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Abstract
In this paper, by investigating theHermitian dual-containing conditions of constacyclic
codeswith lengths n = q+1

r (q2+1) and n = q−1
b (q2+1), where r | q+1 and b | q−1,

we construct two classes of quantum codes fromnon-narrow-sense constacyclic codes.
Most of these new quantum codes have better parameters than quantum twisted codes
and quantum BCH codes, some of them are new with relatively larger distance and
can not be constructed in the literature.

Keywords Constacyclic code · Cyclotomic coset · Quantum code · Hermitian
dual-containing code

1 Introduction

Quantum error-correcting codes (QCs for short) originated from the pioneering work
of Shor [1] and Steane [2] to protect quantum information from decoherence and
quantum noise. Since then, the theory of QCs has been extensively studied in the
literature (see [3–10], for instance). The most widely investigated subclass of codes is
quantum stabilizer codes since they are associated with a group-theoretical structure.
Their construction can be reduced to find classical self-orthogonal error-correcting
codes over the finite field Fq or Fq2 with certain inner product [3,4,6–9].

From now on, we assume q is a prime power and gcd(n, q) = 1 in the rest of this
paper. Let Fq2 be a finite field with q

2 elements and F∗
q2

= Fq2\{0}. For each α ∈ Fq2 ,
the conjugation of α is denoted by α = αq . Given two vectors x = (x1, x2, . . . , xn)
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and y = (y1, y2, . . . , yn) ∈ F
n
q2
, their Hermitian inner product is defined by

(x, y)h =
∑

xi yi = x1y1 + x2y2 + · · · + xn yn .

For a linear code C over Fq2 of length n, the Hermitian dual code of C is denoted
as C⊥h , where C⊥h is defined by

C⊥h = {x ∈ F
n
q2 |(x, y)h = 0,∀y ∈ C}.

If C⊥h ⊆ C, then C is called a Hermitian dual-containing code, and C⊥h is called a
Hermitian self-orthogonal code.

One of the most frequently used construction methods is the following Hermitian
Construction.

Theorem 1 ([3,6,8] Hermitian Construction) If C = [n, k, d]q2 is a classical linear
code overFq2 such that C⊥h ⊆ C, then there exists a q-ary [[n, 2k−n,≥ d]]q quantum
code, where C⊥h is the Hermitian dual code of C.

To obtain q-ary QCs by Theorem 1, one only needs to find linear codes C over Fq2

such thatC⊥h ⊆ C. From this idea,manyHermitian dual-containing constacyclic codes
(including cyclic codes and negacyclic codes) have been applied to construct QCswith
good parameters in recent years [11–26]. In [11,12], Aly et al. studied Hermitian dual-
containing conditions of BCH codes and constructed many q-ary quantumBCH codes
in general. More recently, Yuan et al. [23] have constructed QCs from constacyclic

BCH codes of length n = q2m−1
q+1 . Zhu et al. [24] obtained QCs from negacyclic BCH

codes of length n = q2m−1
q−1 . In [25], some quantum BCH codes with n = r q2m−1

q2−1
and

r |(q2 − 1) were obtained.
This article is dedicated to Hermitian dual-containing condition of non-narrow-

sense constacyclic codes (including cyclic codes and negacyclic codes) with lengths
n = q+1

r (q2 + 1) and n = q−1
b (q2 + 1) and aims at constructing new quantum

constacyclic BCH codes with good parameters from such codes. Most of the newly
obtained codes have better parameters than QCs available in [12,23–25] for the case
m = 2 and quantum twisted codes (QTCs) listed in code tables of [33]. Moreover,
some of our QCs have larger designed distances than the known ones in [12,23–25].

The paper is organized as follows. In Sect. 2, some basic concepts on q2-cyclotomic
cosets and η-constacyclic codes are reviewed. In Sects. 3 and 4, new constructions of
QCs with lengths n = q+1

r (q2 + 1) and n = q−1
b (q2 + 1) are presented, respectively.

In Sect. 5, code comparisons are provided and the final remarks are drawn.

2 Preliminaries

In this section, we introduce some basic notions and results regarding Hermitian dual-
containing codes, η-constacyclic codes and cyclotomic cosets for the purpose of this
paper. For more details, see [28–31].
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2.1 Review of constacyclic codes

For any vector (c0, c1, . . . , cn−1) ∈ F
n
q2

and η ∈ F
∗
q2
, an η-constacyclic shift τη

on F
n
q2

is τη(c0, c1, . . . , cn−1) = (ηcn−1, c0, . . . , cn−2). A q2-ary linear code C of
length n is called η-constacyclic code if it is invariant under the η-constacyclic shift
τη on F

n
q2
. When η = 1, η-constacyclic codes are cyclic codes, and when η = −1,

η-constacyclic codes are negacyclic codes. For an η-constacyclic code C, each code
word c = (c0, c1, . . . , cn−1) is customarily represented in its polynomial form: c(x) =
c0 + c1x + · · · + cn−1xn−1. Then, C is in turn identified with the set of all polynomial
representations of its code words. From [16,17,27,28], one can know that a linear code
C of length n over Fq2 is η-constacyclic if and only if C is an ideal of the quotient
ring Rn = Fq [x]/(xn − η), and xc(x) corresponds to an η-constacyclic shift of c(x)
in Rn . It follows that C is generated by a monic factor of (xn − η), i.e., C = 〈g(x)〉
and g(x)|(xn − η). g(x) is called the generator polynomial of C. The dimension of C
is n − k, where k = deg(g(x)). It can be verified that the Hermitian dual C⊥h of an
η-constacyclic code C over Fq2 is an η̄−1-constacyclic code [16,17].

Let ω be a primitive element of Fq2 , take η = ωυ(q−1) for some υ ∈ {0, 1, . . . , q}.
In this case, we have ηη̄ = 1, so the Hermitian dual C⊥h of C is also an η-constacyclic
code. In particular, if υ = 0, the class of η-constacyclic codes is cyclic codes; if q is an
odd prime power and υ = (q + 1)/2, the class of η-constacyclic codes is negacyclic
codes. Sinceηq+1 = 1, the order r ofη inF∗

q2
is equal to q+1

gcd(υ,q+1) . Let ζ be a primitive
rn-th root of unity in some extension field of Fq2 such that ζ

n = η. Let ξ = ζ r . Then,
ξ is a primitive n-th root of unity. It follows that the roots of xn − η are ζ ξ j = ζ 1+ jr

for 0 ≤ j ≤ n − 1. Set Ω = Ωr ,n = {1+ jr |0 ≤ j ≤ n − 1}. The defining set T of a
constacyclic code C = 〈g(x)〉 of length n is the set T = { j ∈ Ω | ζ j is a root of g(x)}.
For each i ∈ Ω , let Ci be the q2-cyclotomic coset modulo rn containing i and be
denoted by

Ci = {i, iq2, i(q2)2, . . . , i(q2)e−1} mod rn,

where e is the smallest positive integer such that i(q2)e ≡ i mod rn. It is easy to
see that the defining set T is a union of some q2-cyclotomic cosets modulo rn (see
[17,28]).

Let δ be an integer with 2 ≤ δ ≤ n, an η-constacyclic BCH (CBCH, for short) code
C of length n with designed distance δ is an η-constacyclic code with defining set

T =
δ−2⋃

i=0

Cb+ir ,

where Cb+ir is the q2-cyclotomic coset modulo rn containing b+ ir . When b = 1, C
is called a narrow-sense CBCH code, otherwise, a non-narrow-sense CBCH code.

According to the following BCH bound for η-constacyclic codes (see [27,28]), a
CBCH code C of designed distance δ has minimum distance at least δ.
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Lemma 1 (The BCHbound for η-constacyclic codes) Let C be a q2-ary η-constacyclic
code of length n with generator polynomial g(x). If g(x) has its elements {β1+ri |0 ≤
i ≤ δ − 2} as the roots, where β is a primitive rn-th root of unity, then the minimum
distance of code C is at least δ.

2.2 Description of Hermitian dual-containing conditions by cyclotomic cosets

It is well known that there is a close relationship between cyclotomic cosets and cyclic
codes; see [29–32]. The definitions of symmetric coset and asymmetric coset pairs
for 2-cyclotomic cosets were first given in [32] to characterize binary self-dual cyclic
codes and were generalized further in [14,15] to characterize q2-ary Hermitian self-
orthogonal cyclic codes. Now we give the skew symmetric property of cyclotomic
cosets. For each i ∈ Ω , let Ci be the q2-cyclotomic coset modulo rn containing i .

A cyclotomic coset Ci is called skew symmetric if −qi mod rn ∈ Ci , and skew
asymmetric, otherwise. Skewasymmetric cosetsCi andC−qi come in pairs, andweuse
(Ci ,C−qi ) to denote such a skew asymmetric pair (SAP, for short). In [17], Kai et al.
have shown that an η-constacyclic code C with defining set T contains its Hermitian
dual if and only if T ∩ T−q = ∅, where T−q = {−qi mod rn | i ∈ T }. Using
terminologies of skew symmetric coset and SAP, an equivalent statement can be given
as in Lemma 2.2 of [14]. We list these two equivalent statements in the following
lemma for later use.

Lemma 2 If C is an η-constacyclic code of length n over Fq2 with defining set T , then
C⊥h ⊆ C if and only if one of the following holds:

1. T ∩ T−q = ∅, where T−q = {−qi mod rn | i ∈ T }.
2. For each i ∈ T , Ci is a skew asymmetric coset; if j ∈ T and j /∈ Ci , then C j and

Ci cannot form a skew asymmetric pair.

2.3 Notations and a preliminary result

Firstly, to simplify the following discussions, we give some notations here.
Notation: Denote the set {b, b + 1, . . . , e} by [b, e]. Given four integers s, r , j and i ,
where j ≤ i and r |(q + 1), we use [ j, i; r ]s to denote the following set

[ j, i; r ]s = Cs+ jr ∪ Cs+( j+1)r ∪ Cs+( j+2)r ∪ · · · ∪ Cs+ir .

Next, we give some results on skew asymmetric coset and SAP for our main work
in the subsequent sections.

Lemma 3 Let ordrn(q2) = 2 and i, j ∈ Ω . If i �= j , then the following hold:

1. The cardinality of Ci is at most 2.
2. Ci = C j if and only if iq2 ≡ j mod rn, which is equivalent to jq2 ≡ i mod rn.
3. Ci is skew symmetric if and only if i(q + 1) ≡ 0 mod rn.
4. (Ci , C j ) is a SAP if and only if i + jq ≡ 0 mod rn or j + iq ≡ 0 mod rn.

123



New quantum constacyclic codes Page 5 of 23 127

Proof 1. Since ordrn(q2) = 2, from definition, one can easily know that |Ci | is at most
2.

2. By (1), we assume thatCi = {i, iq2}. When i �= j , it is obvious thatCi = C j ⇔
iq2 ≡ j mod rn. Since iq2 · q2 = i(q4 − 1 + 1) ≡ i , we have

iq2 ≡ j mod rn ⇔ iq2 · q2 ≡ i ≡ jq2 mod rn.

3. Assume Ci = {i, iq2}. If Ci is skew symmetric, then −qi ≡ i mod rn or
−qi ≡ iq2 mod rn. It is obvious that −qi ≡ i mod rn ⇔ i(q + 1) ≡ 0 mod rn.
From gcd(q, rn) = 1, one can deduce −qi ≡ iq2 mod rn ⇔ i(q + 1) ≡ 0 mod rn.
Hence, (3) holds.

4. By (1), put Ci = {i, iq2}. From definition, we know (Ci ,C j ) is a SAP if and
only if i ≡ − jq mod rn or i ≡ − jq3 mod rn. Notice that i ≡ − jq3 mod rn ⇔
iq ≡ − jq3 · q ≡ − j mod rn. This completes the proof of (4). ��

3 Construction of newQCs of length n = q+1
r (q2 + 1)

In this section, let q be an odd prime power, r | (q + 1) and 1 ≤ r ≤ q+1
2 . Then,

q +1 = rr ′, r ′ ≥ 2 and n = r ′(q2 +1). It is easy to check s = q2+1
2 = 1+ r ′ · q−1

2 · r
∈ Ωr ,n = {1 + jr |0 ≤ j ≤ n − 1}, and q2−1

2r = r ′ q−1
2 . We can define a defining set

T = [− q2−1
2r ,

q2−1
2r ; r ]s = [−r ′ q−1

2 , r ′ q−1
2 ; r ]s ⊆ Ωr ,n .

Lemma 4 Let q, r , r ′, n, s and T be given as above. If − q2−1
2r ≤ i, j ≤ q2−1

2r and
i �= j , then the following hold:

1. Cs = {s} and each Cs+ir contains two elements if i �= 0.
2. Cs+ir = Cs+ jr if and only if j = −i and i ≡ 0 mod r ′.
3. Each Cs+ir is skew asymmetric.
4. Any two Cs+ir and Cs+ jr cannot form a SAP.

Hence, the CBCH code with defining set T is a Hermitian dual-containing code.

Proof 1. If Cx = {x} and x ∈ T , then xq2 ≡ x mod rn. Since rn = (q + 1)(q2 + 1)
and gcd(q − 1, q2 + 1) = 2, one can imply x(q2 − 1) ≡ 0 mod (q + 1)(q2 + 1) and

x ≡ 0 mod q2+1
2 . From x = s+ri and − q2−1

2r ≤ i ≤ q2−1
2r , we have x = s and Cs+ir

contains two elements for − q2−1
2r ≤ i ≤ q2−1

2r and i �= 0.
2.According toLemma3,Cs+ir = Cs+ jr if and only if s+ir ≡ (s+ jr)q2 mod rn,

which is equivalent to that i ≡ jq2 mod n. Since n = r ′(q2 + 1), we have i ≡
jq2 mod n ⇔ j(q2 + 1) − (i + j) ≡ 0 mod r ′(q2 + 1).
Let j = ar ′ +b, where 0 ≤ b ≤ r ′ −1 and a, b are integers. Then, j(q2+1)− (i +

j) = ar ′(q2 + 1)+ b(q2 + 1)− (i + j) ≡ b(q2 + 1)− (i + j) mod r ′(q2 + 1). From

− q2−1
2r ≤ i, j ≤ q2−1

2r , one can deduce−(q2+1) < − q2−1
r ≤ i+ j ≤ q2−1

r < q2+1
and −(q2 + 1) < b(q2 + 1) − (i + j) < r ′(q2 + 1). Thus, j(q2 + 1) − (i + j) ≡
0 mod r ′(q2 + 1) implies b = 0 and j = −i = −ar ′. Then, (2) holds.
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3. Since 1 ≤ s + ir ≤ q2, we have (s + ir)(q + 1) ≤ (q + 1)q2 < rn =
(q + 1)(q2 + 1) and then (s + ir)(q + 1) �≡ 0 mod rn. From Lemma 3, (3) holds.

4. From 1 ≤ s + ir , s + jr ≤ q2, one can infer that (s + ir) + (s + jr)q ≤
(q +1)q2 < rn = (q +1)(q2 +1), and then, (s+ ir)+ (s+ jr)q �≡ 0 mod rn. Also,
we know that (s + jr) + (s + ir)q �≡ 0 mod rn. According to Lemma 3, (4) holds. ��

Now it is sufficient to construct new QCs and calculate their parameters.

Theorem 2 Let q, r , r ′, n, s and T be given as above. For 2 ≤ δ ≤ q2−1
r + 2, denote

|T (δ)| = 2�(δ−2)(1− 1
2r ′ )�+1. Then, there are a Hermitian dual-containing CBCH

code with parameters [n, n − |T (δ)|,≥ δ]q2 and an [[n, n − 2|T (δ)|,≥ δ]]q QC.

Proof Consider 1 ≤ i ≤ q2−1
2r . Suppose that C is a CBCH code of designed distance

δ with defining set T (δ) ⊆ T , where T (δ = 2) = Cs and for δ ≥ 3

T (δ) =
{ [−(i − 1), i; r ]s if δ = 2i + 1;

[ − i, i; r ]s if δ = 2i + 2.

Since Cs+ir = Cs+ jr if and only if j = −i and i ≡ 0 mod r ′, we get that there
are

δ − 2 −
⌊

δ − 2

2r ′

⌋
+ 1 =

⌈
(δ − 2)(1 − 1

2r ′ )
⌉

+ 1

disjoint cosets in T (δ). Combining Cs = {s} and that the other cosets have cardinality
2, it can be derived that

|T (δ)| = 2

⌈
(δ − 2)(1 − 1

2r ′ )
⌉

+ 1.

By Lemma 4, one can know that C is a Hermitian dual-containing CBCH code with
parameters [n, n − |T (δ)|,≥ δ]q2 .

By Theorem 1, using the underlying code C, one can then construct an [[n, n −
2|T (δ)|, δ]]q QC for 2 ≤ δ ≤ q2−1

r + 2. This completes the proof. ��

4 Construction of newQCs of length n = q−1
b (q2 + 1)

In this section, the construction of QCs of length n will be given, where q − 1 = bb′
and n = q−1

b (q2 + 1) = b′(q2 + 1). We give our discussion in three subsections
according to different q.

4.1 q = 4a + 1 ≥ 5

In this subsection, we set q = 4a+1 ≥ 5 and 2b | (q −1). Suppose s = a
b (q2 +1) =

q−1
2b · q2+1

2 = n
4 , then s is an integer.
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We define T = [− (q−1)2

2b ,
(q−1)2

2b ; r = 1]s = [− (q−1)2

2b ,
(q−1)2

2b ; 1] n
4
and discuss

cyclic codes of length n over Fq2 with defining set T .

Lemma 5 Let q, b, b′, n, s and T be given as above. If − (q−1)2

2b ≤ i, j ≤ (q−1)2

2b and
i �= j , then

1. Cs = {s} and each Cs+i contains two elements for i �= 0.
2. Cs+i = Cs+ j if and only if j = −i and i ≡ 0 mod b′.
3. Each Cs+i is skew asymmetric.
4. Any two Cs+i and Cs+ j cannot form a SAP.

Hence, the BCH code with defining set T is a Hermitian dual-containing code.

Proof 1. By definition, for x ∈ T , Cx = {x} if and only if xq2 ≡ x mod n ⇔
xq2 − x ≡ 0 mod b′(q2 + 1) ⇔ x(q + 1)b ≡ 0 mod (q2 + 1). Notice that gcd(q +
1, q2 + 1) = 2 and (b, q2+1

2 ) = 1. It then follows that Cx = {x} if and only if

x ≡ 0 mod q2+1
2 . From x ∈ T , we have x = s. By Lemma 3, we obtain that Cs+i

contains two elements for i �= 0 and − (q−1)2

2b ≤ i ≤ (q−1)2

2b .
2. By Lemma 3, Cs+i = Cs+ j if and only if s + i ≡ (s + j)q2 mod n, which is

equivalent to i ≡ jq2 mod n according to s ≡ sq2 mod n. Note that n = b′(q2+1). It
is not difficult to derive that i ≡ jq2 mod n ⇔ j(q2+1)−(i+ j) ≡ 0 mod b′(q2+1).
Similar to the proof of (2) in Lemma 4, the conclusion can be obtained.

3. Consider that (s + i)(q + 1) = s(q + 1) + i(q + 1) = n
4 (4a + 2) + i(q + 1) ≡

n
2 + i(q + 1) mod n. From − (q−1)2

2b ≤ i ≤ (q−1)2

2b , it follows that |i(q + 1)| ≤
(q−1)2(q+1)

2b <
(q2+1)(q−1)

2b = n
2 . Thus,

n
2 +i(q+1) �≡ 0 mod n. Combining Lemma 3,

(3) is straightforward.
4. Notice that s + i + (s + j)q = s(q + 1) + i + jq = n

4 (4a + 2) + i + jq ≡
n
2 + i + jq mod n. Since − (q−1)2

2b ≤ i, j ≤ (q−1)2

2b , we have |i + jq| ≤ (q−1)2(q+1)
2b <

(q2+1)(q−1)
2b = n

2 and then n
2 + i + jq �≡ 0 mod n, i.e., s + i + (s + j)q �≡ 0 mod n.

Analogously, we could obtain s + j + (s + i)q �≡ 0 mod n as well. Hence, (4) holds.
��

Theorem 3 Let q, b, b′, n, s and T be given as above. For 2 ≤ δ ≤ (q−1)2

b +2, denote
|T (δ)| = 2�(δ − 2)(1− 1

2b′ )� + 1. Then, there are a Hermitian dual-containing BCH
code with parameters [n, n − |T (δ)|,≥ δ]q2 and an [[n, n − 2|T (δ)|,≥ δ]]q QC.

Proof Consider 1 ≤ i ≤ (q−1)2

2b . Suppose that C is a BCH code of designed distance
δ with defining set T (δ), where T (δ = 2) = Cs and

T (δ) =
{ [−(i − 1), i; 1]s if δ = 2i + 1;

[ − i, i; 1]s if δ = 2i + 2.

Then, the conclusion can be obtained with reference to the proof of Theorem 2. ��
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4.2 q = 4a + 3 ≥ 7

In this subsection, let q = 4a + 3 ≥ 7 be an odd prime power and b = 1 or 2. Set

r =
{ q+1

2 if b = 1;
q + 1 if b = 2.

Hence, rn = r(q−1)
b (q2 + 1) = (q2−1)(q2+1)

2 . Put s = ((q + 1)a + 1) q
2+1
2 =

(q−1)2

4 · q2+1
2 . From s−1 = ((q+1)a+1) q

2+1
2 −1 = (q2+1)(q+1)a

2 + q2−1
2 , it follows

that r |(s − 1) and s ∈ Ω = Ωr ,n = {1 + jr |0 ≤ j ≤ n − 1}. Then, we shall define
T = [− (q−1)2

2b ,
(q−1)2

2b ; r ]s ⊆ Ω .

Lemma 6 Let q, b, b′, n, s and T be given as above. If − (q−1)2

2b ≤ i, j ≤ (q−1)2

2b and
i �= j , then the following hold:

1. Cs = {s} and each Cs+ir contains two elements for i �= 0.
2. Any two Cs+ir = Cs+ jr if and only if j = −i and i ≡ 0 mod b′.
3. Each Cs+ir is skew asymmetric.
4. Any two Cs+ir and Cs+ jr cannot form a SAP.

Hence, the CBCH code with defining set T is a Hermitian dual-containing code.

Proof 1. By definition, for x ∈ T , Cx = {x} if and only if xq2 ≡ x mod rn =
(q2−1)(q2+1)

2 , which is equivalent to that x ≡ 0 mod q2+1
2 . Thus, from x = s + ir and

− (q−1)2

2b ≤ i ≤ (q−1)2

2b , we obtain x = s. Moreover, for − (q−1)2

2b ≤ i ≤ (q−1)2

2b and
i �= 0, by Lemma 3, we obtain that Cs+ir contains two elements.

2. By Lemma 3, for i �= j , Cs+ir = Cs+ jr if and only if s + ir ≡ (s + jr)q2 mod
rn = rb′(q2 + 1). Note that s ≡ sq2 mod rn. The above congruence is equivalent to
i ≡ jq2 mod b′(q2 + 1). Similar to the proof of (2) in Lemma 4, the conclusion can
be obtained as well.

3.Note that (s+ir)(q+1) = s(q+1)+ir(q+1) = (q−1)2

4 · q2+1
2 (q+1)+ir(q+1) ≡

rn
2 + ir(q + 1) ≡ 0 mod rn = (q2−1)(q2+1)

2 ⇔ n
2 + i(q + 1) ≡ 0 mod n. Analogous

to the proof of (3) in Lemma 5, (3) follows.

4. Notice that s + ir + (s + jr)q = s(q + 1) + ir + jqr = (q−1)2

4
q2+1
2 (q + 1) +

ir + jqr ≡ rn
2 + ir + jqr mod rn = (q2−1)(q2+1)

2 .
Since rn

2 + ir + jqr ≡ 0 mod rn ⇔ n
2 + i + jq ≡ 0 mod n, it is easy to deduce

that (4) can be verified. ��
Theorem 4 Let q, b, b′, n, s and T be given as above. For 2 ≤ δ ≤ (q−1)2

b +2, denote
|T (δ)| = 2�(δ−2)(1− 1

2b′ )�+1. Then, there are a Hermitian dual-containing CBCH
code with parameters [n, n − |T (δ)|,≥ δ]q2 and an [[n, n − 2|T (δ)|,≥ δ]]q QC.

Proof Consider 1 ≤ i ≤ (q−1)2

2b . Suppose that C is a CBCH code of designed distance
δ and defining set T (δ), where T (δ = 2) = Cs and

T (δ) =
{ [−(i − 1), i; r ]s if δ = 2i + 1;

[ − i, i; r ]s if δ = 2i + 2.
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Then, the conclusion can be obtained similar to the proof of Theorem 2. ��

4.3 q ≥ 4 is a power of 2

In this subsection, let q ≥ 4 be a power of 2 and 1 ≤ b ≤ q−1
3 , or b′ ≥ 3. Put

s =
{

b′−1
4 (q2 + 1) if b′ ≡ 1 mod 4;

3b′−1
4 (q2 + 1) if b′ ≡ 3 mod 4.

It is easy to see that s is an integer. Suppose that u1 = b′−1
2 (q−1) = (q−1)2

2b − q−1
2 ,

u2 = b′+1
2 (q − 1) = (q−1)2

2b + q−1
2 . Define T = [−u1, u2; r = 1]s . We analyze cyclic

codes of length n with defining set T .

Lemma 7 Let q, b, b′, n, s and T be given as above. If −u1 ≤ i, j ≤ u2 and i �= j ,
then

1. Cs = {s} and each Cs+i contains two elements for i �= 0.
2. Any two Cs+i = Cs+ j if and only if j = −i and i ≡ 0 mod b′.
3. Each Cs+i is skew asymmetric.
4. Any two Cs+i and Cs+ j cannot form a SAP.

Hence, the BCH code with defining set T is a Hermitian dual-containing code.

Proof 1. By definition, Cx = {x} if and only if xq2 ≡ x mod n = b′(q2 + 1). Notice
xq2 ≡ x mod b′(q2 + 1) ⇔ xb(q + 1) ≡ 0 mod (q2 + 1) and (q + 1, q2 + 1) = 1,
(b, q2 + 1) = 1. It follows that Cx = {x} if and only if x ≡ 0 mod (q2 + 1).

Clearly, from x ∈ T , we obtain that x = s and Cs+i contains two elements for
−u1 ≤ i ≤ u2, i �= 0 by Lemma 3.

2. By Lemma 3, for i �= j , we have Cs+i = Cs+ j if and only if s + i ≡ (s +
j)q2 mod n = b′(q2 + 1), which implies that i ≡ jq2 mod b′(q2 + 1) since s ≡
sq2 mod n. Similar to the proof of (2) in Lemma 4, the conclusion can be obtained.

3. For either b′ ≡ 1 mod 4 or b′ ≡ 3 mod 4, there holds n = b′(q2 + 1). Then, one

can infer that (s+ i)(q+1) = s(q+1)+ i(q+1) ≡ n−q2−1
2 + i(q+1) mod n. From

−u1 ≤ i ≤ u2, it is easy to get that− n
2 + q−1

b + q2−1
2 ≤ i(q+1) ≤ (

(q−1)2

2b + q−1
2 )(q+

1) ≤ n
2 − q−1

b + q2−1
2 . It follows that q−1

b − 1 ≤ n−q2−1
2 + i(q + 1) ≤ n − q−1

b + 1.

Thus, (s + i)(q + 1) ≡ n−q2−1
2 + i(q + 1) �≡ 0 mod n. By Lemma 3, (3) holds.

4. Analogous to (3), we get that s + i + (s + j)q = s(q + 1) + i + jq ≡
n−q2−1

2 + i + jq mod n. Since −u1 ≤ i, j ≤ u2, we have − n
2 + q−1

b + q2−1
2 ≤

i + jq ≤ (
(q−1)2

2b + q−1
2 )(q + 1) ≤ n

2 − q−1
b + q2−1

2 . It follows that q−1
b − 1 ≤

n−q2−1
2 + i + jq ≤ n− q−1

b +1. Clearly, n−q2−1
2 + i + jq �≡ 0 mod n, which implies

that s+ i + (s+ j)q �≡ 0 mod n. Similarly, we can obtain s+ j + (s+ i)q �≡ 0 mod n
holds as well. Combining Lemma 3, then (4) follows. ��

123



127 Page 10 of 23 R. Li et al.

Theorem 5 Let q, b, b′, n, s and T be given as above. For 2 ≤ δ ≤ b′(q − 1) + 2 =
(q−1)2

b + 2, denote

|T (δ)| =
{
2

⌈
(δ − 2)(1 − 1

2b′ )
⌉ + 1 if 2 ≤ δ ≤ (b′ − 1)(q − 1) + 2;

2
(
δ − 2 − q−1−b

2

)
+ 1 if (b′ − 1)(q − 1) + 3 ≤ δ ≤ b′(q − 1) + 2.

Then, there are a Hermitian dual-containing BCH code with parameters [n, n −
|T (δ)|,≥ δ]q2 and an [[n, n − 2|T (δ)|,≥ δ]]q QC.

Proof We could verify this conclusion by two steps. Suppose that C is a BCH code of
designed distance δ and defining set T (δ).

1. Consider 2 ≤ δ ≤ (b′−1)(q−1)+2 and 1 ≤ i ≤ b′−1
2 (q−1). Set T (δ = 2) = Cs

and

T (δ) =
{ [−(i − 1), i; 1]s if δ = 2i + 1;

[ − i, i; 1]s if δ = 2i + 2.

Similar to the proof of Theorem 2, we can derive that if 2 ≤ δ ≤ (b′−1)(q−1)+2,
then |T (δ)| = 2�(δ − 2)(1 − 1

2b′ )� + 1.

2. For (b′−1)(q−1)+3 ≤ δ ≤ b′(q−1)+2 and b′−1
2 (q−1)+1 ≤ i ≤ b′+1

2 (q−1).

Put T (δ) = [− b′−1
2 (q − 1), i; 1]s . It follows that δ = b′−1

2 (q − 1) + i + 2.
From (1–2) of Lemma 7, we can derive that there are

(δ − 2 − (b′ − 1)(q − 1)

2b′ ) + 1 = δ − 2 − q − 1 − b

2
+ 1

disjoint cosets in T (δ), of which δ − 2 − q−1−b
2 cosets have cardinality 2 besides

Cs = {s}. We naturally have

|T (δ)| = 2(δ − 2 − q − 1 − b

2
) + 1.

Thus, T (δ) defines a Hermitian dual-containing BCH code with parameters [n, n −
|T (δ)|,≥ δ]q2 , and this code gives an [[n, n − 2|T (δ)|,≥ δ]]q QC. ��

5 Code comparisons and conclusion

In this paper,Hermitiandual-containing conditions of non-narrow-senseη-constacyclic
codes of lengths n = q+1

r (q2 + 1) and n = q−1
b (q2 + 1) were deeply investigated.

Consequently, applying underlying η-constacyclic codes, we have constructed two
families of QCs with good parameters from the Hermitian construction. By compar-
ison, it can be shown that the absolute majority of newly obtained QCs have better
performance than the ones available in the literature. On the one hand, some of these
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Table 1 Comparisons of quantum codes with n = q+1
r (q2 + 1) over Fq

q, r QC in Theorem 2 QTC in [33] QC in [25] QC in [12]

q = 3, r = 2 ∗[[20, 14,≥ 3]]3 [[20, 12, 3]]3
♦[[20, 10,≥ 4]]3
− [[20, 4,≥ 5]]3
♦[[20, 6,≥ 6]]3

q = 5, r = 3 [[52, 46,≥ 3]]5 [[52, 46, 3]]5
[[52, 42,≥ 4]]5 [[52, 42, 4]]5
− [[52, 38, 5]]5
♦[[52, 38,≥ 6]]5
♦[[52, 34,≥ 7]]5
♦[[52, 30, ≥ 8]]5
− [[52, 20,≥ 9]]5
♦[[52, 26,≥ 10]]5

r = 2 ∗[[78, 72,≥ 3]]5 [[78, 70, 3]]5 [[78, 70,≥ 3]]5
∗[[78, 68,≥ 4]]5 [[78, 66, 4]]5
∗[[78, 64,≥ 5]]5 [[78, 62, 5]]5
∗[[78, 60,≥ 6]]5 [[78, 58, 6]]5
− [[78, 54, 7]]5
∗[[78, 56,≥ 8]]5 [[78, 50, 8]]5
∗[[78, 52,≥ 9]]5 [[78, 46, 9]]5
∗[[78, 48,≥ 10]]5 [[78, 42, 10]]5
∗[[78, 44,≥ 11]]5 [[78, 38, 11]]5
∗[[78, 40,≥ 12]]5 [[78, 34, 12]]5
− [[78, 30, ≥ 13]]5
♦[[78, 36,≥ 14]]5

q = 7, r = 4 [[100, 94,≥ 3]]7 [[100, 92, 3]]7
[[100, 90, ≥ 4]]7 [[101, 91, 4]]7
∗[[100, 86,≥ 5]]7 [[101, 87, 5]]7
♦[[100, 86,≥ 6]]7 −
· · · · · ·
♦[[100, 70,≥ 11]]7 −
♦[[100, 66,≥ 12]]7 − [[100, 52, ≥ 12]]7
♦[[100, 62,≥ 14]]7 [[101, 51, 14]]7

r = 2 ∗[[200, 194,≥ 3]]7 [[200, 192, 3]]7 [[200, 192,≥ 3]]7
∗[[200, 190,≥ 4]]7 [[200, 188, 4]]7 [[200, 188,≥ 4]]7
∗[[200, 186,≥ 5]]7 [[200, 184, 5]]7
∗[[200, 182,≥ 6]]7 [[200, 180, 6]]7
∗[[200, 178,≥ 7]]7 [[200, 176, 7]]7
∗[[200, 174,≥ 8]]7 [[200, 172, 8]]7
− [[200, 168, 9]]7
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Table 1 continued

q, r QC in Theorem 2 QTC in [33] QC in [25] QC in [12]

∗[[200, 170,≥ 10]]7 [[200, 164, 10]]7
∗[[200, 166,≥ 11]]7 [[200, 160, 11]]7
· · · · · ·
∗[[200, 122,≥ 23]]7 [[200, 112, 23]]7
∗[[200, 118,≥ 24]]7 [[200, 108, 24]]7 [[200, 104,≥ 24]]7
− [[200, 104, 25]]7
∗[[200, 114,≥ 26]]7 [[201, 103, 26]]7

q = 9, r = 5 [[164, 158,≥ 3]]9 [[164, 158, 3]]9
[[164, 154,≥ 4]]9 [[164, 154, 4]]9
− [[164, 150, 5]]9
∗[[164, 150, ≥ 6]]9
♦[[164, 146,≥ 7]]9
· · ·
♦[[164, 118,≥ 16]]9
− [[164, 100,≥ 17]]9
♦[[164, 114,≥ 18]]9

r = 2 ∗[[410, 404,≥ 3]]9 [[410, 402, 3]]9 [[410, 402,≥ 3]]9
∗[[410, 400,≥ 4]]9 [[410, 398, 4]]9 [[410, 398,≥ 4]]9
∗[[410, 396,≥ 5]]9 [[410, 394, 5]]9 [[410, 394,≥ 5]]9
∗[[410, 392,≥ 6]]9 [[410, 390, 6]]9
· · · · · ·
∗[[410, 344,≥ 19]]9 [[410, 338, 19]]9
∗[[410, 340,≥ 20]]9 [[410, 334, 20]]9
− [[410, 330, 21]]9
∗[[410, 336,≥ 22]]9 [[410, 326, 22]]9
∗[[410, 332,≥ 23]]9 [[410, 322, 23]]9
· · · · · ·
∗[[410, 308,≥ 29]]9 [[410, 298, 29]]9
∗[[410, 304,≥ 30]]9 [[410, 294, 30]]9
− [[410, 290, 31]]9
∗[[410, 300,≥ 32]]9 [[410, 286, 32]]9
∗[[410, 296,≥ 33]]9 [[410, 282, 33]]9
· · · · · ·
∗[[410, 272,≥ 39]]9 [[410, 258, 39]]9
∗[[410, 268,≥ 40]]9 [[410, 254, 40]]9
− [[410, 250, 41]]9 [[410, 250,≥ 41]]9
♦[[410, 264,≥ 42]]9
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Table 4 Comparisons of quantum codes with n = q−1
b (q2 + 1) over Fq

q r , b QC in Theorem 5 QTC in [33] QC in [23] QC in [12]

q = 4 b = 1, r = 1 [[51, 45, ≥ 3]]4 [[51, 45, 3]]4 [[51, 43,≥ 3]]4 [[51, 43, ≥ 3]]4
[[51, 41, ≥ 4]]4 [[51, 41, 4]]4 −
[[51, 37, ≥ 5]]4 [[51, 39, 5]]4 [[51, 39,≥ 5]]4
[[51, 33, ≥ 6]]4 [[51, 35, 6]]4 [[51, 35,≥ 6]]4
− [[51, 31, 7]]4 [[51, 31,≥ 7]]4
∗[[51, 29,≥ 8]]4 [[51, 27, 8]]4 [[51, 27,≥ 8]]4
∗[[51, 25,≥ 9]]4 [[51, 23, 9]]4 [[51, 23,≥ 9]]4
∗[[51, 21,≥ 10]]4 [[51, 19, 10]]4 [[51, 19,≥ 10]]4
∗[[51, 17,≥ 11]]4 [[51, 15, 11]]4 [[51, 15,≥ 11]]4

q = 8 b = 1, r = 1 ∗[[455, 449,≥ 3]]8 [[455, 447,≥ 3]]8 [[455, 447,≥ 3]]8
∗[[455, 445,≥ 4]]8 [[455, 443,≥ 4]]8 [[455, 443,≥ 4]]8
∗[[455, 441,≥ 5]]8 [[455, 439,≥ 5]]8 [[455, 439,≥ 5]]8
∗[[455, 437,≥ 6]]8 [[455, 435,≥ 6]]8 [[455, 435,≥ 6]]8
∗[[455, 433,≥ 7]]8 [[455, 431,≥ 7]]8 [[455, 431,≥ 7]]8
∗[[455, 429,≥ 8]]8 −
· · · · · ·
∗[[455, 353,≥ 28]]8 [[455, 351,≥ 28]]8
− [[455, 347,≥ 29]]8
∗[[455, 349,≥ 30]]8 [[455, 343,≥ 30]]8
∗[[455, 345,≥ 31]]8 [[455, 339,≥ 31]]8
· · · · · ·
∗[[455, 325,≥ 36]]8 [[455, 319,≥ 36]]8
∗[[455, 321,≥ 37]]8 −
∗[[455, 317,≥ 38]]8 [[455, 315,≥ 38]]8
· · · · · ·
∗[[455, 301,≥ 42]]8 [[455, 295,≥ 42]]8
− [[455, 291,≥ 43]]8
∗[[455, 297,≥ 44]]8 [[455, 287,≥ 44]]8
∗[[455, 293,≥ 45]]8 [[455, 283,≥ 45]]8
· · · · · ·
∗[[455, 273,≥ 50]]8 [[455, 263,≥ 50]]8
∗[[455, 269,≥ 51]]8 [[455, 259,≥ 51]]8

QCs have better code rate than QCs obtained in Refs. [12,23–25] and QTCs listed in
the code tables given by Yves Edel [33]. On the other hand, some of our QCs have
larger maximum designed distances. For clarity, the previous results and some code
comparisons are shown below. The following are the known conclusions for the case
m = 2 given in Refs. [12,25].
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Lemma 8 ([12]; Theorem 21) Let m = ordn(q2) = 2, where q is a power of a prime
and 2 ≤ δ ≤ δmax = n

q2+1
, then there exists a quantum code with parameters

[[n, n − 4�(δ − 1)(1 − q−2)�,≥ δ]]q .
Lemma 9 ([25]; Theorem 9) Let q ≥ 3 be a prime power and n be an integer such
that gcd(n, q2) = 1. Assume that n = r(q2 + 1), where r | (q2 − 1), 1 ≤ r ≤ q+1

2 .
Then, there exists an [[n, n − 4r(q − 1), d ≥ r(q − 1) + 1]]q quantum code.

Remark Observe that our QCs have the same parameters with QTCs in [33] for n =
(q + 1)(q2 + 1). Thus, we do not list them in the following tables although they are
better than corresponding QCs in [12,24].

Tables 1, 2, 3 and 4 provide some examples and list code comparisons between QCs
inTheorems2, 3, 4, 5 andQTCs in [33] aswell asQCs inRefs. [12,23–25], respectively.
From these tables, it is easy to see that our QCs have better performance. Tables 5 and
6 list general code comparisons of lengths n = q+1

r (q2 + 1) and n = q−1
b (q2 + 1)

for q ≥ 5.
These symbols k, k′ and k′′ are denoted as the dimensions of QCs with given length

and designed distance in corresponding references, respectively. Additionally, the QC
marked with an asterisk “*” has the best parameters among the ones in every row. The
symbol “−” implies that there is no QC with given length and designed distance. And
“♦” denotes new QCs from our construction.

Utilizing the computer algebra systemMAGMA [34], we calculated actual param-
eters of QCs [[20, k1,≥ δ]]3, [[52, k2,≥ δ]]5, [[51, k3,≥ δ]]4 presented above, for
details see Table 7. From this table, one can see all the QCs are non-degenerate, and
actual distances of almost all QCs are equal to their designed distances except for the
[[51, 37,≥ 5]]4 code with actual distance 6.

Generally, it is a hard work to determine the minimum distances of these dual-
containing codes, their dual codes and the actual parameters of QCs given in
Theorems 2, 3, 4 and 5. Yet, we conjecture that all the QCs given in these theorems
are non-degenerate, and this is a problem that needs further study.

Acknowledgements The authors are very grateful to the anonymous reviewers and the Associate Editor,
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