher
information matrix [25]

Fi j = 1

2
Tr

{(
L̂θi L̂θ j + L̂θ j L̂θi

)
ρ
}

, (6)

where the symmetric logarithmic derivatives L̂θi satisfy the algebraic equations:

2∂θi ρ = L̂θi ρ + ρ̂ L̂θi . (7)

Clearly, the explicit derivation of the quantum Fisher information matrix (6) requires
the expression of the symmetric logarithmic derivative L̂θi (7). The explicit expressions
of the quantum Fisher information matrix have been reported in the literature [25,47,
48]. Using the spectral decomposition of the density matrix, i.e., ρ = ∑

k
pk |k〉 〈k|,

the quantum Fisher information matrix was derived in terms of the eigenvalues of ρ

[47,48]

Fi j = 2
∑

pk+pl>0

〈k| ∂θi ρ |l〉 〈l| ∂θ j ρ |k〉
pk + pl

, (8)

and the symmetric logarithmic derivatives are given by

Lθi = 2
∑

pk+pl>0

〈k| ∂θi ρ |l〉
pk + pl

|k〉 〈l| . (9)

The quantum Fisher information matrix can be written in terms of the exponentiation
of the density matrix as [25]

Fi j = 2

∞∫

0

Tr
[
e−ρt∂θi ρe

−ρt∂θ j ρ
]
. (10)

Very recently, a new explicit expression of the quantum Fisher information matrix,
basedon the vectorizationmethodof densitymatrixρ, has been introduced in [49]. This
method has the advantage of being analytically computable for an arbitrary system. It
does not require the diagonalization the density matrix as in the expression (8) or to
compute the integral and exponentiation as in Eq. (10). It is based on the computation
of the inverse of the following matrix

� =
(
ρT ⊗ I + I ⊗ ρ

)
. (11)
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Using the properties given by Eqs. (3), (5) and (4), it is easy to check that the quantum
Fisher information matrix, given by Eqs. (8) and (10), rewrites as

Fi j = 2vec
[
∂i ρ̂

]T
�−1vec

[
∂ j ρ̂

]
. (12)

and the symmetric logarithmic derivatives are given by

vec
[
Lθi

] = 2�−1vec
[
∂i ρ̂

]
. (13)

Usually, in single-parameter estimation scenarios, the scalar Cramer–Rao inequality
Var(θ) ≥ F−1 is always saturable. This saturation gives an optimal quantummeasure-
ment operatorswhich is obtainedby the projectors on the eigenvectors of the symmetric
logarithmic derivative operators Lθ . Unlike the single-parameter estimation, thematrix
Cramer–Rao inequality in multiparameter estimation scenarios, Cov(θ̂) ≥ F−1, can
not always be saturable. This is due to the fact that the optimal operators measure-
ments of different parameters can be incompatibles [35,36]. Therefore, it is natural
look for the conditions that must be verified such that this inequality can be saturated.
For this end, Eq. (13) must be solved to determine the symmetric logarithmic deriva-
tives Lθi corresponding to the different estimated parameters. In the case where the
operators Lθi commute, one can find a common eigenbasis for all symmetric logarith-
mic derivatives. In this picture, one can perform simultaneous measurement saturating
the Cramer–Rao inequality. The commutativity condition [Lθi , Lθ j ] = 0 is sufficient
but not necessary. In the case where the symmetric logarithmic derivatives are not
commuting, the condition Tr(ρ[Lθi , Lθ j ]) = 0 ensures the saturation of Cramer–Rao
inequality [36,50,51].

3 QFIM in the quantumHeisenberg XYmodel

The Heisenberg Hamiltonian for a chain of N qubits, interacting with the nearest
neighbor, can be written as [52–54]

H =
N∑

n=1

(
Jx S

x
n S

x
n+1 + Jy S

y
n S

y
n+1 + Jz S

z
n S

z
n+1

)
(14)

where Sin = 1
2σ

i
n ( i = x, y, z ) andσ i

n are the local spin-
1
2 operators and Paulimatrices,

respectively, at site n. We assume periodic boundary conditions, i.e., SiN+1 = Si1. The
parameters Ji denote the coupling constants for the spin interaction. For Jx �= Jy �= Jz ,
the Heisenberg chain is called XY Z model. In the particular cases Jx = Jy �= Jz and
Jx = Jy = Jz are the XX Z and XXX models, respectively. The chain is antiferro-
magnetic (AFM) for Ji positive, and ferromagnetic (FM) for Ji negative (see [55] and
references therein). The Heisenberg antiferromagnetic and ferromagnetic properties
have been considered in the context of quantum information science [56,57]. The inter-
est for this system has been revived thanks to several proposals for the realization of
solid-state quantum computation processors using electron spin localized as qubits. In
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such realizations, the basic gate operations involve different forms of the Heisenberg
Hamiltonian. In this context, the XY (Jz = 0) and Ising (Jy = Jz = 0) interactions
are analyzed in the references [58,59]. The role of QFI to detect the quantum phase
transition (QPT) was investigated recently in the literature. For instance, in [60], the
authors have analyzed the phase transition in XY spin models. In particular, it has
been shown that the first and second derivatives of QFI versus the QPT parameter
(the magnetic field), in the thermodynamic limit (i.e., N −→ ∞), exhibit a local
minimum near the critical point. Furthermore, the first derivative displays the phe-
nomenon of sudden transition and the second derivative represents the sudden jump
and divergence at the critical point transition. In this work, we will use the quantum
Fisher information matrix (QFIM) to study the precision of the measurement of some
parameter occurring in the XY anisotropic model and the XY isotropic model in a
external magnetic field (along the z axis). The state of a quantum system described by
the Hamiltonian H at thermal equilibrium is described by the Gibb’s density operator,
ρ = exp (−βH)/Z where Z = Tre−βH is the partition function of the system and
β = 1/kT , k is Boltzmann constant which we henceforth will take to 1 and T the
temperature.

3.1 Anisotropic XYmodel

We first consider the Hamiltonian H for two-qubit Heisenberg XY model (i.e., N = 2
and Jz = 0).Using the raising and lowering operatorsσ±

n = σ x
n ± σ

y
n , theHamiltonian

(14) gives
H = J

(
σ+
1 σ−

2 + σ+
2 σ−

1

) + Jγ
(
σ+
1 σ+

2 + σ−
2 σ−

1

)
, (15)

where J = Jx+Jy
2 and γ = Jx−Jy

Jx+Jy
. Without loss of generality, we set J = 1. The

parameter γ is the anisotropy parameter. It is zero (Jx = Jy) for the isotropic XX
model and± 1 for the Isingmodel. The eigenvalues and eigenstates of theHamiltonian
H are analytically obtained as H

∣
∣ψ±〉 = ± ∣

∣ψ±〉
, H

∣
∣χ±〉 = ± γ

∣
∣χ±〉

, with the
∣
∣ψ±〉 = 1√

2
(|01〉 ± |10〉) and ∣

∣χ±〉 = 1√
2

(|00〉 ± |11〉) are the maximally entangled
Bell states. In the standard basis {|00〉 , |01〉 , |10〉 , |11〉}, the density matrix ρ =
exp (−βH)/Z can be written as

ρ =

⎡

⎢
⎢
⎣

a 0 0 x
0 b z 0
0 z b 0
x 0 0 a

⎤

⎥
⎥
⎦ , (16)

where the entries given by

a = cosh (βγ )

2 cosh (βγ ) + 2 cosh (β)
, b = cosh (β)

2 cosh (βγ ) + 2 cosh (β)
, (17)

x = − sinh (βγ )

2 cosh (βγ ) + 2 cosh (β)
, z = − sinh (β)

2 cosh (βγ ) + 2 cosh (β)
. (18)
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In what follows, we shall consider the estimation of the anisotropy parameter γ and
the temperature T . To evaluate the quantum Fisher information matrix, one has first
to compute the matrix � given by (11). It writes

� =

⎡

⎢
⎢
⎣

�11 04× 4 04× 4 �14
04× 4 �22 �23 04× 4
04× 4 �32 �33 04× 4
�41 04× 4 04× 4 �44

⎤

⎥
⎥
⎦ , (19)

with �i j (i, j = 1, 2, 3, 4) are the 4 × 4 matrix given by

�11 = �44 =

⎡

⎢
⎢
⎣

2a 0 0 x
0 a + b z 0
0 z a + b 0
x 0 0 2a

⎤

⎥
⎥
⎦ ,

�22 = �33 =

⎡

⎢
⎢
⎣

a + b 0 0 x
0 2b z 0
0 z 2b 0
x 0 0 a + b

⎤

⎥
⎥
⎦ , (20)

and

�23 = �32 =

⎡

⎢
⎢
⎣

z 0 0 0
0 z 0 0
0 0 z 0
0 0 0 z

⎤

⎥
⎥
⎦ , �41 = �14 =

⎡

⎢
⎢
⎣

x 0 0 0
0 x 0 0
0 0 x 0
0 0 0 x

⎤

⎥
⎥
⎦ . (21)

The inverse of the matrix � Eq. (19) is given by

�−1 =

⎡

⎢
⎢
⎣

(
�−1

)
11 04× 4 04× 4

(
�−1

)
14

04× 4
(
�−1

)
22

(
�−1

)
23 04× 4

04× 4
(
�−1

)
32

(
�−1

)
33 04× 4(

�−1
)
41 04× 4 04× 4

(
�−1

)
44

⎤

⎥
⎥
⎦ , (22)

with

(
�−1

)

11
=

(
�−1

)

44
=

⎡

⎢
⎢
⎣

α 0 0 ξ

0 δ λ 0
0 λ δ 0
ξ 0 0 α

⎤

⎥
⎥
⎦ ,

(
�−1

)

22
=

(
�−1

)

33
=

⎡

⎢
⎢
⎣

δ 0 0 ε

0 ν μ 0
0 μ ν 0
ε 0 0 δ

⎤

⎥
⎥
⎦ , (23)
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and

(
�−1

)

23
=

(
�−1

)

32
=

⎡

⎢
⎢
⎣

λ 0 0 η

0 μ ω 0
0 ω μ 0
η 0 0 λ

⎤

⎥
⎥
⎦ ,

(
�−1

)

41
=

(
�−1

)

14
=

⎡

⎢
⎢
⎣

ξ 0 0 τ

0 ε η 0
0 η ε 0
τ 0 0 ξ

⎤

⎥
⎥
⎦ , (24)

where the elements α, ξ , δ, λ, τ , ε, η, υ, μ and ω are, respectively, given by

α = 1

4
(cosh (β) + cosh (βγ )) (3 + cosh (2βγ )) sech (βγ ) , (25)

ξ = 1

2
(cosh (β) + cosh (βγ )) sinh (βγ ) , (26)

δ = 1 + cosh (β) cosh (βγ ) , λ = sinh (β) cosh (βγ ) , (27)

τ = 1

2
(cosh (βγ ) + cosh (β)) sinh (βγ ) tanh (βγ ) , (28)

ε = cosh (β) sinh (βγ ) , η = sinh (β) sinh (βγ ) , (29)

υ = 1

4
(3 + cosh (2β)) (cosh (β) + cosh (βγ )) sech (β) , (30)

μ = 1

2
(cosh (β) + cosh (βγ )) sinh (β) , (31)

ω = 1

2
(cosh (β) + cosh (βγ )) sinh (β) tanh (β) . (32)

Using the definition (2), one writes

vec
[
∂γ ρ

] = (
∂γ a, 0, 0, ∂γ x, 0, ∂γ b, ∂γ z, 0, 0, ∂γ z, ∂γ b, 0, ∂γ x, 0, 0, ∂γ a

)T
, (33)

and

vec [∂T ρ] = (∂T a, 0, 0, ∂T x, 0, ∂T b, ∂T z, 0, 0, ∂T z, ∂T b, 0, ∂T x, 0, 0, ∂T a)T. (34)

Using (12), the quantum Fisher information matrix can be determined as

F =
[
Fγ γ Fγ T

FTγ FTT

]

=
[
2vec

[
∂γ ρ

]T
�−1vec

[
∂γ ρ

]
2vec

[
∂γ ρ

]T
�−1vec [∂T ρ]

2vec[∂T ρ]T�−1vec
[
∂γ ρ

]
2vec[∂T ρ]T�−1vec [∂T ρ]

]

.

(35)
It is simple to verify that

Fγ γ = 4
[
(α + τ)

((
∂γ a

)2 + (
∂γ x

)2
)

+ (ν + ω)
((

∂γ b
)2 + (

∂γ z
)2

)

+ 4ξ ∂γ a ∂γ x + 4μ∂γ b ∂γ z
]
, (36)
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FTT = 4
[
(α + τ)

(
(∂T a)2 + (∂T x)

2
)

+ (ν + ω)
(
(∂T b)

2 + (∂T z)
2
)

+ 4ξ ∂γ a ∂T x + 4μ∂T b ∂T z
]
, (37)

and

Fγ T = 4 (α + τ)
(
∂γ a ∂T a + ∂γ x ∂T x

) + 4 (ν + ω)
(
∂γ b ∂T b + ∂γ z ∂T z

)

+ 8ξ
(
∂γ a ∂T x + ∂γ x ∂T a

) + 8μ
(
∂γ b ∂T z + ∂γ z ∂T b

)
. (38)

The optimal estimator, in any given quantum metrology protocol, is defined as one
which saturates the quantum Cramer–Rao inequality. This bound is a lower limit of
the covariance matrix of estimators θ̂ = (γ, T ) and it reads

Cov(θ̂) ≥ F−1. (39)

The inverse of quantum Fisher information matrix is given by

F−1 = 1

det (F)

[
FTT − Fγ T

− Fγ T Fγ γ

]

. (40)

Therefore, from the inequality (39), one gets [61]

Var (γ ) ≥ FTT
det (F)

, (41)

Var (T ) ≥ Fγ γ

det (F)
, (42)

and

(

Var (γ ) − FTT
det (F)

) (

Var (T ) − Fγ γ

det (F)

)

≥
(

Cov (γ, T ) + Fγ T

det (F)

)2

. (43)

Using Eq. (13), the matricial forms of the symmetric logarithmic derivatives, in term
of the parameters γ and T , are given by

Lγ = 2

⎡

⎢
⎢
⎣

(α + τ) ∂γ a + 2ξ∂γ x 0 0 (α + τ) ∂γ x + 2ξ ∂γ a
0 (ν + ω)∂γ b + 2μ ∂γ z (ν + ω)∂γ z + 2μ ∂γ b 0
0 (ν + ω)∂γ z + 2μ ∂γ b (ν + ω)∂γ b + 2μ ∂γ z 0

(α + τ) ∂γ x + 2ξ ∂γ a 0 0 (α + τ ) ∂γ a + 2ξ∂γ x

⎤

⎥
⎥
⎦ ,

(44)
and

LT = 2

⎡

⎢
⎢
⎣

(α + τ) ∂T a + 2ξ∂T x 0 0 (α + τ) ∂T x + 2ξ ∂T a
0 (ν + ω)∂T b + 2μ ∂T z (ν + ω)∂T z + 2μ ∂T b 0
0 (ν + ω)∂T z + 2μ ∂T b (ν + ω)∂T b + 2μ ∂T z 0

(α + τ) ∂T x + 2ξ ∂T a 0 0 (α + τ) ∂T a + 2ξ∂T x

⎤

⎥
⎥
⎦ .

(45)
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Fig. 1 The minimal variances of simultaneous estimates of parameters γ and T

The eigenvectors of Lγ and LT can be expressed as a linear combination of Bell states∣
∣ψ±〉 = 1√

2
(|01〉 ± |10〉) and

∣
∣χ±〉 = 1√

2
(|00〉 ± |11〉) which are the eigenstates

of the Hamiltonian under consideration (14). They provide the optimal measurement
bases such that the limits imposed by the inequalities (41), (42) and (43) are fulfilled.
The optimal bases for γ and T are given by:

Bγ = BT = {− ∣
∣ψ−〉

,
∣
∣ψ+〉

,− ∣
∣χ−〉

,
∣
∣χ+〉}

. (46)

The fact that we have the same optimal estimation bases means that the symmetric
logarithmic derivatives Lγ and LT commute. This will allow us to satisfy and saturate
the bounds given by (41), (42) and (43). The saturation of the first two inequalities
gives the highest precision on the estimation of the parameters γ and T . The minimal
values of Var(γ ) and Var(T ) are given by

Var(γ )min = T 2
(
1 + γ 2 +

(
1 + γ 2

)
cosh (β) cosh (βγ ) − 2γ sinh (β) sinh (βγ )

)
, (47)

Var(T )min

= T 4
[
3

2
+ cosh (β (γ − 2)) + cosh (β (2 + γ )) + cosh (β (1 − 2γ )) + cosh (β (1 + 2γ ))

4 (cosh (β) + cosh (βγ ))

]

.

(48)

The results reported in Fig. 1 (the left panel) represent the minimal variance of the
estimator of the parameter γ estimated simultaneously. These results show that at low
temperature, the highest precision of the parameter γ is γopt = ± 1 which corresponds
to Ising model. On the other hand, best precision of γ with high temperature corre-
sponds to the case where γopt = 0. This corresponds to the isotropic XX model. The
right panel of Fig. 1 represents the evolution of the minimal variance of the estimator
of the temperature estimated simultaneously. This variance shows that the optimal
value of the temperature T is almost equal to Topt = 0.25 for the case of the isotropic
XX model and Topt = 0.5 for Ising model.
Now, we consider the situation in which we estimate the parameters individually. For
this, we assume that the parameters are statistically independent. This means that the
precise identification of a single parameter does not affect the accuracy of others. This
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Fig. 2 The minimal variances of individual estimates of parameters γ and T

is only true in the case where Fi j = 0 (i �= j). This implies

Var (γ )Ind ≥ F−1
γ γ , Var (T )Ind ≥ F−1

T T . (49)

The saturation of these last two inequalities leads to

Var (γ )Indmin

= 4T 2(cosh (β) + cosh (βγ ))3

6 (cosh (β) + cosh (βγ )) + cosh (β (γ − 2)) + cosh (β (γ + 2)) + cosh (β (1 − 2γ )) + cosh (β (1 + 2γ ))
,

(50)

and

Var (T )Indmin = T 4(cosh (β) + cosh (βγ ))2
(
1 + γ 2

)
(1 + cosh (β) cosh (βγ )) − 2γ sinh (β) sinh (βγ )

. (51)

The evolution of the minimal variances of individual estimation of the parameters
γ and T is depicted in Fig. 2. We note that the obtained behavior is almost similar to
that observed in the strategy of simultaneous estimation. But there is some difference
in the uncertainty concerning the precise estimation depending on the type of strategy
we employed in the measurement. To compare the obtained results in both cases,
we introduce the ratio between the total variance in the individual and simultaneous
schemes. It is defined as follows:

� = �Sim

�Ind
, (52)

with �Ind = VarIndmin (γ ) +VarIndmin (T ) and �Sim = 1
2

(
Var(γ )min + Var(T )min

)
. After

some simplifications, we obtain

� = (1 + cosh (β) cosh (βγ ))
((
1 + γ 2

)
(1 + cosh (β) cosh (βγ )) − 2γ sinh (β) sinh (βγ )

)

2(cosh (β) + cosh (βγ ))2
.

(53)
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Fig. 3 The ratio between the minimal total variances in estimating the parameters γ and T

In order to assess the performance of a metrological strategy, the ratio � [Eq. (53)]
is plotted in Fig. 3. As shown in Fig. 3, we have� ≤ 1 (i.e.,�Sim ≤ �Ind). This clearly
shows that the simultaneous estimation strategy offers an advantage in the context of
improving the precision in comparison with the individual estimation scheme.

3.2 Isotropic XYmodel with amagnetic field

Now, we consider the two-qubit isotropic XY model (N = 2, Jx = Jy = J and
Jz = 0) subjected to a external magnetic field B which is described by the following
Hamiltonian

H =
2∑

n=1

J
(
Sxn S

x
n+1 + Syn S

y
n+1

) + B
2∑

n=1

Szn . (54)

It rewrites, in terms of the raising and lowering operators σ±
n , as

H = B

2

(
σ z
1 + σ z

2

) + J
(
σ+
1 σ−

2 + σ+
2 σ−

1

)
. (55)

The Hamiltonian H satisfies the following eigenvalues equations

H |00〉 = B |00〉 ; H |11〉 = − B |11〉 ; H
∣
∣ψ±〉 = B

∣
∣ψ±〉

, (56)

where
∣
∣ψ±〉

are the Bell states defined by
∣
∣ψ±〉 = (|00〉 ± |11〉)/√2. The density

matrix ρ = exp (−βH)/Z of this system is given by

ρ =

⎡

⎢
⎢
⎣

c 0 0 0
0 t y 0
0 y t 0
0 0 0 d

⎤

⎥
⎥
⎦ . (57)
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where

c = e−βB

2 (cosh (βB) + cosh (β J ))
, d = eβB

2 (cosh (βB) + cosh (β J ))
, (58)

y = − sinh (β J )

2 (cosh (βB) + cosh (β J ))
, t = cosh (β J )

2 (cosh (βB) + cosh (β J ))
. (59)

For this two-qubit system, we consider the estimation of the magnetic field B and the
temperature T (i.e., θ̂ ≡ (B, T )). In this case, the matrix � [of Eq. (11)] is given by

� =

⎡

⎢
⎢
⎣

�11 04× 4 04× 4 04× 4
04× 4 �22 �23 04× 4
04× 4 �32 �33 04× 4
04× 4 04× 4 04× 4 �44

⎤

⎥
⎥
⎦ , (60)

with

�11 =

⎡

⎢
⎢
⎣

2c 0 0 0
0 c + t y 0
0 y c + t 0
0 0 0 d + c

⎤

⎥
⎥
⎦ , �22 = �33 =

⎡

⎢
⎢
⎣

c + t 0 0 0
0 2t y 0
0 y 2t 0
0 0 0 c + t

⎤

⎥
⎥
⎦ ,

(61)
and

�23 = �32 =

⎡

⎢
⎢
⎣

y 0 0 0
0 y 0 0
0 0 y 0
0 0 0 y

⎤

⎥
⎥
⎦ , �44 =

⎡

⎢
⎢
⎣

d + c 0 0 0
0 c + t y 0
0 y c + t 0
0 0 0 2d

⎤

⎥
⎥
⎦ . (62)

The inverse of matrix � (60) takes the form

�−1 =

⎡

⎢
⎢
⎣

(
�−1

)
11 04× 4 04× 4 04× 4

04× 4
(
�−1

)
22

(
�−1

)
23 04× 4

04× 4
(
�−1

)
32

(
�−1

)
33 04× 4

04× 4 04× 4 04× 4
(
�−1

)
44

⎤

⎥
⎥
⎦ , (63)

where

(
�−1

)

11
=

⎡

⎢
⎢
⎣

n 0 0 0
0 p r 0
0 r p 0
0 0 0 s

⎤

⎥
⎥
⎦ ,

(
�−1

)

22
=

(
�−1

)

33
=

⎡

⎢
⎢
⎣

p 0 0 0
0 e f 0
0 f e 0
0 0 0 g

⎤

⎥
⎥
⎦ ,

(64)
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and

(
�−1

)

44
=

⎡

⎢
⎢
⎣

s 0 0 0
0 g l 0
0 l g 0
0 0 0 m

⎤

⎥
⎥
⎦ ,

(
�−1

)

23
=

(
�−1

)

32
=

⎡

⎢
⎢
⎣

h 0 0 0
0 f k 0
0 k f 0
0 0 0 l

⎤

⎥
⎥
⎦ ,

(65)
with

n = eβB (cosh (βB) + cosh (β J )) , p = 1 + eβB cosh (β J ) , (66)

r = eβB sinh (β J ) , s = 1 + cosh (β J )

cosh (βB)
,

l = (cosh (βB) − sinh (βB)) sinh (β J ) , (67)

e = 1

4
(cosh (βB) + cosh (β J )) (3 + cosh (2β J )) sech (β J ) , (68)

f = 1

2
(cosh (βB) + cosh (β J )) sinh (β J ) , g = 1 + e−βB cosh (β J ) , (69)

h = eβB sinh (β J ) , k = 1

2
(cosh (βB) + cosh (β J )) tanh (β J ) sinh (β J ) ,(70)

The vec-operator associated the density matrix derivatives, with respect to parameters
B and T , is given by

vec [∂Bρ] = (∂Bc, 0, 0, 0, 0, ∂Bt, ∂B y, 0, 0, ∂B y, ∂Bt, 0, 0, 0, 0, ∂Bd)T, (71)

and

vec [∂T ρ] = (∂T c, 0, 0, 0, 0, ∂T t, ∂T y, 0, 0, ∂T y, ∂T t, 0, 0, 0, 0, ∂T d)T. (72)

The quantum Fisher information matrix writes

F =
[
2vec[∂Bρ]T�−1vec [∂Bρ] 2vec[∂Bρ]T�−1vec [∂T ρ]
2vec[∂T ρ]T�−1vec [∂Bρ] 2vec[∂T ρ]T�−1vec [∂T ρ]

]

. (73)

After a straightforward calculation, the elements of the quantum Fisher information
matrix are obtained analytically as

FBB = 2eβB
(
2eβB + (

1 + e2βB
)
cosh (β J )

)

T 2
(
1 + e2βB + 2eβB cosh (β J )

)2 , (74)

FBT = FT B = 2eβB
(
2BeβB + B

(
1 + e2βB

)
cosh (β J ) − (−1 + e2βB

)
J sinh (β J )

)

T 3
(
1 + e2βB + 2eβB cosh (β J )

)2 , (75)

FTT = e−2βB
(
1 + e2βB + 2eβB cosh (β J )

)

4T 4(cosh (βB) + cosh (β J ))3
(76)

×
( (

1 + e2βB
) (

B2 + J 2
)
cosh (β J )

+ 2
(
eβB

(
B2 + J 2

) − B
(−1 + e2βB

)
J sinh (β J )

)
)

.
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The inverse of the quantum Fisher information matrix is given by

F−1 = 1

det (F)

[
FTT − FBT

− FBT FBB

]

. (77)

The equation (39) gives, in this case, the following inequalities

Var (B) ≥ FTT
det (F)

, (78)

Var (T ) ≥ FBB

det (F)
, (79)

and

(

Var (B) − FTT
det (F)

) (

Var (T ) − FBB

det (F)

)

≥ (Cov (B, T ) + FBT )2. (80)

Using Eq. (13), the operators of the symmetric logarithmic derivative LB et LT are,
respectively, given by

LB = 2

⎡

⎢
⎢
⎣

n ∂B c 0 0 0
0 (e + k)∂B t + 2 f ∂B y (e + k)∂B y + 2 f ∂Bt 0
0 (e + k)∂B y + 2 f ∂Bt (e + k)∂Bt + 2 f ∂B y 0
0 0 0 m∂Bd

⎤

⎥
⎥
⎦ , (81)

LT = 2

⎡

⎢
⎢
⎣

n ∂T c 0 0 0
0 (e + k)∂T t + 2 f ∂T y (e + k)∂T y + 2 f ∂T t 0
0 (e + k)∂T y + 2 f ∂T t (e + k)∂T t + 2 f ∂T y 0
0 0 0 m∂T d

⎤

⎥
⎥
⎦ . (82)

The eigenvectors of the operators LB and LT give the optimal measurement bases
that will allow us to reach the bounds in the inequalities (78), (79) and (80). It is simple
to verify that the optimal measurement basis is

BB = BT = {|00〉 ,
∣
∣ψ+〉

,− ∣
∣ψ−〉

, |11〉} . (83)

The symmetric logarithmic derivatives LB and LT commute and a common eigenbasis
can be constructed using the eigenvectors of the Hamiltonian. This basis is the optimal
estimation basis to estimate themagnetic field B and the temperature T . The analytical
expressions of theminimumvariances that give the highest precision for the estimation
of parameters B and T are

Var(B)min =
e− 4βBT 2

(
1 + e2βB + 2eβB cosh (β J )

)3

16J2(cosh (βB) + cosh (β J ))3

×
⎛

⎝

(
1 + e2βB

) (
B2 + J2

)
cosh (β J )

+ 2
(
eβB

(
B2 + J2

)
− B

(
−1 + e2βB

)
J sinh (β J )

)

⎞

⎠ , (84)

123



163 Page 16 of 20 L. Bakmou et al.

Fig. 4 The variances of simultaneous estimates of parameters B and T with J = 1

Var (T )min =
e−βBT 4

(
2eβB +

(
1 + e2βB

)
cosh (β J )

)

2J2
. (85)

According to the equations above [Eqs. (84) and (85)], it is easy to show that whatever
the system is, antiferromagnetic or ferromagnetic (i.e., whatever the value of J is
positive or negative), the behaviors of the minimal variances of the estimators of B
and T remain unchanged.

Figure 4 shows the results of the minimal variances of simultaneous estimation
of the magnetic field B and temperature T for J = 1. For low temperatures, the
optimal value of the parameter B is Bopt = 1. The variance of B is minimal, for
high temperature, when Bopt = 0. This implies that the isotropic XY model at high
temperature has optimal states when the magnetic field is absent. On the other hand,
we remark that the variance of the temperature is minimal for Ic = [0.5, 0.7]. This
interval is usually called the confidence interval in quantum metrology. Now, if we
estimate the parameters B and T individually, the Cramer–Rao inequality writes

Var(B)Ind ≥ F−1
BB Var(T )Ind ≥ F−1

T T , (86)

with

Var (B)Indmin = T 2e−βB
(
1 + e2βB + 2eβB cosh (β J )

)2

2
(
2eβB + (

1 + e2βB
)
cosh (β J )

) , (87)

and

Var (T )Indmin = T 4(cosh (βB) + cosh (β J ))2
(
B2 + J 2

)
(1 + cosh (βB) cosh (β J )) − 2BJ sinh (βB) sinh (β J )

.

(88)
The results plotted in Fig. 5 represent the evolution of the minimal values of the

variance in the protocol of individual estimations the parameters B and T . The behavior
of these minimal variance is almost similar the results obtained by employing the
simultaneous estimation strategy shown in Fig. 4, but it presents an uncertainty of
error in the precision of the optimal values of the parameters B and T . This uncertainty
can be quantified by the ratio between the minimal variance in individual estimation
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Fig. 5 The minimal variances of individual estimates of parameters B and T with J = 1

Fig. 6 The ratio between the minimal total variance of estimating the parameters B and T with J = 1

scenario and the minimal variance obtained in the simultaneous case. Using Eqs. (87)
and (88), it is easy to see that Eq. (52) gives

� =
(
2eβB + (

1 + e2βB
)
cosh (β J )

) ((
1 + e2βB

) (
B2 + J 2

)
cosh (β J ) + 2

((
B2 + J 2

)
eβB − (

e2βB − 1
)
BJ sinh (β J )

))

2J 2
(
1 + e2βB + 2eβB cosh (β J )

)2 .

(89)

In Fig. 6, we plot the ratio � (89) in the case where the coupling parameter J = 1.
As it can be seen from this figure, the minimal total variance corresponding to the
simultaneous strategy is always less than the minimal total variance of the individual
strategy, i.e., �Sim ≤ �Ind. This confirms that the simultaneous estimation of the
parameters B and T in the isotropic XY model with a magnetic field can provide
better precision than the individual estimation.
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4 Concluding remarks

Quantum Fisher information matrix plays an essential role in extracting the maximum
amount of information in order to get the best precision in measuring several physical
quantities. Thus making it possible to find the optimal states of the system which cor-
respond to optimal values of the estimated parameters. In this work, we have studied
multiparametric estimation strategy in quantum metrology by focusing on two vari-
ants of the Heisenberg XY model. The first one concerns the anisotropic XY model
and the second scenario deals with isotropic XY model embedded in a magnetic field.
We find the multiparameter quantum Cramér–Rao bound for simultaneous and indi-
vidual estimation of the temperature, anisotropic parameter and magnetic field using
the concept of quantum Fisher information matrix. In addition, we have compared
simultaneous and individual estimation strategies. We have found that best precisions
are obtained by employing the simultaneous estimation strategy.

The fact that the simultaneous estimation of several parameters in quantum metrol-
ogy raises important questions. Indeed, it is natural to ask about the relation between
the estimation precisions and the quantum correlations in enhancing the performance
of a metrological protocol like for single-parameter estimation. Furthermore, as pro-
longation of this work, it will be interesting to investigate the dynamics of nonclassical
correlations [62–64]. In other words, it is interesting to study the characterization of
quantum correlations in terms local quantum Fisher information and local quantum
uncertainty and to study if they can provide the appropriate tools to examine the role of
quantum correlations inmultiparametric quantummetrology. In this paper, we focused
only on the two-qubit systems. The analysis can be extended to multiqubit case. In the
general case to compute the quantum Fisher information matrix, one has to determine
the inverse of the matrix � = ρT ⊗ I + I ⊗ ρ. The analytical expressions can be
obtained using the Cholesky decomposition [65]. We hope to report on this subject in
a forthcoming work.
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