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Abstract
We study how to solve quantum stochastic differential equations (QSDEs) using a
quantum computer. This is illustrated by an implementation of the QSDE that models
the interaction of a laser driven two-level atom with the electromagnetic field in the
vacuum state, on the IBMqx4 Tenerife quantum computer (IBM in The IBM Q expe-
rience. https://quantumexperience.ng.bluemix.net/qx. Accessed 23 Nov 2018, 2018).
We compare the resulting master equation and quantum filtering equations to existing
theory. In this way we characterize the performance of the computer.

Keywords Quantum computing · Quantum optics · Quantum stochastic differential
equations · Quantum filtering

1 Introduction

In this paper, we study spontaneous decay of a laser-driven two-level atom which is
coupled to the electromagnetic field in the vacuum state. This is a very simple problem
with a solution that is universally well known, yet is complex enough that it allows us
to make full use of the features a quantum computer provides. This combination gives
us the opportunity to assess the performance of the quantum computer on a real-world
problem.

The techniques thatwe use to discretize the quantum stochastic differential equation
[15] that describes the interaction between the two-level atom and the laser field are
very well known [2,5,6,17,18,22]. The discretizedmodel consists of a repeated unitary
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interaction of the two-level atom with subsequent slices of the field, parametrized by a
discretization parameter λ. The repeated interaction model easily leads to a quantum
stochastic difference equation that has the QSDE we wish to simulate as its limit as
λ goes to zero. Note that in the discretized model, the unitarity of the interaction
is preserved. This is a very desirable feature: e.g., after every time evolution step,
probabilities will always take values between 0 and 1. Furthermore, this unitarity
allows us to easily map the interaction on unitary gates in a quantum computer.

The motivation for the work we present here is twofold and aimed at a future in
which computers with more and more reliable qubits are accessible:

1. We wish to emphasize that quantum optics might prove to be a very fruitful field
of application for early quantum computers. It is well known how to discretize the
type of problems that arise in quantum optics and the resulting quantum stochastic
difference equations are easily implemented on a quantum computer, using stan-
dard quantum gates. Moreover, the field of quantum optics historically contains
many interesting problems and techniques that can serve as interesting benchmark
problems for early quantum computers.

2. Furthermore, on a quantum computer we can do a fully coherent simulation of
a system in interaction with the electromagnetic field. That is, on a large enough
quantum computer, we can simulate the complete unitary that describes the inter-
action between system and field. This puts us past standard analyses using master
equations or quantum filtering equations [3,4,8,10] because we also have a com-
plete description of the field to our availability. This could be very useful if wewish
to simulate non-Markovian networks of systems interacting at different points with
the same field, possibly containing fully coherent feedback loops [11,12].

The remainder of this paper is organized as follows. Section 2 introduces the QSDE
that wewish to simulate on a quantum computer: a laser-driven two-level atom in inter-
action with the vacuum electromagnetic field. We discuss repeated unitary interaction
models, the resulting quantum stochastic difference equations and discuss how to take
the limit to obtain quantum stochastic differential equations [2,5,6,18,22]. Next, we
introduce the repeated interaction that leads to the QSDE corresponding to the sys-
tem under study. Section 3 then describes how we have implemented the repeated
interaction model of Sect. 2 on the IBMqx4 Tenerife quantum computer [16].

Section 4 presents the results of our simulations.We compute the reduced dynamics
of the two-level atom from the simulation results and compare it to the dynamics given
by the theoretical master equation, derived from the underlying discrete model. We
also compute the conditional dynamics of the two-level atom conditioned on both
counting photons in the field and observing a field quadrature in the field and compare
the results to the quantum filtering equations derived from the underlying discrete
model [6,7,13,14]. Reproducing the correct quantum filtering equations would give
an indication that the quantum computer also reproduces the correlation between the
field and the two-level atom correctly.

In Sect. 5, we formulate some conclusions from our results. It should be noted
that currently only very limited simulations can be done due to the small number of
reliable qubits in the quantum computers that are currently available. In a 5-qubit
machine such as the IBMqx4, there are only 4 qubits available to represent the field,
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severely limiting the simulation capabilities. The work in this paper should be seen
through the lens of a hoped-for strong increase in the computing capacity in the near
future.

2 Quantum stochastic difference equations

We will now first introduce the problem that we will be studying in this paper. We
consider a two-level atom in interaction with an electromagnetic field. We will let
the two-level atom be driven by a laser. We will not model the laser by an additional
channel in the field that is in an coherent state, but instead will directly introduce the
Rabi oscillations induced by the laser field as aHamiltonian term in theQSDE.Wewill
use the following notation throughout the paper: σx , σy and σz are the standard Pauli
matrices. Furthermore,σ+ andσ− are the raising and lowering operatormatrices of the
two-level atom, respectively. The interaction of the laser-driven two-level atom with
the vacuum electromagnetic field is then given by the following quantum stochastic
differential equation (QSDE) in the sense of [15]

dUt =
{√

κσ−dA∗
t − √

κσ+dAt − 1

2
κσ+σ−dt − iωσ+σ−dt

− i
�

2
σydt

}
Ut , U0 = I , (1)

where κ is the decay rate, ω is the transition frequency of the two-level atom and �

is the frequency of the Rabi oscillations originating from the interaction of a classical
laser field with the atomic spin. We note that a QSDE, such as Eq. (1), allows a
very concrete representation in terms of Maassen’s integral–sum kernels [19] on the
Guichardet space. We will, however, not follow this approach in this paper and instead
refer the interested reader to [20,23] for more details.

In order to implement Eq. (1) on a quantum computer, we first need to introduce the
discrete models (see, e.g., [6] for a detailed introduction) that in a suitable limit will
converge to a quantum stochastic differential equation [2,5,18,22] such as Eq. (1). To
this end we first define a time interval [0, T ]. This time interval is divided into N equal
sub-intervals of length T /N . We define λ := √

T /N , i.e., there are N time slices of
length λ2. With each time slice we associate a two-level quantum system representing
the slice of the (truncated) field that interacts with the two-level atom at that moment.
In this way we obtain a repeated interaction

U (l) =
←−∏

l
i=1Mi = MlMl−1 . . . M2M1, 1 ≤ l ≤ N . (2)

Here Mi is a unitary operator that couples the two-level atom and the i th field slice
which is here also represented by a two-level system. Note that for the problem studied
in this paper, all Mi ’s are identical apart from the fact that they all act on their own
slice of the field. Furthermore, we will let the Mi ’s be a function of λ, such that if λ

goes to 0 (i.e., N goes to infinity) the individual Mi ’s converge to the identity map
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I . That is, we will get more and more interactions, each having smaller and smaller
effect.

We now introduce linear operators M±, M+, M− and M0 [6], acting on the two-
level atom Hilbert space, in such a way that we have the following decomposition

Mi − I = M± ⊗ ��(i) + M+ ⊗ �A∗(i) + M− ⊗ �A(i) + M0 ⊗ �t(i), (3)

where the discrete quantum noises (see, e.g., [6]) are given by

��(i) := (σ+σ−)i , �A∗(i) := λ(σ+)i ,

�A(i) := λ(σ−)i , �t(i) := λ2 Ii .

Note that this decomposition uniquely defines the coefficients M±, M+, M− and M0.
and note that these coefficients are all a function of λ. We leave this dependency on λ,
as well as the tensor products in Eq. (3), implicit in order to keep the notation light.

We can now write Eq. (2) as the following quantum stochastic difference equation
(see, e.g., [6])

�U (l) := U (l) −U (l − 1)

=
{
M±��(l) + M+�A∗(l) + M−�A(l) + M0�t(l)

}
U (l − 1),

(4)

where 1 ≤ l ≤ N and U (0) = I . We now have the following theorem due to
Parthasarathy [22] (weak convergence), Lindsay and Parthasarathy [18] (weak con-
vergence of the quantum flow) and Attal and Pautrat [2] (strong convergence uniform
on compact time intervals). We state the theorem without giving the precise meaning
of the mode of convergence of the repeated interaction model to the unitary solution
of the QSDE because we would need to introduce further mathematical details that
would make us stray too far from the main narrative of this article (see however [2],
or [5]).

Theorem 2.1 (Parthasarathy [22], Lindsay and Parthasarathy [18], Attal and Pau-
trat [2]) Suppose the following limits exist:

S := lim
λ→0

M± + I , L := lim
λ→0

M+

L† := lim
λ→0

−M−S∗, H := lim
λ→0

iM0 + i

2
L∗L,

(5)

then it follows that S is unitary, L† is the adjoint of L, i.e., L∗ = L†, H is self-adjoint
andU ([t/λ2]) (where the brackets [ ] stand for rounding down to an integer) converges
to a unitary Ut given by the following QSDE

dUt =
{
(S − I )d�t + Ld A∗

t − L∗Sd At − 1

2
L∗Ldt − i Hdt

}
Ut , U0 = I .

(6)

123



Implementing quantum stochastic differential equations… Page 5 of 15 152

Weproceed by guessing an interaction unitaryMi in the repeated interaction Eq. (2)
and check via Theorem 2.1 that it leads to the correct limit coefficients to reproduce
in the limit our system of interest which is given by Eq. (1). Note that there are several
choices for Mi that will lead to the correct limit system. We will take the following
Mi and will show that it indeed leads to Eq. (1) in the limit λ → 0:

Mi = exp
(√

κσ− ⊗ λσ+ − √
κσ+ ⊗ λσ−

)
exp

(
− iωσ+σ− ⊗ λ2 Ii

)
exp

(
− i

�

2
σy ⊗ λ2 Ii

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−iωλ2 cos

(
�λ2
2

)
−e−iωλ2 sin

(
�λ2
2

)
0 0

cos(
√

κλ) sin

(
�λ2
2

)
cos(

√
κλ) cos

(
�λ2
2

)
e−iωλ2 sin(

√
κλ) cos

(
�λ2
2

)
−e−iωλ2 sin(

√
κλ) sin

(
�λ2
2

)

− sin(
√

κλ) sin

(
�λ2
2

)
− sin(

√
κλ) cos

(
�λ2
2

)
e−iωλ2 cos(

√
κλ) cos

(
�λ2
2

)
−e−iωλ2 cos(

√
κλ) sin

(
�λ2
2

)

0 0 sin

(
�λ2
2

)
cos

(
�λ2
2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7)

A short calculation then reveals

M0 =
⎛
⎜⎝

e−iωλ2 cos(
√

κλ) cos
(

�λ2
2

)
−1

λ2

−e−iωλ2 cos(
√

κλ) sin
(

�λ2
2

)
λ2

sin
(

�λ2
2

)
λ2

cos
(

�λ2
2

)
−1

λ2

⎞
⎟⎠ ,

M− =
(

− sin(
√

κλ) sin
(

�λ2
2

)
λ

− sin(
√

κλ) cos
(

�λ2
2

)
λ

0 0

)
,

M+ =
(

0 0
e−iωλ2 sin(

√
κλ) cos

(
�λ2
2

)
λ

−e−iωλ2 sin(
√

κλ) sin
(

�λ2
2

)
λ

)
,

M± =
⎛
⎝e−iωλ2

(
1 − cos(

√
κλ)

)
cos

(
�λ2

2

)
e−iωλ2(cos(

√
κλ) − 1) sin

(
�λ2

2

)
(cos(

√
κλ) − 1) sin(�λ2

2 ) (cos(
√

κλ) − 1) cos
(

�λ2

2

)
⎞
⎠ .

(8)

Using the definitions of S, L and H in Eq. (5), we find

S = I , L = √
κσ−, H = ωσ+σ− + �

2
σy .

That is, we have found a repeated interaction model that converges to the QSDE of
Eq. (1).

Note that S converges to the identity I , which means that the gauge term d�t does
not survive in the limiting QSDE Eq. (1), which is as it should be. Note, however, that
it is possible to start with unitary repeated interaction models in the sense of Eq. (2)
that do have a limit with a non-trivial gauge term present. Examples can be found in
[2,5]. Furthermore, note that since the Mi ’s in Eq. (2) are unitary, it is always possible
to implement them with a quantum circuit [21] (i.e., also in the case when we would
have non-trivial gauge terms).
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Fig. 1 Calculated expectation values for the Pauli spin operators for the two-level atom, using parameters
κ = 1, ω = 0 and � = 12. Results are plotted for the master equation Eq. (9), and calculations on the
actual IBMqx4 Tenerife quantum computer. The results of the master equation are obtained using a time
step λ2 = 0.01. The IBMqx4 curve consists of collected results of experiments with time steps λ2 = 0.16,
0.14, and 0.10, each averaged over 10,240 runs

3 The quantum circuit

The various contributions to the interaction between the atom and the field, given in
Eq. (7), can easily be mapped to elementary quantum gates. The following quantum
circuit [21] implements this interaction for a single time slice:

Ry(�λ2) Rz(ωλ2) • Ry(2
√

κλ) • atom

• f ield
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Fig. 2 Time evolution of the expectation value of the Pauli σz operator of the two-level atom, in the
homodynedetection scheme, for the four trajectories that have accumulated themost statistics. The trajectory
is given by the title above the plots, which shows �Y . The filter equation results are from Eqn (11). The
IBMqx4 results are averaged over 10,240 runs. The simulator results are obtained from the IBM Qiskit
simulator, using the same quantum assembly code that was used on the IBMqx4 Tenerife computer, and
are averaged over 102,400 runs

The Open QASM [9] code implementing this circuit on the IBMqx4 Tenerife quantum
computer is given by:

OPENQASM 2.0;
include "qelib1.inc";

// Parameters: lambda = 0.4, kappa = 1, omega = 0, Omega = 12

qreg q[5];
creg b[5];

// Rabi oscillation
ry(1.92) q[2];

// Interaction between atom and field
rz(0.0) q[2];

cx q[2], q[0];
cx q[0], q[2]; ry(-0.4) q[2]; cx q[0], q[2]; ry(0.4) q[2];
cx q[2], q[0];
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Fig. 3 As Fig. 2, for the σx operator

// Measure state of atom
measure q[2] -> b[0];

// Measure state of the field
measure q[0] -> b[1];

In this code, the atom state is stored in qubit 2, and the state of the electromagnetic
field slice in qubit 0.

For modeling multiple time slices, different qubits are used to describe the field at
different times, and coupled to the atom qubit. Currently, this limits the simulation
to a maximum of four time slices on the IBMqx4 computer. If operations based on
classical bits were enabled, we could reuse the same qubit for the field by measuring
this qubit, and rotating it back to its |0〉 state when the outcome is 1. Unfortunately,
this is currently only implemented in simulators and not in real hardware.

At the end of the simulation, all qubits (both field and atom) were measured. The
atom was measured in the x , y, and z basis, whereas the field qubits were measured
in the x and z basis. The calculations were executed on both the IBMqx4 Tenerife
quantum computer and the IBM Qiskit [1] simulator. Statistics were collected over
10,240 runs for each combination of measurement directions of atom and field on the
IBMqx4 quantum computer, and over 102,400 runs in the simulator.
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Fig. 4 As Fig. 2, for the σy operator

In all simulations we performed, the transition frequency ω was taken to be zero
for simplicity.

4 Results

4.1 Master equation

The repeated interaction model given by Eq. (7) leads to the following discrete time
master equation [6, Eqn 4.3, p. 265] for the state ρl of the two-level atom:

�ρl := ρl − ρl−1 = L(ρl−1)λ
2, ρ0 =

(
0 0
0 1

)
, (9)

where the discretized Lindblad operator is given by [6, Eqn 4.4, p. 265]

L(ρ) := M+ρM+∗ + λ2M0ρM0∗ + M0ρ + ρM0∗
. (10)
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Fig. 5 Time evolution of the expectation value of the Pauli σz operator of the two-level atom, in the photon
counting scheme, for the case where no photons were detected (0000), and where a single photon was
detected after the fourth (0001), third (0010), second (0100) and first (1000) time step. The filter equation
results are from Eq. (12). The IBMqx4 results are averaged over 10,240 runs. The simulator results are
obtained from the IBM Qiskit simulator, using the same quantum assembly code that was used on the
IBMqx4 Tenerife computer, and are averaged over 102,400 runs

Here M+ and M0 are given by Eq. (8). Figure 1 compares the theoretical results given
by the master equation Eq. (9) and the results obtained with the IBMqx4 Tenerife
quantum computer.
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Fig. 6 As Fig. 5, for the σx operator

4.2 Homodyne quantum filter

We now turn to the situation where we are not simply tracing over the field, but
condition on observations made in the field. Suppose that for l = 1, 2, 3, 4, we have
observed λ ∗ σx in the field:

�Y (l) := λ ∗ “the outcome of the σx -measurement of the lth field qubit”.

Physically, this corresponds to the case where we observe the field with a homodyne
detection setup after the interaction with the two-level atom. We can condition the
time evolution of the density matrix on an observed homodyne photo current detection
record. The conditioned density matrix obeys the following discrete quantum filtering
equation for homodyne detection [6, Section 5.2, p. 274]
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Fig. 7 As Fig. 5, for the σy operator

�ρl = L(ρl−1)λ
2 +

J (ρl−1) − tr[J (ρl−1)]
(
ρl−1 + λ2L(ρl−1)

)
1 − λ2tr[J (ρl−1)]2

×
(
�Y (l) − tr[J (ρl−1)]λ2

)
, (11)

where L is given by Eq. (10) and J and the initial state ρ0 are given by

J (ρ) := M+ρ + ρM+∗ + λ2M+ρM0∗ + λ2M0ρM+∗
, ρ0 =

(
0 0
0 1

)
,
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Here M+ and M0 are given by Eq. (8). Figures 2, 3 and 4 compare the theoretical
results given by the quantum filter equation Eq. (11) and the results obtained with the
IBM Qiskit simulator and the IBMqx4 Tenerife quantum computer.

4.3 Counting quantum filter

Finally, we turn to the situation where we condition on having observed σ+σ− in the
field for l = 1, 2, 3, 4. That is, we have the following observations:

�Y (l) = 1 + “the outcome of the σz-measurement of the lth field qubit”

2
.

Physically, this corresponds to the casewhereweobserve thefieldwith a photo detector
after the interaction with the two-level atom. We can condition the time evolution of
the density matrix on an observed photo detection record. The conditioned density
matrix obeys the following discrete quantum filtering equation for photon counting
[6, Section 5.3, p. 276]

�ρl = L(ρl−1)λ
2 +

M+ρl−1M+∗
tr[ρl−1M+∗M+] − ρl−1 − λ2L(ρl−1)

1 − λ2tr[ρl−1M+∗M+]
×

(
�Y (l) − tr[ρl−1M

+∗
M+]λ2

)
,

ρ0 =
(
0 0
0 1

)
.

(12)

Here M+ is given by Eq. (8). Figures 5, 6 and 7 compare the theoretical results given
by the quantum filter equation Eq. (12) and the results obtained with the IBM Qiskit
simulator and the IBMqx4 Tenerife quantum computer.

5 Conclusion

In this paper we have shown that it is fairly straightforward to implement quantum
stochastic differential equations on a quantum computer. The mathematical theory
[2,5,6,17,18,22] behind the necessary discretization of the equations is well worked
out and easily translated into a quantum circuit. Even with the very limited capacity
of the currently available quantum computers, it is possible to simulate some simple
quantum optical features described by a QSDE (e.g., a Rabi oscillation).

We have also seen that the filter equations are to a large extent correctly reproduced
on the IBMqx4 Tenerife quantum computer, although agreement becomes progres-
sively worse as the number of quantum gates increases. This provides confidence that
the (quantum) correlations between the atom and the field are accounted for correctly.
This opens the door to fully coherent simulations of systems that interact with the
field at different points, even including fully coherent feedback loops [11,12]. Natu-
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rally, this is only feasible when quantum computers are available with more and more
reliable qubits.

As can be seen in Figures 5 and 6, the time evolution between counts in the photon
counting scheme seems to be accounted for correctly; however, the jump operation
does not seem to be accurate to the theory. This can be understood though: there are
relatively few jumps and there is already quite a bit of noise on the results when the
field is in the vacuum state. This means there is an identity component in the jump
operator that leads to a deviation from the theory. Note that in principle, it is possible
to incorporate the additional noise into a phenomenological model of the computer.

With respect to the discrete quantum filtering equations [6], we note that they
completely coincide with the IBM Qiskit simulator results. However, they are much
less computationally intensive and could still be used if the number of qubits is larger
than the simulator can deal with. Note, however, that in the simulator it is also possible
to recycle the field qubits after they have been measured. This is currently not yet
possible on the real IBMQ hardware.

As a final note, we would like to remark that in this paper we have only consid-
ered gate-based quantum computation with super conducting qubits as made available
through the cloud by IBMQ. Master equations and filtering equations (stochastic
Schrödinger equations) have also been used to study other platforms such as quantum
annealing, see, e.g., [24].

It will be interesting to see future quantum computers simulate more complex
benchmark problems originating from quantum optics.
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