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Abstract
Protecting quantum states from the decohering effects of the environment is of great
importance for the development of quantum computation devices and quantum sim-
ulators. Here, we introduce a continuous dynamical decoupling protocol that enables
us to protect the entangling gate operation between two qubits from the environmen-
tal noise. We present a simple model that involves two qubits which interact with
each other with a strength that depends on their mutual distance and generates the
entanglement among them, as well as in contact with an environment. The nature
of the environment, that is, whether it acts as an individual or common bath to the
qubits, is also controlled by the effective distance of qubits. Our results indicate that
the introduced continuous dynamical decoupling scheme works well in protecting
the entangling operation. Furthermore, under certain circumstances, the dynamics of
the qubits naturally led them into a decoherence-free subspace which can be used
complimentary to the continuous dynamical decoupling.
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1 Introduction

The interaction between a quantumsystemand its environment is primarily responsible
for the loss of essential quantum features, such as quantum coherence and entangle-
ment, which is widely known as decoherence [1,2]. However, it is these fragile features
that make quantum systems advantageous in many different information processing
tasks which significantly outperform their classical counterparts [3]. Therefore, it is
compulsory to protect the quantum systems from the decohering effects of their envi-
ronment to employ them in quantum computing protocols.

There are several well-known strategies for protecting a quantum system [4–7].
One of the most effective ways is the dynamical decoupling (DD) protocols which
have been studied both theoretically [8–17] and experimentally [18–24]. The main
idea of DD is to preserve the quantum features of the subject system by applying
external pulses to eliminate the effect of the environment. Mathematically, this corre-
sponds to introducing an external control Hamiltonian for the subject system, which
cancels out the undesired dynamics arising from the system–environment coupling.
Instead of applying a sequence of pulses, one can also protect the quantumness of
a system by applying continuous external fields which is known in the literature as
continuous dynamical decoupling (CDD) [25–35]. Experimentally, application of two
qubit gates is fairly more natural when the system is protected by CDD [36–38] and
also, CDD plays an important role in reducing the error induced by environmental
perturbations in nitrogen vacancy centers in diamonds which are powerful candidates
for the applications in the field of quantum information technologies [34,39–41].

Besides the CDD protective scheme, one can also explore other aspects that may
emerge during the dynamics. For certain system–environment interactions, there are
some parts of the systemHilbert space that are unaffected by the decohering dynamics,
therefore preserving the quantum information encoded in them. Such parts of the
Hilbert space are called decoherence-free subspaces (DFSs), and they also constitute
a very important place among the strategies to preserve quantum information [6,7].
Encoding the desired information in these parts of theHilbert space, of course, presents
a very natural opportunity to transfer or process it without getting affected by the
decoherence [42,43], and this approach has also foundmany experimental applications
[44–52].

In this work, we propose a model involving two qubits interacting with each other
as well as with a bosonic environment. We assume that it is possible to control the
exchange interaction between the qubits by changing theirmutual distance. By varying
this effective parameter, we both tune the interaction strength between the qubits and
determine theway they couple to the environment. To bemore precise, when the qubits
are well separated, the interaction between them vanishes and they can be considered
as if they are coupled to independent environments due to the large relative separation
between them in the position space. In the opposite limit, in which qubits are close
to each other, the interaction strength reaches its maximum and they are assumed
to be coupled to a common environment. Our model is built in such a way that the
transition between these limits is gradual, and both inter-qubit interaction strength and
the environment coupling change simultaneously, since they are both controlled by the
same parameter. In the absence of an environment, the interaction between the qubits is
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chosen so that after a certain time, qubits become maximally entangled. However, due
to the environmental noise, which is present in realistic experimental situations, it is
not possible to reach this ideal entangled state. Such degrading effects of environment
on the entanglement qubits are simulated in this work by amplitude damping and
dephasing channels. We then present a CDD scheme designed specifically for our
model to eliminate these harmful effects of the environment.Moreover, in some certain
cases, for example, depending on the final positions of qubits, we show that it is
possible end up with a state in a DFS, which is indifferent to external noise even when
the protection is switched off.

This paper is organized as follows. In Sect. 2, we present our CDD strategy and
introduce the decoherence model that we consider together with its solution. Our
results are presented in Sect. 3, and in Sect. 4 we conclude.

2 Themodel

In the interaction picture, the total Hamiltonian of the system under consideration is
given in the form

H(t) = Hgate + Henv +U †
c HintUc. (1)

Here, Hgate defines the interaction between the two qubits which performs the entan-
gling

√
SWAP gate operation and Henv denotes the Hamiltonian of the environment.

The last term includes the system–environment interaction Hint, and Uc is the time
evolution operator corresponding to the CDD control Hamiltonian Hc. The interaction
picture transformation leaves Henv intact sinceUc only affects the Hilbert space of the
protected system. This is also true for Hgate, which will be evident shortly after.

The tunable Heisenberg exchange interaction between the qubits can be written as

Hgate = J (t)σ (1).σ (2), (2)

for � = 1 and σ (s) = x̂σ (s)
x + ŷσ (s)

y + ẑσ (s)
z , where σ

(s)
i ’s (s = 1, 2) are the Pauli

matrices acting on qubit s. In ourmodel, we interpret the time dependence of J as being
adjusted due to the alteration of the qubit separation. Without loss of generality, we
assume that coupling between qubits is in the form of aGaussian function of time given
as J (t) = A exp[−B(t − τ/2)2] where τ is the total interaction time. Therefore, by
using the known integral

∫ +∞
−∞ J (t)dt = A

√
π/B, we can safely assert the constraint

B = (8A)2/π as long as τ/2 is greater than three-sigma interval of J . We make use of
two different J profiles specified by their peak heights A corresponding two different
physical situations which will be explained later. From this point on, we will refer to
the time t as being scaled by τ .

There are many advantages of considering a tunable exchange interaction between
the qubits, for both the theoretical and experimental aspects of our model. First of
all, it can be realized in double-quantum dot systems by controlling the intermediate
tunnel barrier [53]. Among others such as voltage-controlled exchange [54], one of
the possible ways of achieving this control is to adjust the separation between the
dots [55,56], which actually constitutes the motivation behind our aforementioned

123



156 Page 4 of 17 İ. Yalçınkaya et al.

interpretation. It has also been shown experimentally that these kinds of couplings
can be realized with neutral atoms trapped in an optical lattice [57], where initially
separated and fully isolated Rubidium atoms are then gradually merged to occupy
the same physical location and are allowed to interact. By this way, it is possible to
create a tunable exchange constant J (t), and hence, to realize SWAP and

√
SWAP

operations. Besides, Eq. (2) remains invariant under global rotations due to its scalar
product form. As a result, the external control fields that are applied to protect the
gate do not affect the gate operation itself, which in principle makes the concatenation
of the protection mechanism and the entangling operation conceivable. Lastly, it is
worthy mentioning that the tunable Heisenberg interaction alone is sufficient for uni-
versal quantum computation, i.e., it suffices to implement any quantum circuit without
the necessity of having access to single-qubit operations [58], which is essential for
quantum information processing.

The environmental Hamiltonian of both qubits is represented by a single thermal
bath of harmonic oscillators. However, we assume that if the qubits are well separated,
their interaction with the environment can effectively be regarded as if they are in
contact with two independent environments, e.g., as for the case of tunable charge
qubits [59]. Therefore, we define the environmental Hamiltonian Henv in two different
ways, depending on whether the qubits are coupled with a common environment
(CE) or with independent environments (IEs). In the case of a CE, we have Henv =∑

k ωkak†ak , where ωk is the frequency of the kth normal mode of the environment,
and ak and ak† are the annihilation and creation operators, respectively. In the case of

IEs, it can be written as Henv = ∑2
s=1

∑
k ω

(s)
k a(s)

k

†
a(s)
k , where ω

(s)
k is the frequency

of the kth normal mode of the sth qubit environment. We assume that IEs are identical,
i.e., the frequencies ω

(s)
k are the same and ωk for both.

The qubit pair interacts with this bosonic environment according to the interaction
Hamiltonian which is given by

Hint = B(1) · σ (1) + B(2) · σ (2), (3)

where B(s) = B(s)
x x̂ + B(s)

y ŷ + B(s)
z ẑ are Hermitian operators that act on the envi-

ronmental Hilbert space. Accordingly, we take B(s)
m = ∑

k

(
λmg∗

k a
(s)
k + λ∗

mgka
(s)†
k

)
,

where gk are coupling constants. In the cases of CE or IE, Eq. (3) reads as

HCE
int =

(
σ (1) + σ (2)

)
·
(
λB + λ∗B†

)
, (4)

H IE
int = σ (1) ·

(
λ(1)B(1) + λ(1)∗B(1)†

)

+ σ (2) ·
(
λ(2)B(2) + λ(2)∗B(2)†

)
. (5)

For the CE case, B(s) = λB+λ∗B† whereλ is an arbitrary complex three-dimensional
vector and B is a scalar operator that acts on the environmentalHilbert space. Similarly,
for the IE case, B(s) acts for the sth qubit and λ(s) is the respective complex vector.
As we have explained earlier, we will consider a smooth transition from IE to CE
and then, CE to IE as qubits get closer and get departed from each other during the
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interaction time τ , respectively. Therefore, we combine Eqs. (4) and (5) into one
effective Hamiltonian modeling the environmental interaction as

Hint = [1 − ξ(t)]H IE
int + ξ(t)HCE

int , (6)

where ξ(t) = exp[−[c(t − 0.5)]2d ] defines the transition between the two interpreta-
tions of system–environment coupling as the qubits move with respect to each other.
We will arbitrarily fix the parameters of ξ(t) as c = 2.86 and d = 9 so that it yields a
transition profile of smoothly interchanging low and high plateaus as we desire (see
Fig. 1). After having Hint fixed, now we define the

√
SWAP in two different ways

as mentioned earlier. (i) A short-ranged interaction (SRI) scheme denoted by Jsri
with A = 2.2, where whole interaction effectively arises and vanishes in the CE. (ii)
A long-range interaction (LRI) scheme with parameters A = 1.15, denoted by Jlri
where whole interaction effectively arises and vanishes in the IE. We note that the
means of both J (t) and ξ(t) coincide, and they define the middle of the whole inter-
action at t = 0.5. All parameters here were chosen especially to study the integration
between CDD and DFS in different experimental situations.

Before moving on to the introduction of the control Hamiltonian, we need to intro-
duce a necessary condition that must be satisfied by the control Hamiltonian in order

Fig. 1 Schematic representation of the presented model. At t = 0, the non-entangled qubits are well
separated so that we assume the Heisenberg interaction among them is zero (J = 0) and also, they are
considered as interacting with two independent environments (IEs). As qubits get closer to t ∈ [0, 0.5],
the interaction strength J increases and the IE behavior gradually turns to a common environment (CE)
behavior, which is characterized by the parameter ξ as defined in Eq. (6). The same mechanism is reversed
when t ∈ [0.5, 1]. We choose J (t) in two different ways where Jsri (Jlri) corresponds to a short (long)-
range interaction effectively arising and vanishing in the CE (IE) region. In both cases, interactions are
adjusted to lead the qubit pair evolve into a maximally entangled state in the absence of environmental
effects. During the whole interaction time t ∈ [0, 1], the system is kept in an external field �(t) as given
in Eq. (11) to protect this entanglement operation from the environmental noise with an appropriate CDD
procedure introduced in the text
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for it to completely eliminate the effects of environment which can be mathematically
expressed as [8–17] ∫ τ

0
U †
c (t)HintUc(t)dt = 0, (7)

where τ = 2π/ω. In fact, Eq. (7) is derived from a Magnus expansion of the total
Hamiltonian given by Eq. (1) in the limit τ → 0, where, in general, only the first
term in this expansion survives. Therefore, although in the ideal case of τ → 0 this
approach works fine, in this work, we will consider the more realistic case of finite τ

and expect Eq. (7) to also guide us in this case.
We propose the form of the control Hamiltonian that protects the entangling gate

operation realized by Eq. (2) to be

Hc(t) = �(t) ·
(
σ (1) + σ (2)

)
, (8)

where�(t) is the external field configuration that needs to be applied. It has been shown
that for Eq. (7) to be satisfied by the evolution operator corresponding to Eq. (8), the
following equality has to be satisfied [30]

Uc(t) = U (2)(t)U (1)(t) = U (1)(t)U (2)(t), (9)

due to the fact that σ (1) and σ (2) commute, where

U (s)(t) = exp
(
−iωtnxσ

(s)
x

)
exp

(
−iωtnzσ

(s)
z

)
, (10)

for s = 1, 2. As a consequence, we obtain the external field configuration as

�(t) = x̂nxω + nzω
[
ẑ cos (nxωt) − ŷ sin (nxωt)

]
, (11)

with conditions imposed by Eqs. (9) and (10). Here, ω = 2π/τ , nx and nz �= nx are
nonzero integers. This field configuration is composed of a combination of a static field
along the x-axis and a rotating field around on the yz plane. In this form, Hc is capable
of protecting our two-qubit system against both amplitude damping and dephasing
errors. It is possible to consider a simpler field configuration by setting nz = 0 and still
possible to provide protection solely against dephasing errors with a static field in the
x-direction. It is worthy mentioning here that both dephasing and amplitude damping
noises solely arise due to the interaction between two qubits and the environment.
We assume that all other possible sources of noise, e.g., technical limitations caused
by the driving of qubits, are negligible in our work. In other words, we are aware
of the fact that amplitude fluctuations in the driving field can also introduce a noise
to the system qubits; however, we assume that such fluctuations are unimportant for
protection scheme considered in this work.

The reduced dynamics of the two qubits under consideration, which is dictated
by the total Hamiltonian Eq. (1), is governed by a Redfield master equation. The
derivation and the solution of this master equation are elaborated in “Appendix,” and
also, an even more detailed explanation can be found in Refs. [30,31].
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3 Results

In the following sections, we consider two different scenarios to introduce environ-
mental noise on the entangling dynamics of our pair of qubits. First, we assume that
dephasing is the only source of noise acting on the system and we investigate howwell
our system is protected against it for different values of the protective field strength.
We also adjust the final positions of the qubits to leave them in contact with a CE after
J vanishes, so that we are able to make the two-qubit state to stay in a DFS. Second,
we also let the amplitude damping to act on qubits together with dephasing and we
examine how our protection scheme works in this case. Moreover, we show how the
dynamics of entanglement is affected when either one of the error mechanisms is left
as a residual error, i.e., no protection is provided against it.

The initial state of our two qubit system is ρ0 = | ↑↓〉〈↑↓ |. In the absence
of any external noise and protection,

√
SWAP gate—for both SRI and LRI—yields

the maximally entangled state ρτ = [a|↑↓〉 + a∗|↓↑〉][a∗〈↑↓| + a〈↓↑|] with a =
(1 + i)/2 at the end of the dynamics. Therefore, we examine the concurrence of this
state with respect to time as a figure of merit when both the noise and the protection
are introduced. The temperature of the environment(s) is chosen to be T = 0.2 K,
and we fix the relevant time scale in the dynamics to τ = 10−9 s. The environmental
spectral density is chosen to be ohmic. Recall that, in all the different scenarios that
will be considered in the following sections, initially the qubits are well separated, not
interacting and in contact with the independent environments.

3.1 Dephasing

In this section, we assume that the errors introduced on the system are caused only
by dephasing. Therefore, we do not need to provide any protection against amplitude
damping errors. We modify our protective field for this case by simply setting nz = 0.
In Fig. 2, we represent how the entanglement between the two qubits changes in time
for different values of the protection strength, namely for nx = 0, 1, 2 and 8, where
nx = 0 means no protection at all.

While in Fig. 2a, c, d the coupling between the qubits effectively arises and vanishes
when they are interacting with a common environment, Fig. 2b presents the same
situation but this time for independent environments (see Fig. 1). In other words, the
former are the cases of a SRI and the latter is the case of a LRI among the qubits, as
mentioned in Sec. 2. First thing to notice in all cases is that as the strength of the external
protection field increases, our CDD scheme works better and nx = 8 proves to be
sufficient to fully protect the entangling gate operation. Evenwith nx = 2, it is possible
to achieve a concurrence value of ≈ 0.9. Thus, the present CDD protocol, which had
proven to work for static inter-qubit coupling [30,31], also performs completely well
for the tunable case in question. Another point which also applies for all cases is that in
the absence of any protection, qubits are getting highly entangled during a short time
period before they start to get gradually non-entangled because of the noise induced by
the interaction with IEs. The concurrence for nx = 0 even exceeds that of the nx = 2
and reaches to the level of nx = 8. Nevertheless, the protection is still required if we
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Fig. 2 Concurrence of the two-qubit state ρt along the interaction time τ for increasing values of the
protection nx . For all cases, the system is only subjected to dephasing, and hence, the nz component of the
protective field is set to zero. The abbreviations SRI and LRI correspond to short- and long-range interaction
schemes, respectively. In a and b, the protection is maintained during the time evolution. In c and d, the
protection is shut down (nx = 0) after t = 0.75, whereas in d the qubits are also halted after this time.
Inset of c represents the DFS occupancy Dt at time t , where 1 (0) implies that the state ρt is completely
in (out of) the DFS. No further change in concurrence is observed for larger values of nx . In d, the curves
coincide for nx = 0 and nx = 8

take into account the whole interaction time τ , i.e., setting the protection strength to
at least nx = 8 is inevitable to obtain highly entangled states at t = τ for Fig. 2a, b.
For the higher values of nx > 8, no further change in concurrence takes place.

We now turn our attention to the more interesting point of utilizing DFSs for pro-
tection after the qubits are entangled. First of all, in general, a DFS is only possible
when the qubits are interacting with a common dephasing bath. In particular, the
Hilbert space of two qubits, DFS is spanned by the following set of basis states
D = {|↑↓〉, |↓↑〉}. We have stated that, in the ideal case of isolated qubits, the initial
state we consider ends up in a maximally entangled state in this subspace. Therefore,
we want to see whether it is also possible to make use of this naturally occurring
phenomenon for protection. At this point, we emphasize that there are two crucial
requirements that need to be satisfied in order to maintain the existence of the two-
qubit state in DFS. First of all, we must keep the qubits interacting with a CE after
the inter-qubit interaction does its duty of entangling the qubits and vanishes. We can
manage to do this in the SRI setting where the interaction begins and ends in the CE
regime. The second condition is to turn the CDD field off since it drastically drives
the two-qubit state into and out of the DFS in time. To quantify how well the state ρt
is contained in the DFS, we can define
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Dt = 1

ξt

∑

i, j∈D
|〈i | ρt | j〉| . (12)

Here, ξ−1
t is the normalization factor which is obtained by summing over the absolute

values of all elements in ρt . Thus, while Dt = 1 implies a complete confinement of
the ρt in the DFS, the contrary case of Dt = 0 indicates that the state is completely out
of the DFS. In Fig. 2c, we show the dynamics of entanglement when the protection is
turned off after t = 0.75 for a SRI scenario by knowing in advance that the

√
SWAP

gate operation is completed and the qubits are maximally entangled before t = 0.75.
It can be seen from the inset that Dt approximately reaches its maximum value with
a period of 0.25. For this reason, t = 0.75 is a carefully selected time where the two-
qubit state is well confined in the DFS. Therefore, after the protection is turned off,
entanglement remains at its maximum value for a relatively short time, during which
the qubits are still in a DFS, and then, it starts decreasing as the CE transforms into IE
gradually, making DFS disappear. Such a behavior in the dynamics of entanglement
can be understood by noting that the first of the aforementioned conditions to form a
DFS, namely interaction with a common bath, is no longer satisfied. The results for the
most ideal case are presented inFig. 2d inwhich caseweboth turn the protection off and
stop altering the position of the qubits after the time t = 0.75. In this scenario, one can
observe that even if there exists no external field to protect the entanglement between
the qubits against the dephasing environment, entanglement remains intact since we
keep the qubits in a DFS by maintaining a CE. Therefore, under these conditions, it
is actually not necessary to provide an external protection to the qubits at all since
the nature of the dynamics guides the system to stay in a DFS. Obviously, the choice
of the initial state ρ0 is also relevant here because an initial state defined outside of
DFS would not yield the same results. On the other hand, if one intends to keep the
protection field on at all times, then the protection field should be sufficiently strong to
preserve the entanglement in the system. If the protection the field is not strong enough,
i.e., nx = 1, 2, the situation becomes worse than the case of no protection at all since
such a case neither provides sufficient protection to reach the levels of entanglement
obtained in nx = 0 case, nor lets the system stay in the DFS. All the same, the nx = 8
case in Fig. 2d is an example of how one can use different techniques of preserving the
quantumness of a state complementary to each other. Although we have seen that it is
not necessary in the present scenario, it should be possible to protect a system from
noise by applying a CDD scheme up until the system enters a DFS before turning off
the external field. In the next section, we will present an example along these lines.

3.2 Dephasing and amplitude damping

In this section, we present our results when both amplitude damping and dephasing
errors are present. We consider two different scenarios for the protection of the qubits’
dynamics. On the one hand, we provide protection against both decoherence mech-
anisms. On the other hand, we let either dephasing or amplitude damping affect the
system, i.e., supply no protection against it, while providing protection against the
other. We also refer to this second case as leaving one of the error mechanisms as a
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residual error on the dynamics. These studies are relevant since it is experimentally
simpler to implement a partial protection compared to the full protection. For example,
a simple static field is enough to protect the system, while the full protection requires
a more complicated field.

Motivated by the results in Fig. 2d, which shows the natural evolution of qubits in a
DFS during the dynamics without any protection against dephasing, wewant to further
investigate this case in a slightly different setting. On top of dephasing, we now assume
amplitude damping environment is also acting on our system and we provide full
protection against it at all times. Fig. 3a, b presents our results on the described setting
and compares the cases of no protection with protection turned off at t = 0.755 and
t = 0.72 for the dephasing, respectively. We know that the entangling gate operation
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Fig. 3 Dephasing and amplitude damping affecting the system together: The upper panel, where qubits
are halted at a t = 0.755 and b t = 0.72, represents the advantage of leaving dephasing as a residual
error, i.e., one can utilize both a DFS and a CDD at the same time to eliminate the undesired effects of the
environmental noise. In a and b, the dashed lines represent the case where dephasing is kept as a residual
error. For the solid lines, the dephasing protection is applied (nx = 8) until the qubits are halted, and then,
it is turned off. In the middle panel, marked by c and d, amplitude damping is left as a residual error by
setting nz = 0, while in the bottom panel, shown by e and f, qubits are protected against the both error
mechanisms. No considerable change is observed for larger values of nx and/or nz
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has already ended at these time instants, and we stopped both qubits thereafter to leave
them in contact with the CE similar to the case of Fig. 2d. Intuitively, one can regard
this specific time assignment as a way to gauge how an imperfect timing of shutting the
dephasing protective field down would change the entanglement dynamics after that
point in time. We observe that in the present setting, it is possible to reach the desired
maximally entangled state. The dynamics of the two-qubit densitymatrix entirely stays
inside the subspace spanned by D, which is the same subspace as the DFS occurs.
However, it is not possible to directly say that a DFS forms in the present case, due
to the fact that there is also an amplitude damping environment and the external field
to cancel its effect on the system. Even so, we think the that the perfect generation
of the entangled state is because of the reminiscent effect of the DFS. All in all, this
result sets an example of the aforementioned hybrid utilization of external and natural
protection mechanisms. We now turn our attention to the partial dephasing protection
cases that are presented as red solid curves in Fig. 3a, b. Recall that the external field
that protects against dephasing errors also makes the state of our system to oscillate
in and out of the DFS. We observe that higher confinement inside the DFS at the time
we close the dephasing protection results in a slower decay in the entanglement. Since
for nx = 0 there is no external dephasing protection field to perturb the system out
of the DFS, the performance of the protocol is better in that case as compared to the
partial protection.

In Fig. 3c, d, the amplitude damping mechanism is left as a residual error, that is,
there is no protection against it nz = 0. The former is when the interaction is long
ranged, while the latter represents the case when the interaction is short ranged. Both
figures show qualitatively the same behavior for which in none of them is it possible to
reach maximal entanglement. The amount of entanglement follows a decreasing trend
after t ≈ 0.5 after the initial increase. We can conclude that it is possible to reach a
certain level of entanglement while leaving amplitude damping channel affecting the
qubit system; however, the generated level of entanglement is not sustainable over the
course of the dynamics.

In Fig. 3e, f, the behavior of the entanglement is considered for LRI and SRI
schemes, respectively. In these figures, we provide protection against both amplitude
damping and dephasing for different protection strengths, where nx = nz = 0 cor-
responds to no protection at all for comparison. Examining graphs closely, similar to
the previous section, we can conclude that as the external field strength is increased,
the CDD scheme works better on the system. Although it is possible to reach the
maximal entanglement after the gate operation, the protection is not as stable as the
sole dephasing setting even for the highest provided external field strengths nx = 16
and nz = 32. This instability, however, can be further improved by increasing the
strength of the CDD field, but we chose to stick to these modest strengths since they
are sufficient to demonstrate that proposed protection scenario works well under these
circumstances. One more observation is that there is no difference between LRI and
SRI cases for any protection strength except that entanglement reaches its maximum
slightly earlier in the latter one. This is actually expected since SRI is completed faster
than the LRI by definition.

123



156 Page 12 of 17 İ. Yalçınkaya et al.

4 Conclusion

We proposed a CDD strategy for protecting the dynamics of two qubits from the
decohering effects of the environment (amplitude damping and/or dephasing), where
we can tune both the inter-qubit interaction strength and qubit-environment couplings.
We chose the effective distance between the qubits as our tuning parameter, such that
it both adjusts the strength of qubit–qubit interaction and varies the qubit–environment
couplings gradually between IE and CE. The qubits get entangled due to the specific
type of interaction between them, and we employed concurrence as the figure of
merit for our protection scheme. We showed that the entangling gate operation, which
is mediated by the Heisenberg interaction, can be preserved almost perfectly if the
strength of the external protective field is strong enough for both decoherence channels.
Although the presentedmodel has its own limitations and relies on a set of assumptions,
we believe that it could potentially serve as an example to provide a direction for the
protection of entanglement in open quantum systems.

An interesting finding in this work is the possibility of utilizing DFS in the Hilbert
space of the qubits under some specific conditions. We observed that if the inter-
qubit coupling starts and ends inside the region where the qubits are in contact only
with a common dephasing environment, the natural occurrence of DFS due to the
CE dephasing dynamics perfectly preserves the entangled state, even in the absence
of any external protection mechanism. The very presence of a CDD field actually
destroys the DFS; however, what one can do is to turn this external protection off
once the system enters into the DFS, guaranteeing that it remains unaffected from the
environmental noise afterward. We demonstrated that provided that the field cannot
be turned off completely, then its strength should be over a certain threshold value;
otherwise, the external field may drive the state of the system out of the DFS and
makes the situation worse than the case of no external field. Furthermore, we showed
that when amplitude damping errors are also present, it is sufficient to provide external
protection only for amplitude damping while the system is protected from dephasing
naturally by evolving into a DFS-like subspace. We hope that the strategy presented in
our example model might be of interest as it combines two of the well-knownmethods
to prevent the undesired effects of an environment from destroying quantum features
of a system. Besides, it partially relies on external resources (CDD) up to a point where
it can use the internal mechanisms arising from the nature of the dynamics (DFS).
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A: Derivation of themaster equation

We introduce the details of the derivation of the master equation that governs the time
evolution of our two-qubit system. First of all, we assume that each source of error,
induced by the environment, is present separately. In other words, both independent
environments for each of the qubits and the common environment, which the qubits
together couple when they are close, are assumed to be present during the whole
evolution. In this case, the total Hamiltonian is given by Eq. (1), with Hint defined by
Eq. (6) and Henv defined by:

Henv =
∑

k

ωkak
†ak +

2∑

s=1

∑

k

ω
(s)
k a(s)

k

†
a(s)
k , (13)

where ωk is the frequency of the kth normal mode of the environment that introduces
common errors, with ak and ak† being the annihilation and creation operators, respec-
tively. In the second term, ω

(s)
k is the frequency of the kth normal mode of the sth

independent environment with respective annihilation (a(s)
k ) and creation (a(s)

k

†
) oper-

ators. It is important to emphasize that each error source is present independently of
others since, in such a case, the total environment Hamiltonian could be written as a
linear combination of the Hamiltonians of three distinct environments.

Having defined the total Hamiltonian, we utilize the Redfield master equation
approach to calculate time evolution of the reduced two-qubit system:

dρ̃S (t)

dt
= −

∫ t

0
Trenv

{[
H̃int (t) ,

[
H̃int

(
t ′
)
, ρR ρ̃S (t)

]]}
dt ′. (14)

Here,
H̃int(t) = U †

env(t)U
†
gate(t)U

†
c (t)HintUc(t)Ugate(t)Uenv(t), (15)

where Uenv(t) = exp(−i Henvt), Ugate(t) is the unitary evolution operator related
to the time-dependent Hamiltonian Hgate(t), given by Eq. (2), and Uc(t) is given
by Eq. (9). In addition, ρE = 1

Z exp(−βHenv), where Z is the partition func-
tion Z = Trenv exp(−βHenv) and β = 1/kBT with kB being the Boltzmann
constant, and T is the absolute temperature of the environment. Finally, ρ̃S (t) =
U †
gate (t)U †

c (t) ρS (t)Uc (t)Ugate (t) where ρS(t) is the density operator in the
Schrodinger picture.

To write an effective master equation in order to be solved numerically, we rewrite
the interaction Hamiltonian as

Hint =
3∑

n=1

λ · Sn(t) ⊗ Bn + λ∗ · S†n(t) ⊗ B†
n , (16)
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where n = {1, 2, 3} represents each one of the three independent baths (one individual
for each qubit plus a collective one for both qubits) and

S1(t) = ξ(t)
[
σ (1) + σ (2)

]
,

S2(t) = [1 − ξ(t)] σ (1),

S3(t) = [1 − ξ(t)] σ (2), (17)

with Bn = ∑
k g

n
k a

n
k , and λ = ẑ for a dephasing environment and λ = (x̂ + i ŷ) for

the amplitude damping. In the interaction picture, we can finally write the interaction
Hamiltonian as:

H̃int (t) =
3∑

n=1


n (t) B̃n(t) + 
∗
n (t) B̃†

n (t) , (18)

where


n (t) = U †
gate (t)U †

c (t) [λ · Sn(t)]Uc (t)Ugate (t) , (19)

B̃n(t) = U †
env (t) (Bn)Uenv (t) . (20)

Replacing H̃int (t) in the master equation, we can write it in a more clear way:

dρ̃S (t)

dt
=

3∑

n=1

[
ρ̃S (t)
∗

n

(
t ′
)
,
n (t)

]G1
(
t − t ′

)

+ [
ρ̃S (t)
n

(
t ′
)
,
∗

n (t)
]G2

(
t − t ′

) + [

∗

n (t) ,
n
(
t ′
)
ρ̃S (t)

]G∗
1

(
t − t ′

)

+ [

n (t) ,
∗

n

(
t ′
)
ρ̃S (t)

]G∗
2

(
t − t ′

)
, (21)

where

G1(t) =
∫ ∞

0
dωJ (ω)h(ω) exp(−iωt)

G2(t) =
∫ ∞

0
dωJ (ω) exp(iωt)[h(ω) + 1], (22)

with h(ω) = 1
exp(βω)−1 , and J (ω) = ω exp(−ω/ωc)where ωc is the cutoff frequency.

Note that to describe the environment spectrum, as usual, we assume that the number of
environmental normal modes per unit frequency becomes very large. We also assume
that all environments are identical since G1(t) and G2(t) are same for all baths. Further
details can be found in Ref. [31], where the calculation has been developed for the
case of time-independent interaction Hamiltonians.
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