
Quantum Information Processing (2019) 18:171
https://doi.org/10.1007/s11128-019-2279-5

Dimensionality distinguishers

Nayana Das1 · Goutam Paul2 · Arpita Maitra3

Received: 29 October 2018 / Accepted: 9 April 2019 / Published online: 22 April 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The celebrated Clauser, Horne, Shimony and Holt (CHSH) game model helps to per-
form the security analysis of many two-player quantum protocols. This game specifies
two Boolean functions whose outputs have to be computed to determine success or
failure. It also specifies the measurement bases used by each player. In this paper, we
generalize the CHSH game by considering all possible non-constant Boolean func-
tions and all possiblemeasurement basis (up to certain precision). Based on the success
probability computation, we construct several equivalence classes and show how they
can be used to generate three classes of dimension distinguishers. In particular, we
demonstrate how to distinguish between dimensions 2 and 3 for a special form of
maximally entangled state.

Keywords CHSH · Dimensionality testing · Distinguisher · Entanglement · Success
probability

1 Introduction

In quantum entanglement, two or more quantum particles (may be space-like sepa-
rated) share their states in such a way that the state of each of the particles cannot
be fully described without considering the other(s). If we change the quantum state
of one particle thorough local unitary operations, the state of the rest of the par-
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ticles changes automatically to maintain the entanglement. Many modern quantum
protocols are based on entanglement theory, for example, quantum cryptography
with Bell theorem [1], super-dense coding [2], quantum teleportation [3], entangle-
ment swapping [4], etc. Most of them use maximally entangled states. The Bell
states are special cases of bipartite maximally entangled states on Hilbert space
C
d ⊗ C

d given by |ψ〉 = UA ⊗ UB |φ+
d 〉AB , where |φ+

d 〉 = ∑d
i=1

1√
d

|i〉 ⊗ |i〉
[5].

In 1935, Einstein, Podolsky and Rosen (EPR) showed that quantum mechanics
is not complete [6]. They also claimed that there may exist some local hidden vari-
able theory, without requiring immediate action at a distance. Bell (1964) proposed
a test for the existence of these hidden variables and developed an inequality [7],
and he showed that if the inequality is not satisfied, then a local hidden variable
theory would not be possible. Inspired by Bells paper, Clauser, Horne, Shimony
and Holt (CHSH) (1969) formed a correlation inequality and Bell’s theorem can
be proved by using that inequality [8]. The CHSH inequality gives a bound on
any local hidden variable model (LHVM). Cirel’son [9] showed that Bell inequal-
ities can be violated by quantum mechanical correlations. Aspect et al. [10] showed
some experimental results, on the CHSH inequality, which agree with the quan-
tum mechanical predictions. Popescu and Rohrlich [11] formed some correlations,
using no-signaling condition, violate the CHSH inequality even more than quantum
mechanical correlations. A simple setting for showing the usefulness of entanglement
involves a two-player game known as the CHSH game [12,13]. Buhrman [14] gen-
eralized the CHSH game in the field Fq . Some modern variants of CHSH appears in
[15–19].

1.1 Why dimensionality testing is important?

For a physical system, we generally assume that it has a particular dimension. Any
practical application that uses entangled quantum systems have some predefined
dimensional entangled states. In information theory, the dimensionality of quantum
systems is a resource. In cryptographic applications, the security level scheme depends
on the dimension. So testing dimensionality or distinguishing dimensionality of the
underlying state-space are important pre-processing tasks before executing the actual
protocol.

Higher dimension implies more degrees of freedom. For example, consider
Quantum Key Distribution (QKD) protocol with qubit. In this case, the legiti-
mate parties use only polarization of a photon for encoding. However, they have
to fix the values for the other degrees of freedom such as spectral line, spa-
tial mode or temporal mode, etc. Lack of knowledge of any of these parameters
may cause security back-door. Recently, Maitra et al. [35] showed that if the
honest party measures only the polarization of a photon and remains ignorant
about the Orbital Angular Momentum (OAM), then by changing the value of
OAM one can steal more information than what he/she is entitled to in a certain
type of QKD protocol. This strengthens the motivation of dimensionality test-
ing.
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1.2 How to test the dimensionality?

The dimension witness gives a bound on the dimension of an unknown system based
onmeasurement statistics. It was first introduced for quantum systems in the context of
non-local correlations by Brunner et al. [20] and further developed in [21–29]. Various
experiments have been recently proposed about the implementation of such witnesses
[30,31].

Some theory of dimensional detection of an unknown quantum system is based
on the set of conditional probabilities. It is based on the analysis on the probabilities
of observing an outcome after creating and measuring the system for a given set
of possibilities. It has become a prominent research area in recent times [27–29].
Experimental tests for testing dimension of a quantum system have been explored
[31,32], and it has produced successful results.

A simple and general dimension witnesses for quantum systems of arbitrary Hilbert
space dimension was proposed by Brunner (2013) [33]. Their proposed work can dis-
tinguish between classical and quantum systems of the same dimension. A simple
method for generating nonlinear dimension witnesses for systems of arbitrary dimen-
sion has been proposed by Bowles (2014) [34]. It has been shown in this paper that
this witness can be used to certify the presence of randomness.

1.3 Our contributions

In this paper, we generalize the CHSH game and define two classes of new games
which are similar to the CHSH game. The first one is for 2-variables and the second
one is for 3-variables. In this class of new games, we change the winning condition of
the CHSH game. Instead of a particular Boolean function in the CHSH game, we use
all non-constant Boolean functions and find equivalence class for function pairs and
bases such that all the elements of the same class have the same winning probability of
the game.We also consider all possiblemeasurement subjects to a precision parameter.
For both the games, we optimize the winning probabilities. Finally, we show how our
results can be used to devise three classes of dimensionality distinguishers, particularly
between dimensions 2 and 3.

The efficiency of a distinguisher depends on the number of samples (for a given
success probability) and that in turn depends on the gap between the probabilities.
This issue has been discussed in detail in [36]. Moreover, there are some works [37]
on how to deal with finite number of samples. In the current work, we do not focus on
these types of analysis. Rather, our main goal is to identify the distinguishing events
with a significant probability gap and that is what we report here.

2 Entanglement and the CHSH game

A special type of entangled states are maximally entangled states. There are many
quantum protocols which use these maximally entangled states. One of them is the
CHSH game, and we discuss about it.
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2.1 Maximally entangled state

Let us take a Hilbert space H (for now, H = C
2). There are infinitely manymaximally

entangled states in H × H , and all are connected by a unitary. A pure bipartite state
in C

2 × C
2 is maximally entangled if the reduced density matrix is I

2 for both sub
systems.

Let |φ〉 = cosα |0〉 + sin α |1〉 and |θ〉 = cosβ |0〉 + sin β |1〉. Then |�〉AB =
1√
2
[|φθ〉 + |φ⊥θ⊥〉] = 1√

2
[|0〉 |ϕ〉 + |1〉 |ϕ⊥〉], where |ϕ〉 = cos(α − β) |0〉 −

sin(α − β) |1〉 is maximally entangled as ρA = ρB = I

2
where ρA and ρB are reduced

density matrix of subsystem A and B, respectively.

Again let |χ〉AB = 1√
2
[|0〉 |σ 〉 + |1〉 |�〉] where |σ 〉 = cos γ |0〉 + sin γ |1〉 and

|�〉 = cos δ |0〉 + sin δ |1〉. To make ρA = ρB = I

2
, we must have |�〉 = |σ⊥〉.

Thus a general form of maximally entangled state in C
2 is

1√
2
[|φθ〉 + |φ⊥θ⊥〉]

(we are considering real coefficients only).
A maximally entangled (pure) state in a d-dimensional Hilbert space has the

Schmidt decomposition
∑d

i=1
1√
d

|i〉 ⊗ |i〉 in an appropriate basis. In Hilbert space

C
m ⊗ C

n (say, m < n), a maximally entangled (pure) state is the same as that in
C
m ⊗ C

m .

2.2 The CHSH game

In this game, there are two players, namelyAlice and Bob, and a referee. Let us assume
thatAlice andBob are far away fromeach other and not able to communicate during the
game. Before the game begins, they can communicate freely to discuss their strategy.
During the game, they only communicate with the referee in the following way:

• The referee chooses two independent random bits x and y uniformly (also called
questions) and sends x to Alice and y to Bob, i.e., for all s ∈ {0, 1}, t ∈
{0, 1}, Pr(x = s, y = t) = Prxy(s, t) = 1

4
.

• Alice and Bob reply to referee with bits a and b, respectively.
• Referee calculates x ∧ y and a ⊕ b (where ∧, ⊕ stand for AND and XOR
operations, respectively)

• Alice and Bob win if x ∧ y = a ⊕ b.

Their goal is to achieve the highest winning probability together. Classically, the
winning probability is 0.75. But in the quantum world, this probability is 0.85 if they
follow the strategy discussed in the following Sect. 2.2.1.

2.2.1 Quantum strategy

The strategy to win the game with maximum probability is to share a maximally
entangled state (e.g., Bell state) between Alice and Bob. According to the referee’s
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questions, they choose measurement bases to measure their qubits and send their
answers to the referee. Details are given in Algorithm 1. The values of θ0 and θ1

(defined in Algorithm 1) are fixed for CHSH game and those values are θ0 = π

8
,

θ1 = 15π

8
.

2.2.2 Winning probability

Let win be the event that Alice and Bob win, i.e., x ∧ y = a ⊕ b. Now the winning
probability of the CHSH game can be written as:

Pr(win) =
∑

s,t

Prxy(s, t)Pr (win|x = s, y = t), (1)

which again implies that for u, v, s, t ∈ {0, 1},
Pr(win) =

∑

s,t,u,v

Prxy(s, t)(s ∧ t = u ⊕ v)Prab|xy(a = u, b = v|x = s, y = t).

If the referee sends questions x = 0, y = 0, Alice and Bob win if they answer
identically a = 0, b = 0 or a = 1, b = 1.

Then from Algorithm 1, the corresponding probability of winning (given x =
0, y = 0) is:

Pr(win|x = 0, y = 0) = | 〈0| ⊗ 〈ν0(θ0)| �AB〉|2 + | 〈1| ⊗ 〈ν1(θ0)| �AB〉|2 =
cos2 θ0.

Similarly we have, Pr(win|x = 0, y = 1) = | 〈0| ⊗ 〈ν0(θ1)| �AB〉|2 + | 〈1| ⊗
〈ν1(θ1)| �AB〉|2 = cos2 θ1, Pr(win|x = 1, y = 0) = | 〈0x | ⊗ 〈ν0(θ0)| �AB〉|2 +
| 〈1x | ⊗ 〈ν1(θ0)| �AB〉|2 = 1

2 (1 + sin 2θ0), Pr(win|x = 1, y = 1) = | 〈0x | ⊗
〈ν1(θ1)| �AB〉|2 + | 〈1x | ⊗ 〈ν0(θ1)| �AB〉|2 = 1

2 (1 − sin 2θ1).
Hence from Equation (1),

P(win) = 1

4
(P(win|x = 0, y = 0) + P(win|x = 0, y = 1)

+ P(win|x = 1, y = 0) + P(win|x = 1, y = 1))

= 1

4

[

cos2 θ0 + cos2 θ1 + 1

2
(1 + sin 2θ0) + 1

2
(1 − sin 2θ1)

]

.

This probability is maximum at

(

θ0 = π

8
, θ1 = 15π

8

)

and the maximum value is

approximately 0.85355.

3 Generalized version of the CHSH game

We generalize the well-known CHSH game to produce two types of new games. The
first type of games are for 2-variables (i.e., each question has 2 options to answer). The
other types of games are for 3-variables (i.e., each question has 3 options to answer).
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Here alsowe assume that Alice andBob are far away from each other and not able to
communicate during the game. Before the game begins, they can communicate freely
to discuss their strategy. During the game, they only communicate with the referee.

3.1 New games for 2-variables (Game-1)

Our new games are similar to the CHSH game. The only exception is in the winning
condition. Here the winning condition is f (x, y) = g2(a, b), where f and g2 are any
two variable Boolean functions other than the constant functions (the subscript 2 in g2
is for 2-variables). For 2 variables, there are (22)2 = 16 possible Boolean functions.
Among them 2 are constant functions. Sowe are playing this gamewith 14×14 = 196
pairs of function where in the CHSH game there is only one pair.

3.1.1 Rules of Game-1

For a fixed pair of two variable Boolean functions ( f , g2), we define Game-1 as
follows:

• The referee chooses two independent random bits x and y uniformly (also called
questions) and sends x to Alice and y to Bob, i.e., for all s ∈ {0, 1}, t ∈
{0, 1}, Pr(x = s, y = t) = Prxy(s, t) = 1

4
.

• Alice and Bob reply to referee with bits a and b, respectively.
• Referee calculates f (x, y) and g2(a, b).
• Alice and Bob win if f (x, y) = g2(a, b).

3.1.2 Quantum strategy for Game-1

Alice and Bob follow the following strategy Algorithm 1 to play Game-1. Here also
they share amaximally entangled state and choosemeasurement bases according to the
referee’s questions. They measure their qubits, and send their answers to the referee.
Alice’s choice of measurement basis only depends on referee’s question. But for each
pair ( f , g2), Bob chooses the basis for which they can achieve maximum winning
probability. Bob’s bases are dependent on the parameters θ0 and θ1. So for different
pairs of functions ( f , g2), the values of θ0 and θ1 change. For example, CHSH game
is a special case of Game-1, where f = AND, g2 = XOR, and Bob chooses θ0 = π

8
and θ1 = 15π

8 .

3.1.3 Success probabilities of Game-1

We find the success probability of the game for each f and g2 by using Equation (1),
when the players follow the above strategy with changes in the chosen bases of Bob.
Here Bob does not fix the value of θ0 and θ1. For different pairs of function ( f , g2),
the value of the pair (θ0 , θ1) changes as the expression of the winning probability
changes.
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Algorithm 1: Quantum Strategy for CHSH game and Game-1

1. Before the game starts, Alice and Bob share |�AB 〉 = 1√
2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B )

2. Alice takes the first qubit and Bob takes the second qubit
3. Alice chooses:

– Standard basis {|0〉 , |1〉} if x = 0
– Hadamard basis {|0x 〉 , |1x 〉} if x = 1, where

|0x 〉 = 1√
2
(|0〉 + |1〉) and |1x 〉 = 1√

2
(|0〉 − |1〉)

4. Bob chooses:
Basis {|ν0(θy)〉 , |ν1(θy)〉} corresponding to y = 0, 1,
where |ν0(θy)〉 = cos θy |0〉 + sin θy |1〉 , |ν1(θy)〉 = sin θy |0〉 − cos θy |1〉, 0 � θ0, θ1 � 2π

5. Alice sends:

– a = 0 if |0〉 or |0x 〉
– a = 1 otherwise

6. Bob sends:

– b = 0 if Bob gets |ν0(θ0)〉 or |ν0(θ1)〉
– b = 1 otherwise

Table 1 Success probabilities of Game-1 with any non-constant 2 variables Boolean functions f and g

LHS of winning
condition f (x, y)

RHS of winning con-
dition g2(a, b)

Success
probability

Number of such func-
tion pair ( f , g2)

Any non-constant f XOR, XNOR 0.85 28

f (x, y) contains one 0 g2(a, b) contains one
0

0.80 32

f (x, y) contains one 1 g2(a, b) contains one
1

0.80 32

f (x, y) contains two
0

g2(a, b) contains
either exactly one 1
or 0

0.67 48

f (x, y) contains one 1 g2(a, b) contains one
0

0.55 16

f (x, y) contains one 0 g2(a, b) contains one
1

0.55 6

Any non-constant f g2(a, b) = a, b, ā, b̄ 0.5 56

For simplicity, wewrite an n-variable Boolean function as a 2n-length binary vector
consisting of the last column of the truth table in lexicographical order, e.g., for a
two variable function, we write f (x, y) = [ f (0, 0), f (0, 1), f (1, 0), f (1, 1)] and
g2(a, b) = [g2(0, 0), g2(0, 1), g2(1, 0), g2(1, 1)]. Also LHS and RHS denote left-
hand side and right-hand side, respectively.

The results are in the following Table 1. The first two columns of Table 1 repre-
sent the functions of inputs and outputs (i.e., f (x, y) and g2(a, b)), respectively, and
corresponding success probabilities are given in third column. The number of such
function pair ( f , g2) having same success probabilities are in the last column.
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(a) f = AND, g2 = XOR. (b) f = OR, g2 = XOR.

(c) f = x, g2 = XOR. (d) f = y, g2 = XOR.

Fig. 1 Success probability graphs for four different cases of Game-1 with non-constant 2 variables Boolean
functions f and g2

3.1.4 Observation

From Table 1, we observe that the winning probability is maximum when g2(a, b) =
a⊕b and a
b, i.e., for any non-constant 2 variablesBoolean function f , if g2 = XOR
or g2 = XNOR then by playing the Game-1 we can win the game with probability
0.85.

The reason behind this is that the probability graph of these 28 cases are almost
similar. To illustrate this, we show some probability graphs in Fig. 1. In these graphs,
we plot θ0 (x-axis) vs. θ1(y-axis) vs. success probability expression (z-axis). From
these graphs, we can see that for each case the success probabilities are periodic
functions of (θ0, θ1) and achieve maximum value 0.85 at more than one points.

• The first graph in Figure 1(a) represents the success probability 1
4 [1 + cos2θ0 +

cos2θ1+ 1
2 sin2θ0− 1

2 sin2θ1] corresponding to the function pair ( f = AND, g2 =
XOR) and one of its maximum point is at

(

θ0 = π

8
, θ1 = 15π

8

)

.

• The second graph in Figure 1(b) represents the success probability 1
4 [1+cos2θ0+

sin2θ1 − 1
2 sin2θ0 − 1

2 sin2θ1] corresponding to the function pair ( f = OR, g2 =
XOR) and one of its maximum point is at

(

θ0 = 7π

8
, θ1 = 5π

8

)

.
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• The third graph in Figure 1(c) represents the success probability 1
4 [1 + cos2θ0 +

cos2θ1 − 1
2 sin2θ0 − 1

2 sin2θ1] corresponding to the function pair ( f = x, g2 =
XOR), where f = x means f (x, y) = x ∀ x, y ∈ {0, 1}, and one of its maximum

point is at

(

θ0 = 7π

8
, θ1 = 7π

8

)

.

• The fourth graph in Figure 1(d) represents the success probability 1
4 [1+ cos2θ0 +

sin2θ1 + 1
2 sin2θ0 − 1

2 sin2θ1] corresponding to the function pair ( f = y, g2 =
XOR), where f = y means f (x, y) = y ∀ x, y ∈ {0, 1}, and one of its maximum

point is at

(

θ0 = 9π

8
, θ1 = 5π

8

)

.

3.2 New games for 3-variables (Game-2)

In this game, there are two players, namely Alice and Bob (they are far away from each
other and not able to communicate) and a referee. Let us define the sets S = {0, 1, 2},
G = {g : S × S → {0, 1}} and F = { f : f is a 2 variable Boolean f unction}.
3.2.1 Rules of Game-2

For a particular pair ( f , g3), where f ∈ F and g3 ∈ G (the subscript 3 in g3 is for
3-variables), we define Game-2 as follows:

• The referee chooses two independent random bits x and y uniformly (also called
questions) and sends x to Alice and y to Bob. That is, for all s ∈ {0, 1}, t ∈
{0, 1}, Pr(x = s, y = t) = Pxy(s, t) = 1

4
.

• Alice and Bob send their answers a and b (a, b ∈ {0, 1, 2}) to the referee.
• Referee calculates f (x, y) and g3(a, b).
• Alice and Bob win if f (x, y) = g3(a, b).

3.2.2 Quantum strategy for Game-2

Now let Alice and Bob play the gamewith the following strategy given in Algorithm 2.
Before the game starts, they share a maximally entangled bipartite state: |�AB〉 =
1√
3
(|0〉A ⊗|0〉B +|1〉A ⊗|1〉B +|2〉A ⊗|2〉B) in the Hilbert spaceC3⊗C

3. According
to the referee’s questions, they choose measurement bases to measure their qubits and
send their answers to the referee. Alice’s choice ofmeasurement basis only depends on
referee’s question. But for each pair ( f , g3), Bob choose the basis for which they can
achieve maximum winning probability. Bob’s bases are dependent on the parameters
θ0 and θ1.

3.2.3 Example of Game-2

Let us take an example. Let f (x, y) = x ∧ y and g3(a, b) = a Embedded XOR b
(i.e., g3(a, b) = 0 i f a = b and g3(a, b) = 1 otherwise). If we play the above game

with these f and g3, then the success probability is 0.76 at θ0 = 17π

16
, θ1 = π

16
.
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Algorithm 2: Quantum Strategy for Game-2
1. Before the game starts, Alice and Bob share

|�AB 〉 = 1√
3
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B + |2〉A ⊗ |2〉B )

2. Alice takes the first qubit and Bob takes the second qubit
3. Alice chooses:

– Standard basis {|0〉 , |1〉 , |2〉} if x = 0
– Fourier basis {|0x 〉 , |1x 〉 , |2x 〉} if x = 1, where

|0x 〉 = 1√
3
(|0〉 + |1〉 + |2〉), |1x 〉 = 1√

3
(|0〉 + ω |1〉 + ω2 |2〉),

|2x 〉 = 1√
3
(|0〉 + ω2 |1〉 + ω |2〉) and ω = e2π i/3

4. Bob chooses:

– Basis {|ψ0〉 , |ψ1〉 , |ψ2〉} if y = 0,
|ψ0〉 = cos θ0 |0〉 + sin θ0 cos θ1 |1〉 + sin θ0 sin θ1 |2〉
|ψ1〉 = sin θ0 |0〉 − cos θ0 cos θ1 |1〉 − cos θ0 sin θ1 |2〉
|ψ2〉 = sin θ1 |1〉 + cos θ1 |2〉 and
0 � θ0, θ1 � 2π

– Basis {|φ0〉 , |φ1〉 , |φ2〉} if y = 1,
|φ0〉 = cos θ1 |0〉 + sin θ1 cos θ0 |1〉 + sin θ1 sin θ0 |2〉
|φ1〉 = sin θ1 |0〉 − cos θ1 cos θ0 |1〉 − cos θ1 sin θ0 |2〉
|φ2〉 = sin θ0 |1〉 + cos θ0 |2〉 and
0 � θ0, θ1 � 2π

5. Alice sends:

– a = 0 if Alice gets |0〉 or |0x 〉
– a = 1 if she gets |1〉 or |1x 〉
– a = 2 otherwise

6. Bob sends:

– b = 0 if Bob gets |ψ0〉 or |φ0〉
– b = 1 if he gets |ψ1〉 or |φ1〉
– b = 2 otherwise

3.2.4 Maximumwinning probability

In this Game-2, the maximum winning probability is 0.86 only for 8 pairs of function
( f , g3).

Now the function pairs, with the highest winning probability and corresponding
bases are shown in Table 2.

3.3 Equivalence classes

From the results of these two games, we observe that, if we introduce some equivalence
relations to make partition of the set of data in each game result, then we will take
only one element of each equivalence class to play these games. It will reduce the
time and space complexity of these games. Also if some measurement setup will be
unavailable then we can use any other setup from the same class to continue the games.
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Table 2 Function pairs with
maximum success probabilities
of Game-2

f g3 θ0 θ1

[0, 1, 0, 0] [0, 1, 0, 1, 0, 0, 0, 0, 1] 33π/32 19π/32

[0, 1, 0, 0] [1, 0, 0, 0, 0, 1, 0, 1, 0] 29π/32 29π/32

[0, 1, 1, 1] [0, 1, 1, 1, 1, 0, 1, 0, 1] 29π/32 15π/32

[0, 1, 1, 1] [1, 0, 1, 0, 1, 1, 1, 1, 0] 19π/32 33π/32

[1, 0, 0, 0] [0, 1, 0, 1, 0, 0, 0, 0, 1] 19π/32 33π/32

[1, 0, 0, 0] [1, 0, 0, 0, 0, 1, 0, 1, 0] 29π/32 15π/32

[1, 0, 1, 1] [0, 1, 1, 1, 1, 0, 1, 0, 1] 15π/32 29π/32

[1, 0, 1, 1] [1, 0, 1, 0, 1, 1, 1, 1, 0] 33π/32 19π/32

Here we take three equivalence relations to make three different types of partitions of
the results.

1. We can make an equivalence class of the bases of Bob for a fixed function pair
( f , gi ), (i = 2, 3), such that all elements of the same class give the same success
probability.
For simplicity, we only write the value of the pair (θ1, θ2) as a basis (i.e., we
represent a basis as a point (θ1, θ2) in R

2 ) in a class and we take the values in

radian (i.e., 0 � θ0, θ1 � 2π ) and as a multiple of
π

32
.

For example, if we fix f = AND and g2 = XOR in Game-1, then there are
8 equivalence classes of bases (up to 1 significant digit). Now in the previous
example, if we consider the success probabilities up to 2 significant digits, then
there are 4 elements in the class of highest winning probability 0.85 and the class
is

{(
π

8
,
7π

8

)

,

(
π

8
,
15π

8

)

,

(
9π

8
,
7π

8

)

,

(
9π

8
,
15π

8

)}

.

Again in Game-2, let f = AND and g3 = Embedded XOR (i.e. g3(a, b) =
0 i f a = b and g3(a, b) = 1 otherwise) , then there are 7 equivalence classes
of bases (up to 1 significant digit). Now in the previous example, if we consider
the success probabilities up to 2 significant digits, then there are 4 elements in the
class of highest winning probability 0.76 and the class is

{(
33π

32
,

π

32

)

,

(
33π

32
,
2π

32

)

,

(
34π

32
,

π

32

)

,

(
34π

32
,
2π

32

)}

.

2. Secondly, we fix the bases of Bob and vary the function pairs to make the equiva-
lence classes. Here also all the elements of the same class have the same winning
probability.

For example, in Game-1, if we fix

(

θ0 = π

8
, θ1 = 15π

8

)

, then ( f = [0, 0, 0, 1],
g2 = [0, 1, 0, 1]), ( f = [0, 0, 1, 0], g2 = [0, 1, 0, 1]), ( f = [0, 0, 1, 1], g2 =
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[0, 1, 0, 1]), ( f = [0, 1, 1, 1], g2 = [0, 1, 0, 1]), etc., all belong to the same class
with success probability 0.5.

3. At last, we vary both function pairs and Bob’s bases and the tuples which have the
same winning probability that belongs to the same class. For example, in Game-2,
each row of Table 2 have the same success probability 0.86 and thus they belong
to the same class.

4 Dimensionality testing

We observe the winning probabilities of various cases in Game-1 and Game-2.
By using the above two games, we can make device-independent dimension dis-

tinguisher to distinguish between the states |�AB〉 = 1√
2
(|0〉A ⊗|0〉B +|1〉A ⊗|1〉B)

and |�AB〉 = 1√
3
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B + |2〉A ⊗ |2〉B). For example,

• In Game-1, if we take f (x, y) = x ∧ y and g2(a, b) = a ⊕ b and θ0 = π

8
,

θ1 = 15π

8
, then the winning probability of this game is 0.85.

• In Game-2, if we take f (x, y) = x ∧ y and g3 = Embedded XOR and θ0 = π

8
,

θ1 = 15π

8
, then winning probability of this game is 0.76.

So by playing these games and observing winning probabilities, we can easily
distinguish between |�AB〉 and |�AB〉. In other words, we can say the dimension of
the given maximally state is two or three.

We can think this whole process as a union of two black boxes. An initial black
box is the state preparatory which prepares states of form either |�AB〉 or |�AB〉. the
prepared state is then sent to a second black box, the measurement device. In this box,
if the states are |�AB〉, it will follow the process of Game-1 and if the states are |�AB〉,
it will follow the process of Game-2.

From the outputs of this measurement device, we will calculate the winning prob-
ability of the game played in this box and compare this probability with the success
probabilities of Game-1 and Game-2. So we have a dimension distinguisher. The
protocol is described in Algorithm 3.

Following the above process and by changing the function pairs in the games, we
can find many distinguishers. For each, we use the function pair ( f , g3) in Game-
2 and the function pair ( f , g′

2) in Game-1 (where, g′
2 is the restriction of g3 in 2

variables, i.e., g′
2(a, b) = [g3(0, 0), g3(0, 1), g3(1, 0), g3(1, 1)] ). We divide the set

of all distinguisher into 3 classes according to the winning probabilities of the games.

4.1 First class of distinguishers (D1)

In this set, we put all the distinguishers where we choose function pairs ( f , g3) such
that the function pair ( f , g′

2) has the highest winning probability in Game-1 (i.e., 0.85)
which is greater than the winning probability of the corresponding Game-2.
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Algorithm 3: Dimension distinguisher of maximally entangled state

Input: n number of maximally entangled bipartite state |�AB 〉 in an Hilbert space Cd × C
d which

is of the form
∑d

j=1
1√
d

| j〉 ⊗ | j〉, where {| j〉} is the standard basis of Cd and d ∈ {2, 3} is
fixed but unknown.

Output: The value of d.
1. For rounds i ∈ {1, . . . , n}

(a) Referee chooses xi ∈ {0, 1} and yi ∈ {0, 1} uniformly at random
(b) If xi = 0, Alice measures the first particle of the i-th entangled state in the standard basis

{|0〉 , |1〉 , |2〉}
• If xi = 1, she measures that in the Fourier basis {|0x 〉 , |1x 〉 , |2x 〉}, where
|0x 〉 = 1√

3
(|0〉 + |1〉 + |2〉)

|1x 〉 = 1√
3
(|0〉 + ω |1〉 + ω2 |2〉)

|2x 〉 = 1√
3
(|0〉 + ω2 |1〉 + ω |2〉)

and ω = e2π i/3 (if d = 2, it will be the Hadamard basis)
(c) Similarly,

• If yi = 0, Bob measures the second particle of the entangled state in {|ψ0〉 , |ψ1〉 , |ψ2〉}
basis , where
|ψ0〉 = cos θ0 |0〉 + sin θ0 cos θ1 |1〉 + sin θ0 sin θ1 |2〉
|ψ1〉 = sin θ0 |0〉 − cos θ0 cos θ1 |1〉 − cos θ0 sin θ1 |2〉
|ψ2〉 = sin θ1 |1〉 + cos θ1 |2〉
0 � θ0, θ1 � 2π
• If yi = 1, he measures that in {|φ0〉 , |φ1〉 , |φ2〉} basis, where
|φ0〉 = cos θ1 |0〉 + sin θ1 cos θ0 |1〉 + sin θ1 sin θ0 |2〉
|φ1〉 = sin θ1 |0〉 − cos θ1 cos θ0 |1〉 − cos θ1 sin θ0 |2〉
|φ2〉 = sin θ0 |1〉 + cos θ0 |2〉
0 � θ0, θ1 � 2π

(d) The output is recorded as ai (bi ) ∈ {0, 1, 2} for the first (second) particle. The encoding for
ai (bi ) is as follows:
• For the first particle of each pair, ai = j if the measurement result is | j〉 or | jx 〉
• For the second particle of each pair,
bi = 0 if the measurement result is |ψ0〉 or |φ0〉
bi = 1 if the measurement result is |ψ1〉 or |φ1〉
bi = 2 if the measurement result is |ψ2〉 or |φ2〉

(e) For the test round i , define

Yi =
{
1 if xi ∧ yi = g(ai , bi ) where g=Embedded XOR

0 if otherwise

2. Referee calculates S = 1

n

∑
Yi

3. If S ≈ 0.85, return d = 2 and if S ≈ 0.76, return d = 3

If we choose f = [0, 1, 0, 0], g3 = [0, 1, 1, 1, 0, 1, 1, 1, 0], thus g′
2 = [0, 1, 1, 0]

(or f = [0, 1, 1, 1], g3 = [1, 0, 0, 0, 1, 0, 0, 0, 1], thus g′
2 = [0, 1, 1, 0]), then the

winning probabilities of the Game-1 and Game-2 are 0.85 and 0.58. Therefore the
difference of these probabilities is 0.27, which is quite good.
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Table 3 Table for D1

f g′
2 g3 W.P. if d = 2 W.P. if d = 3 Difference

[0, 0, 0, 1] [0, 1, 1, 0] [0, 1, 0, 1, 0, 0, 0, 1, 1] 0.85 0.53 0.32

[0, 0, 0, 1] [0, 1, 1, 0] [0, 1, 0, 1, 0, 0, 1, 1, 1] 0.85 0.51 0.34

[0, 0, 0, 1] [1, 0, 0, 1] [1, 0, 1, 0, 1, 1, 1, 1, 1] 0.85 0.45 0.4

[0, 0, 1, 0] [1, 0, 0, 1] [1, 0, 0, 0, 1, 1, 1, 0, 1] 0.85 0.41 0.44

[0, 0, 1, 1] [0, 1, 1, 0] [0, 1, 0, 1, 0, 0, 0, 0, 1] 0.85 0.39 0.46

[0, 1, 0, 0] [0, 1, 1, 0] [0, 1, 1, 1, 0, 1, 1, 1, 1] 0.85 0.42 0.43

[0, 1, 0, 1] [0, 1, 1, 0] [0, 1, 1, 1, 0, 1, 0, 1, 0] 0.85 0.46 0.39

[0, 1, 1, 1] [0, 1, 1, 0] [0, 1, 0, 1, 0, 1, 0, 1, 0] 0.85 0.45 0.4

[1, 0, 0, 1] [1, 0, 0, 1] [1, 0, 1, 0, 1, 0, 1, 0, 1] 0.85 0.53 0.32

[1, 0, 1, 0] [1, 0, 0, 1] [1, 0, 0, 0, 1, 0, 1, 0, 1] 0.85 0.46 0.39

[1, 0, 1, 1] [0, 1, 1, 0] [0, 1, 0, 1, 0, 1, 0, 0, 0] 0.85 0.44 0.41

[1, 1, 0, 0] [1, 0, 0, 1] [1, 0, 1, 0, 1, 1, 1, 1, 0] 0.85 0.39 0.46

[1, 1, 1, 0] [0, 1, 1, 0] [0, 1, 1, 1, 0, 0, 0, 0, 0] 0.85 0.41 0.44

∗W.P denotes winning probability

Table 4 Table for D2

f g′
2 g3 W.P. if d = 2 W.P. if d = 3 Difference

[0, 1, 0, 0] [0, 1, 1, 0] [0, 1, 0, 1, 0, 0, 0, 0, 1] 0.46 0.86 0.4

[0, 1, 0, 0] [1, 0, 0, 0] [1, 0, 0, 0, 0, 1, 0, 1, 0] 0.64 0.86 0.22

[0, 1, 1, 1] [0, 1, 1, 1] [0, 1, 1, 1, 1, 0, 1, 0, 1] 0.63 0.86 0.23

[0, 1, 1, 1] [1, 0, 0, 1] [1, 0, 1, 0, 1, 1, 1, 1, 0] 0.48 0.86 0.38

[1, 0, 0, 0] [0, 1, 1, 0] [0, 1, 0, 1, 0, 0, 0, 0, 1] 0.48 0.86 0.38

[1, 0, 0, 0] [1, 0, 0, 0] [1, 0, 0, 0, 0, 1, 0, 1, 0] 0.63 0.86 0.23

[1, 0, 1, 1] [0, 1, 1, 1] [0, 1, 1, 1, 1, 0, 1, 0, 1] 0.64 0.86 0.22

[1, 0, 1, 1] [1, 0, 0, 1] [1, 0, 1, 0, 1, 1, 1, 1, 0] 0.46 0.86 0.4

∗W.P denotes winning probability

There are many distinguishers in this class. We put some of them into the following
Table 3. Here we take the winning probability for d = 3 at that point where the
corresponding winning probability for d = 2 is maximum.

4.2 Second class of distinguishers (D2)

In this set, we put all the distinguishers where we choose function pairs ( f , g3) such
that it has the highest winning probability in Game-2 (i.e., 0.86) which is greater than
the winning probability of corresponding Game-1 with function pair ( f , g′

2). Here we
take the winning probability for d = 2 at that point where the corresponding winning
probability for d = 3 is maximum.
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Table 5 Table for D3

f g′
2 g3 W.P. if d = 2 W.P. if d = 3 Difference

[0, 0, 0, 1] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 0, 0] 0.29 0.76 0.47

[0, 0, 0, 1] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 0, 1] 0.29 0.77 0.48

[0, 0, 0, 1] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 1, 0] 0.29 0.77 0.48

[0, 0, 0, 1] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 1, 1] 0.29 0.77 0.48

[0, 0, 0, 1] [1, 0, 1, 1] [1, 0, 1, 1, 1, 0, 0, 0, 0] 0.29 0.76 0.47

[0, 0, 0, 1] [1, 0, 1, 1] [1, 0, 1, 1, 1, 0, 0, 0, 1] 0.29 0.75 0.46

[0, 0, 0, 1] [1, 0, 1, 1] [1, 0, 1, 1, 1, 0, 0, 1, 0] 0.29 0.77 0.48

[0, 0, 0, 1] [1, 0, 1, 1] [1, 0, 1, 1, 1, 0, 0, 1, 1] 0.29 0.76 0.47

[0, 0, 1, 0] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 0, 0] 0.21 0.76 0.55

[0, 0, 1, 0] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 0, 1] 0.21 0.77 0.56

[0, 0, 1, 0] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 1, 0] 0.21 0.77 0.56

[0, 0, 1, 0] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 1, 1] 0.21 0.77 0.56

[0, 0, 1, 0] [1, 0, 1, 1] [1, 0, 1, 1, 1, 0, 0, 1, 1] 0.21 0.76 0.55

[0, 0, 1, 1] [1, 0, 1, 1] [1, 0, 0, 1, 1, 0, 0, 1, 1] 0.36 0.81 0.45

[0, 0, 1, 1] [1, 0, 1, 1] [1, 0, 1, 1, 1, 0, 0, 1, 1] 0.36 0.84 0.48

[1, 1, 0, 0] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 0, 0] 0.36 0.84 0.48

[1, 1, 0, 0] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 0, 0] 0.36 0.81 0.45

[1, 1, 0, 1] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 0, 0] 0.21 0.76 0.55

[1, 1, 0, 1] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 0, 1] 0.21 0.77 0.56

[1, 1, 0, 1] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 1, 0] 0.21 0.75 0.54

[1, 1, 0, 1] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 1, 1] 0.21 0.76 0.55

[1, 1, 0, 1] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 0, 0] 0.21 0.77 0.56

[1, 1, 0, 1] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 0, 1] 0.21 0.77 0.56

[1, 1, 0, 1] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 1, 0] 0.21 0.77 0.56

[1, 1, 0, 1] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 1, 1] 0.21 0.76 0.55

[1, 1, 1, 0] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 0, 0] 0.29 0.76 0.47

[1, 1, 1, 0] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 0, 1] 0.29 0.77 0.48

[1, 1, 1, 0] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 1, 0] 0.29 0.75 0.46

[1, 1, 1, 0] [0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 1, 1, 1] 0.29 0.76 0.47

[1, 1, 1, 0] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 0, 0] 0.29 0.77 0.48

[1, 1, 1, 0] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 0, 1] 0.29 0.77 0.48

[1, 1, 1, 0] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 1, 0] 0.29 0.77 0.48

[1, 1, 1, 0] [0, 1, 0, 0] [0, 1, 1, 0, 0, 1, 1, 1, 1] 0.29 0.76 0.47

∗W.P denotes winning probability

For example, let f = [0, 1, 0, 0], g3 = [1, 0, 0, 0, 0, 1, 0, 1, 0] then if d = 2
success probability is 0.80 and if d = 3 success probability is 0.86. We put all
distinguishers in Table 4.
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4.3 Third class of distinguishers (D3)

Similarly, we can make dimension distinguisher using other function pairs for which
the difference between the optimal winning probabilities of the two games is non-
negligible. Here we take function pair ( f , g3) and corresponding pair ( f , g′

2) such that
both the games with respective pairs do not achieve the highest winning probabilities.
we put all these distinguishers in this set. The cardinality of this set depends on the
difference value between winning probabilities.

Let ( f , g3) be a function pair and the highest winning probability of Game-2 with
( f , g3) being p2 at point (s2, t2) and the same of Game-1 with ( f , g′

2) is p1 at point
(s1, t1).We compare p1, p2 and take the best (say, p1 > p2). Thenwe find the winning
probability p of Game-2 at (s1, t1) and difference value p1 − p. We make a list of
these distinguishers for which the difference value is greater than 0.44 in Table 5.

5 Conclusion

Dimensionality of the states act as a resource in quantum information processing tasks.
Formany protocols, the performance aswell as security depends on the particular value
of the dimension. For this reason, dimensionality testing is very important. There have
been several works on dimension witness. We take a different route by constructing
dimension distinguishers based on our generalized version of the CHSH game. We
demonstrate several classes of practical distinguishers between 2 and 3 dimensions.
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