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Abstract

In this paper, by investigating the Hermitian dual-containing conditions of constacyclic
codes withlengthsn = qu](qz—i—l) andn = %(cﬂ—i—l), wherer | g+1andb | g—1,
we construct two classes of quantum codes from non-narrow-sense constacyclic codes.
Most of these new quantum codes have better parameters than quantum twisted codes
and quantum BCH codes, some of them are new with relatively larger distance and
can not be constructed in the literature.

Keywords Constacyclic code - Cyclotomic coset - Quantum code - Hermitian
dual-containing code

1 Introduction

Quantum error-correcting codes (QCs for short) originated from the pioneering work
of Shor [1] and Steane [2] to protect quantum information from decoherence and
quantum noise. Since then, the theory of QCs has been extensively studied in the
literature (see [3—10], for instance). The most widely investigated subclass of codes is
quantum stabilizer codes since they are associated with a group-theoretical structure.
Their construction can be reduced to find classical self-orthogonal error-correcting
codes over the finite field F, or qu with certain inner product [3,4,6-9].

From now on, we assume ¢ is a prime power and gcd(n, ¢) = 1 in the rest of this
paper. Let I 2 be a finite field with g elements and FZZ =F,2\{0}. Foreacha € F 2,

the conjugation of « is denoted by @ = «?. Given two vectors X = (xq, X2, ..., X)
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andy = (y1, 2, ..., Yn) € ]F‘Zz, their Hermitian inner product is defined by

X Y)h = Y %y =Xy + X232+ - + X

For a linear code C over qu of length n, the Hermitian dual code of C is denoted
as Cth where C1* is defined by

CH = {x € Fls|(x, )i = 0,Vy € C).

If C*+» C C, then C is called a Hermitian dual-containing code, and C is called a
Hermitian self-orthogonal code.

One of the most frequently used construction methods is the following Hermitian
Construction.

Theorem 1 ([3,6,8] Hermitian Construction) If C = [n, k, dl,2 is a classical linear
code over Iqu such that C+h C C, then there exists a q-ary|[[n, 2k—n, > d]l4 quantum

code, where C*h is the Hermitian dual code of C.

To obtain g-ary QCs by Theorem 1, one only needs to find linear codes C over F»
suchthat C» C C.From this idea, many Hermitian dual-containing constacyclic codes
(including cyclic codes and negacyclic codes) have been applied to construct QCs with
good parameters in recent years [11-26]. In [11,12], Aly et al. studied Hermitian dual-
containing conditions of BCH codes and constructed many g-ary quantum BCH codes
in general. More recently, Yuan et al. [23] have constructed QCs from constacyclic

2m
BCH codes of length n = £ +Il . Zhu et al. [24] obtained QCs from negacyclic BCH

q
codes of length n = q:”:ll . In [25], some quantum BCH codes withn = r q;;:] and

rl(g*> — 1) were obtained.

This article is dedicated to Hermitian dual-containing condition of non-narrow-
sense constacyclic codes (including cyclic codes and negacyclic codes) with lengths
n = qTH(qZ + 1) and n = q%(qz + 1) and aims at constructing new quantum
constacyclic BCH codes with good parameters from such codes. Most of the newly
obtained codes have better parameters than QCs available in [12,23-25] for the case
m = 2 and quantum twisted codes (QTCs) listed in code tables of [33]. Moreover,
some of our QCs have larger designed distances than the known ones in [12,23-25].

The paper is organized as follows. In Sect. 2, some basic concepts on g>-cyclotomic
cosets and n-constacyclic codes are reviewed. In Sects. 3 and 4, new constructions of
QCs with lengths n = qul(q2 +1)andn = qb;l(q2 + 1) are presented, respectively.
In Sect. 5, code comparisons are provided and the final remarks are drawn.

2 Preliminaries
In this section, we introduce some basic notions and results regarding Hermitian dual-

containing codes, n-constacyclic codes and cyclotomic cosets for the purpose of this
paper. For more details, see [28-31].
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2.1 Review of constacyclic codes

For any vector (co,c1,...,ch—1) € ]FZ2 and n € IFZ2, an n-constacyclic shift 7,
on IFZZ is 7y(co, €1,y - -5 Ca—1) = (MCp—1,€0,...,Cn-2). A qz—ary linear code C of
length n is called n-constacyclic code if it is invariant under the n-constacyclic shift
7, on F’;z. When 1 = 1, n-constacyclic codes are cyclic codes, and when n = —1,
n-constacyclic codes are negacyclic codes. For an n-constacyclic code C, each code
word ¢ = (cop, c1, . . ., Cn—1) is customarily represented in its polynomial form: c(x) =
co+cix 4+ cy_1x" L. Then, C is in turn identified with the set of all polynomial
representations of its code words. From [16,17,27,28], one can know that a linear code
C of length n over FF > is n-constacyclic if and only if C is an ideal of the quotient
ring R, = Fy[x]/(x" — n), and xc(x) corresponds to an n-constacyclic shift of ¢(x)
in R,,. It follows that C is generated by a monic factor of (x" — 1), i.e., C = (g(x))
and g(x)|(x™ — n). g(x) is called the generator polynomial of C. The dimension of C
is n — k, where k = deg(g(x)). It can be verified that the Hermitian dual Ctr of an
n-constacyclic code C over ]qu is an ﬁ_l—constacyclic code [16,17].

Let @ be a primitive element of I 2, take n = VD forsome v € {0, 1, ..., q).
In this case, we have nij = 1, so the Hermitian dual C" of C is also an n-constacyclic
code. In particular, if v = 0, the class of n-constacyclic codes is cyclic codes; if g is an
odd prime power and v = (g + 1)/2, the class of n-constacyclic codes is negacyclic
codes. Since n9t! = 1, the orderr of 5y in FZZ isequal to gcd?v——t_;—t-l)' Let ¢ be a primitive
rn-th root of unity in some extension field of IF 2> such that {" = 5. Let§ = ¢". Then,
£ is a primitive n-th root of unity. It follows that the roots of x" — n are ¢&/ = ¢!*J”
forO0<j<n-—1.8Set2=8,, ={1+,r|0 <j <n—1}. The defining set T of a
constacyclic code C = (g(x)) of lengthnistheset T = {j € 2 | ¢/ is a root of g(x)}.
For each i € £2, let C; be the g>-cyclotomic coset modulo rn containing i and be
denoted by

Ci=1{i,ig% i(¢gH% ....i[g>»H* "y mod rn,

where e is the smallest positive integer such that i(¢%)¢ = i mod rn. It is easy to
see that the defining set T is a union of some g2-cyclotomic cosets modulo rn (see
[17,28]).

Let § be an integer with 2 < § < n, an n-constacyclic BCH (CBCH, for short) code
C of length n with designed distance § is an n-constacyclic code with defining set

5—2
T = U Chptir,
i=0

where Cj, is the g>-cyclotomic coset modulo rn containing b + ir. When b = 1, C
is called a narrow-sense CBCH code, otherwise, a non-narrow-sense CBCH code.

According to the following BCH bound for n-constacyclic codes (see [27,28]), a
CBCH code C of designed distance § has minimum distance at least 8.
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Lemma 1 (The BCH bound for 5-constacyclic codes) Let C be a g>-ary n-constacyclic
code of length n with generator polynomial g(x). If g(x) has its elements {11710 <
i <6 — 2} as the roots, where B is a primitive rn-th root of unity, then the minimum
distance of code C is at least 6.

2.2 Description of Hermitian dual-containing conditions by cyclotomic cosets

Itis well known that there is a close relationship between cyclotomic cosets and cyclic
codes; see [29-32]. The definitions of symmetric coset and asymmetric coset pairs
for 2-cyclotomic cosets were first given in [32] to characterize binary self-dual cyclic
codes and were generalized further in [14,15] to characterize ¢>-ary Hermitian self-
orthogonal cyclic codes. Now we give the skew symmetric property of cyclotomic
cosets. For each i € £2, let C; be the g2-cyclotomic coset modulo rn containing i.

A cyclotomic coset C; is called skew symmetric if —qi mod rn € Cj, and skew
asymmetric, otherwise. Skew asymmetric cosets C; and C_;; come in pairs, and we use
(Ci, C_g4;) to denote such a skew asymmetric pair (SAP, for short). In [17], Kai et al.
have shown that an n-constacyclic code C with defining set 7' contains its Hermitian
dual if and only if TN T79 = @, where T™7 = {—gi mod rn | i € T}. Using
terminologies of skew symmetric coset and SAP, an equivalent statement can be given
as in Lemma 2.2 of [14]. We list these two equivalent statements in the following
lemma for later use.

Lemma 2 [fC is an n-constacyclic code of length n over F > with defining set T , then
Cth C C if and only if one of the following holds:

1. TNT 9 =@, where T"1 ={—qgi mod rn | i € T}.
2. Foreachi € T, C; is a skew asymmetric coset; if j € T and j ¢ C;, then C; and
C; cannot form a skew asymmetric pair.

2.3 Notations and a preliminary result

Firstly, to simplify the following discussions, we give some notations here.
Notation: Denote the set {b,b + 1, ..., e} by [b, e]. Given four integers s, r, j and i,
where j <i andr|(g + 1), we use [, i; r]; to denote the following set

L.i:r]s = Copjr U Csp(j+1yr YU Cspj2yr U -+ U Cois

Next, we give some results on skew asymmetric coset and SAP for our main work
in the subsequent sections.

Lemma3 Let ord,,(q*) =2 andi,j € 2. Ifi # j, then the following hold:

1. The cardinality of C; is at most 2.

2. C; = Cj ifand only ifig® = j mod rn, which is equivalent to jq* = i mod rn.
3. C; is skew symmetric if and only if i (¢ + 1) = 0 mod rn.

4. (Ci, Cj)isa SAPifand only ifi + jqg = 0 mod rn or j +ig = 0 mod rn.
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Proof 1. Since ord,, (qz) = 2, from definition, one can easily know that |C; | is at most
2.

2.By (1), we assume that C; = {i, ig>}. When i # j, itis obvious that C; = C; &
ig?> = j mod rn. Since iq? - ¢> = i(g* — 1 + 1) = i, we have

iqzzjmodrn<:>iq2~q25 E]q mod rn.

3. Assume C; = {i,ig?}. If C; is skew symmetric, then —gi = i mod rn or
—qi = ig® mod rn. It is obvious that —gi = i mod rn < i(qg 4+ 1) = 0 mod rn.
From ged(g, rn) = 1, one can deduce —qi = ig> mod rn < i(q + 1) = 0 mod rn.
Hence, (3) holds.

4. By (1), put C; = {i, ig?}. From definition, we know (C;, C;)is a SAP if and
only if i = —jg mod rn or i = —jg3 mod rn. Notice that i = —jg> mod rn <
ig =—jq>-q =—j mod rn. This completes the proof of (4). O

3 Construction of new QCs of length n = @(q2 +1)

In this section, let ¢ be an odd prime power, 7 | (g + 1) and 1 < r < qH . Then,
g+1=rr',r >2andn = r'(g>+1). Itlseasytochecks = 2+1 =1+ q21 -r
€ 2, =11 ~|—Jr|0 <j<n-—1},and ‘1 = r’q L We can define a defining set

1 g>—1 1 l
T=[- 2r’q2r’r]s_[ r/qzy/q r]sggrn

2 2
/ . q-—1 .. g-—1
Lemma4 Let q,r,r',n,s and T be given as above. If—T <i,j =<5 and

i # j, then the following hold:

1. Cy = {s} and each Cs;, contains two elements if i # 0.
2. Cyyir = Cyyjrifandonly if j = —i and i = 0 mod r'.
3. Each Cgy;, is skew asymmetric.
4. Any two Cs4r and Cy j, cannot form a SAP.
Hence, the CBCH code with defining set T is a Hermitian dual-containing code.

Proof 1.1f C, = {x} and x € T, then x¢> = x mod rn. Since rn = (¢ + 1)(¢> + 1)
and ged(g — 1, g2 + 1) = 2, one can imply x(¢> — 1) = 0 mod (¢ + 1)(¢*> + 1) and
x = 0 mod qZTJ“].Fromx =s+riand —% <i< %,wehavex = sand Cyyj,
contains two elements for —% <i< ”22—:1 andi # 0.

2. Accordingto Lemma 3, Cs4;, = Cyyjrifandonlyifs+ir = (s+jr)g> mod rn,
which is equivalent to that i = jg? mod n. Since n = r'(¢> + 1), we have i =
jg*modn < j(g>+1)— (i +j)=0mod r'(g> + 1).

Let j = ar’+b, where 0 < b < r’—1and a, b are integers. Then, j(q2+ H—(>G+
N =ar'@+D+bg*>+1) =+ ) =blg*+ 1) — @i+ j) mod r'(g> + 1. From
—%<z ]<ﬂonecandeduce—(q +1)<—¢<1+1<q <qg*+1
and —(¢* +1) < b(g*> + 1) — (i + j) < r'(g* + D). Thus, j(¢* + 1) — (i + j) =
0 mod r'(g%> + 1) implies b = 0 and j = —i = —ar’. Then, (2) holds.
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3.Since 1 < s+ir < g%, wehave (s +ir)(g+1) < (g + 1)g* < rn =
(g + (g% + 1) and then (s 4+ ir)(g + 1) % 0 mod rn. From Lemma 3, (3) holds.

4. From | < s +ir,s + jr < g2, one can infer that (s + ir) + (s + jr)g <
(g+1)g*> < rn = (g+1)(g>+1),and then, (s +ir) + (s + jr)g # 0 mod rn. Also,
we know that (s + jr) + (s +ir)g % 0 mod rn. According to Lemma 3, (4) holds. O

Now it is sufficient to construct new QCs and calculate their parameters.

2
Theorem 2 Let q,r,r',n,s and T be given as above. For2 < § < qr—_l + 2, denote

[T ()| =2[(6—2)(1— #)] + 1. Then, there are a Hermitian dual-containing CBCH
code with parameters [n,n — |T ()|, > S]qz and an [[n,n —2|T (8)], = 6]l QC.

Proof Consider 1 <i < ‘122—:1. Suppose that C is a CBCH code of designed distance
6 with defining set 7(§) C T, where T(§ =2) = Cs and for 6 > 3

=G =D, isr]gif 8 =20 + 1;
T(a)_{[—i,i;r]s ifs =2i +2.

Since Cy4r = Cyqjy if and only if j = —i and i = 0 mod r’, we get that there

are
%5 | +1=[e-20-50]

§—2— +1=|16-2)1-——)|+1
2r’

2r’

disjoint cosets in 7'(§). Combining Cs; = {s} and that the other cosets have cardinality
2, it can be derived that

T ()] =2 ’7(8 —-2)(1 — L/)—‘ + 1.
2r

By Lemma 4, one can know that C is a Hermitian dual-containing CBCH code with
parameters [n, n — |T ()|, > S]qz.
By Theorem 1, using the underlying code C, one can then construct an [[n, n —
2
2T ()], 81l QCfor2 <6 < qr—_l + 2. This completes the proof. O

4 Construction of new QCs of length n = %(q2 +1)
In this section, the construction of QCs of length n will be given, where g — 1 = bb’

and n = qT_l(qz +1) = b’(q2 + 1). We give our discussion in three subsections
according to different g.

41 q=4a+1=>5

In this subsection, we setq =4a+1 > 5and2b | (¢ —1). Suppose s = %(c]2 +1) =

— 2 . .
"z—bl . qTH = 4. then s is an integer.
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2
We define T = [—%, (ngl) r=1) = [— (q 1) ,(q D?. ; 112 and discuss

cyclic codes of length n over F 2> with deﬁmng set T

2 2
Lemma5 Letq,b,b',n,s and T be given as above. If—% <i,j< % and
i # j, then

1. Cs = {s} and each Cy4; contains two elements fori # 0.
2. Cyyj =Cyyjifandonly if j = —i andi =0 mod b'.

3. Each Cgy; is skew asymmetric.

4. Any two Cs4; and Cs j cannot form a SAP.

Hence, the BCH code with defining set T is a Hermitian dual-containing code.

Proof 1. By definition, for x € T, C, = {x} if and only if x> = xmodn <
q2 —x =0 mod »' (g2 + 1) & x(g + 1)b = 0 mod (¢ + 1). Notice that ged(g +
1, q +1) = 2 and (b, 4 ) = 1. It then follows that Cy = {x} if and only if

x = 0 mod 4 T' From x € T, we have x = s. By Lemma 3, we obtain that Cy;
contains two elements for i # 0 and — (q;bl 2 <i< (ngl 2

2. By Lemma 3, Csy; = Csyjifandonlyif s +i = (s + 7)g* mod n, which is
equivalenttoi = jg? mod n accordingtos = sg? mod n. Note thatn = b'(g>+1). It
is not difficult to derive thati = jg? mod n < j(g?>+1)—(i+j) = 0 mod b'(g>+1).
Similar to the proof of (2) in Lemma 4, the conclusion can be obtained.

3. Consider that (s +i)(g +1) =s(g+ 1) +i(g+1) = 7(4a+2) +i(g+1) =
5 +i(g + 1) mod n. From —% <ic< (q 1) , it follows that |i(g + 1)| <
@=D*g+D) _ @*+h@=D _ n n

5D < % = 3. Thus, s+i(g+ 1) ;é 0 mod n. Combining Lemma 3,

(3) is straightforward.

4. Notice that s +i + (s + j)g = s(g+ D) +i+ jg = F(4a+2)+i+ jg =
(q—1)2(q+1> -

2
g+i+jq modn.Since—(q_bl) <i,j<Y4 b) we have i + jq| <

M andthenz—i-l—i-]inmodn ie., s+l+(s+])q§é0modn
Analogously, we could obtain s 4+ j + (s +i)g # 0 mod n as well. Hence, (4) holds.
O

2
Theorem 3 Let g, b, b, n, s and T be given as above. For2 < § < @ + 2, denote

[T =2[6-2)(1— %)] + 1. Then, there are a Hermitian dual-containing BCH
code with parameters [n,n — |T (§)|, > 81,2 and an [[n, n —2|T(8)], = 6114 OC.

2
Proof Consider 1 <i < (q;bl) . Suppose that C is a BCH code of designed distance
6 with defining set 7'(8), where T(§ = 2) = C, and

=G =i 1y S =2i 41
T((S)_{[—i,i;l]s if 8 = 2i +2.

Then, the conclusion can be obtained with reference to the proof of Theorem 2. O
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429q=4a+3>7

In this subsection, let ¢ = 4a + 3 > 7 be an odd prime power and b = 1 or 2. Set

2
g+1 ifb=2.

{ﬁ ifb=1;
r =

Hence, rn = "4l (g + 1) = =D Puts = (g + Da + DT =
@D Froms —1 = ((g+ Da+ D — 1 = @arha L a1 i foliows
thatr|(s — 1) and s € 2 = £2,, = {1 4+ jr|0 < j < n — 1}. Then, we shall define

712 712
T = [_(q2b) 5 (q2b) ;r]x - £2.

Lemmaé Letq,b,b',n,s and T be given as above. If — q 1) <i,j< % and
i # j, then the following hold:

1. Cy = {s} and each Cs.;, contains two elements for i # 0.

2. Any two Csqiy = Csqjr ifand only if j = —i and i = 0 mod b'.

3. Each Cs.y, is skew asymmetric.

4. Any two Cyyr and Cy j, cannot form a SAP.
Hence, the CBCH code with defining set T is a Hermitian dual-containing code.

Proof 1. By definition, for x € T, C, = {x} if and only if xg> = x mod rn =

2 2
w which is equivalent to that x = 0 mod 4 + . Thus, from x = s +ir and

(g—1?* (g—1?
w- SIS T

— (q;bl)z <i< (qu) , we obtain x = s. Moreover, for — and
i # 0, by Lemma 3, we obtain that C,;, contains two elements.

2.By Lemma 3, fori # j, Cs1ir = Csy4j, ifand only if s +ir = (s + jr)g? mod
rn =rb'(g*> + 1). Note that s = s¢> mod rn. The above congruence is equivalent to
i = jg?> mod b’ (g% + 1). Similar to the proof of (2) in Lemma 4, the conclusion can
be obtained as well.

12 2
3.Notethat (s+ir)(g+1) = s(g+D+ir(g+1) = Y T g Dtir(g+1) =

S +ir(g+1)=0mod rn = W & 5 +i(g +1) =0 mod n. Analogous
to the proof of (3) in Lemma 5, (3) follows.

2 .2
4. N0ticethats+ir+(s+jr)q =s(@+ 1) +ir+jqr =92 g 41+

2 2
ir+ jgr="5 +ir+ jgrmod rn = =g+ _l)z(q +1)
Since 2 + ir+ jgr =0mod rn & 5 +i + jg =0 mod n, it is easy to deduce
that (4) can be verified. ]

Theorem 4 Letq,b, b, n,s and T be given as above. For2 < § < @ + 2, denote

[T =2[(6—-2)(1— %)1 + 1. Then, there are a Hermitian dual-containing CBCH
code with parameters [n,n — |T ()|, > 8] 2 and an [[n,n —2|T(5)], = 8]l; OC.

Proof Consider 1 <i < (‘72 1 . Suppose that C is a CBCH code of designed distance
6 and defining set 7'(6), where T (§ = 2) = Cy and

=G =izl 8 =2i 41
T(‘”_{[—i,i;r]s if 8 = 2i +2.
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Then, the conclusion can be obtained similar to the proof of Theorem 2. O

4.3 g > 4is apower of 2

In this subsection, let g > 4 be apowerof 2and 1 < b < %, or b’ > 3. Put

5 — b%l(q2+l) if ¥’ = 1 mod 4;
& @+ 1) if 6 =3 mod 4.

Itis eas isan i S SO TN (' Y e
y to see that s is an integer. Suppose thatu| = “5—(¢ — 1) = “5; >

2
Uy = b+1 g—1) = w;—,y + %.Deﬁne T =[—uy, uz; r = 1]5. We analyze cyclic

codes of length n with defining set T'.

Lemma7 Letq,b,b',n,s and T be given as above. If —uy <1i,j <upandi # J,
then

1. Cs = {s} and each Cy4; contains two elements fori # 0.

2. Any two Csq; = Cyyj ifand only if j = —i and i = 0 mod b'.
3. Each Csy; is skew asymmetric.

4. Any two Cy4; and Csy j cannot form a SAP.

Hence, the BCH code with defining set T is a Hermitian dual-containing code.

Proof 1. By definition, C, = {x} if and only if x¢> = x mod n = b'(¢> + 1). Notice
xqg>=xmodb'(g>+1) & xb(g+1)=0mod (¢g>+ 1)and (¢ +1,¢> + 1) =1,
(b, g*> + 1) = 1.1t follows that C, = {x} if and only if x = 0 mod (¢ + 1).

Clearly, from x € T, we obtain that x = s and C,4; contains two elements for
—uy <i <up,i #0byLemma 3.

2. By Lemma 3, for i # j, we have Cyy; = Cyyjifandonly if s +i = (s +
7)g?> mod n = b'(¢*> + 1), which implies that i = jg> mod b'(g> + 1) since s =
sg* mod n. Similar to the proof of (2) in Lemma 4, the conclusion can be obtained.

3. For either b = 1 mod 4 or b’ = 3 mod 4, there holds n = b'(¢g*+1). Then, one

caninfer that (s +i)(¢ +1) = s(g+ 1) +i(g+1) = —5— ’=1 +i(g+1) mod n. From
—uy §i<u2,itiseasytogetthat "+"_1+ -1 <z(q+1) < ((‘1 i )(q+
H<2- +‘1 .1t follows that 41 —1<" ‘f +z(q+1)<n— ;1+1.

Thus, (s + l)(q +1)="% = +i(g + 1)#£0 mod n. By Lemma 3, (3) holds.

4 Analogous to (3), we getthat s +i + (s + j)g = s(g + 1) +i + jq

”q +z+]qmodn Smce—ulfz]<u2,wehave—”+qb —i—q_l
n

i+1q<((" —)(q+1)<2—qT_1+—Itfollowsthat——l

IA

IA

+l+]q < n——+1 Clearly, =4 — +l+]q # 0 mod n, which implies
thats +i+(G+j)g #0 mod n. Similarly, We canobtains+ j+ (s+i)g £ 0 mod n
holds as well. Combining Lemma 3, then (4) follows. O
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Theorem 5 Let g, b,b',n,s and T be given as above. For2 <8 <b'(q — 1) +2 =
2
@ + 2, denote

ol 2[6 =0 =5 ]| +1if2<8 < =g — 1 +2;
TN = 2(5_2—#)“ i —g—1)+3<8<b(g—1)+2.

Then, there are a Hermitian dual-containing BCH code with parameters [n,n —
IT(8)], = 81,2 and an [[n,n —2|T (5)|, = 814 QC.

Proof We could verify this conclusion by two steps. Suppose that C is a BCH code of
designed distance § and defining set 7' ().

1. Consider2 <8 < (b'—1)(g—1)+2and1 <i < b,T_l(q—l).SetT((S =2)=Cy
and

=G =11y i =2i+1;
T(S)_{[—i,i;l]s if 8 =2i +2.

Similar to the proof of Theorem 2, we can derive thatif2 < § < (0'—1)(g—1)+2,
then |T(8)] = 2[(8 — 2)(1 — )1 + 1.

2. For()'—1)(g—1)+3 <8 <b'(g—D+2and I (g - +1 <i < ZFlg-1).
Put 7(8) = [—#(q — 1), i; 1]5. It follows that § = "/T_l(q -D+i+2
From (1-2) of Lemma 7, we can derive that there are

O —Dg-1 g—1-1>

§—2— 1=6-2-— 1
( T )+ s+

disjoint cosets in 7'(8), of which § —2 — q_é_b cosets have cardinality 2 besides

Cs = {s}. We naturally have

q—1—>b
IT@)| =2(6—-2-— T) + 1.
Thus, T (§) defines a Hermitian dual-containing BCH code with parameters [n, n —
|T(8)], > B]qz, and this code gives an [[n, n — 2|T (8)[, > §]], QC. O

5 Code comparisons and conclusion

In this paper, Hermitian dual-containing conditions of non-narrow-sense n-constacyclic
codes of lengths n = qri](q2 +1)andn = %(cﬁ + 1) were deeply investigated.
Consequently, applying underlying n-constacyclic codes, we have constructed two
families of QCs with good parameters from the Hermitian construction. By compar-
ison, it can be shown that the absolute majority of newly obtained QCs have better
performance than the ones available in the literature. On the one hand, some of these
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Table 1 Comparisons of quantum codes with n = q,i (612 + 1) over Fy

QC in Theorem 2

QTC in [33]

QCin [25] QCin[12]

q,r
q=3,r=2
qgq=5r=3
r=2
q=17r=4
r=2

%[[20, 14, > 3]13
<120, 10, > 4]13
<[120, 6, > 6113
[[52, 46, > 3115
[[52,42, > 4115

<©l152, 38, = 6]]s
©l152, 34, = 7115
<1152, 30, = 8]]s

(152,26, > 10]]5
*[[78,72, > 3]s
*[[78, 68, > 4]]5
*[[78, 64, > 5]]5
*[[78, 60, > 6]]5
[[78, 56, > 8]]s
*[[78,52, = 9]Is
%[[78, 48, > 10]]5
%[[78, 44, > 11]]5
*[[78, 40, > 12]]5

1178, 36, = 14]]5
[[100, 94, > 3]
[[100, 90, > 4]]7
x[[100, 86, > 5]17

<[[100, 86, > 6]17

<[[100, 70, = 11]17
<©[[100, 66, = 12]17

S[[100, 62, > 14117
«[[200, 194, > 3]]7
¥[[200, 190, > 4717
¥[[200, 186, > 5117
¥[[200, 182, > 6]]7
¥[[200, 178, > 7117
¥[[200, 174, > 8]}

[[20, 12, 3113

[[52, 46, 3]]5
[[52, 42, 4]]5
[[52, 38, 5115

[[78,70, 3]l
[[78, 66, 4]]s
[[78,62,5]]s
[[78, 58, 6]]5
[[78, 54, 7115
[[78, 50, 8115
[[78, 46, 9]]5
[[78, 42, 10]]5
[[78,38, 11]]5
[[78, 34, 12]]5

[[100, 92, 3117
[[101, 91, 4]17
[[101, 87, 5117

[[101, 51, 14]}7
[[200, 192, 3117
[[200, 188, 4117
[[200, 184, 5117
[[200, 180, 6]17
[[200, 176, 7117
[[200, 172, 8117
[[200, 168, 9117

[[20,4, = 5]13

[[52,20, = 9115

[[78,70, = 3]]5

[[78,30, > 13]]5

[[100, 52, > 12]]7

[[200, 192, > 3]];
[[200, 188, > 4]]7
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R.Lietal.

Table 1 continued

q’r

QC in Theorem 2

QTCin [33]

QC in [25]

QCin[12]

*[[200, 170, > 10]17
*[[200, 166, > 11]]7

*[[200, 122, > 23]]7
*[[200, 118, > 24]]7
*[[200, 114, > 26]]7
[[164, 158, > 3]]9
[[164, 154, > 419
*[[164, 150, > 6]]9
Ol[164, 146, = T1lo

O[[164, 118, > 16]]9
O[[164, 114, > 18]]9
%[[410, 404, > 3]]y
*[[410, 400, > 4]]9
x[[410, 396, > 511y
#[[410, 392, > 6]]9

*[[410, 344, > 19]]9
*[[410, 340, > 20]]y
x[[410, 336, > 22]]y
*[[410, 332, > 23]]y

*[[410, 308, > 29]]9
*[[410, 304, > 30]]y
%[[410, 300, > 32]]y
*[[410, 296, > 33]]9

*[[410, 272, > 39]]9
x[[410, 268, > 40]]y

O[[410, 264, > 42]]9

[[200, 164, 10]]7
[[200, 160, 11]]7

[[200, 112, 23]}
[[200, 108, 24]}7
[[200, 104, 25117
[[201, 103, 26]]7
[[164, 158, 3119
[[164, 154, 4119
[[164, 150, 5119

[[410, 402, 3]]9
[[410, 398, 4]19
[[410, 394, 5119
[[410, 390, 6]19

[[410, 338, 1911
[[410, 334, 20]]
[[410, 330, 21]]
[[410, 326, 22119
[[410, 322, 2311

[[410, 298, 2911
[[410, 294, 30]]
[[410, 290, 3111
[[410, 286, 3211
[[410, 282, 33]]

[[410, 258, 39]]9
[[410, 254, 40119
[[410, 250, 41119

[[200, 104, = 24]],

[[164, 100, > 17119

[[410, 250, > 41119

[[410, 402, > 3119
[[410, 398, > 4119
[[410, 394, > 5119

@ Springer



127

Page 13 of 23

New quantum constacyclic codes

Sllo1 < ‘8% ‘vo11l S[l91 “0s “vo11l Sllo1 < ‘08 ‘vo11]
Slist < ‘s ‘vorll SISt “vs “vo1ll SIIST < S ‘po11]
S[yT <96 “vo11l S[Iy1 “8s “vo1ll S[I¥1 < 85 ‘v011]
S[let <09 ‘vo1ll S[iet 29 “vorll S[ler <29 ‘yo1ll
SIIeT < %9 ‘vo1ll SIIZT *99 “v0T11] S[IzT <99 ‘$011]
Stlot < ‘L vo1ll STIoT “pL “voT11] SIIOT < “vL ‘v011]
S[l6 < ‘9L 0111 - -
(I8 < ‘08 ‘+0T11] S[I8 ‘8L +0T111 S[I8 < 8L ‘+0T11l
Sl < ‘88 “v011] <119 ‘98 “+011] Slls <98 “po11]
- SILs ‘06 0111 Sl <06 011l
[y < ‘06 “vo11] Sy < ‘26 ‘vo11] Sy v6 “+011] Sy < v6 011l
Sl < ‘¥6 +011] S[le <96 0111 S[l¢ ‘86 ‘+011] Sl < 86 o1l =9
- Stlot < ‘9z ‘z6ll®
- S[IL < ‘peg TSI
- 59 < ‘8¢zl
Slls ‘8¢ “zsll -
Sy ‘er “esl] Sy < ‘v sl =9
Slle ‘ot “zsll S[le < ‘op ‘sl c=»b
[21]ur D0 [eTlur DO [sTlur D0 [eelur D10 € WAL, Ul DO qb

by ono 1 = apue (] + NSW&W = u s sopod wmuenb jo suostedwo) g ajqel

pringer

Qs



R.Lietal.

127 Page 14 0f 23

o[[y < ‘91¢ ‘8z€ll
o[[¢ < ‘0zg ‘8eell

S8t
S[iLr

<‘ov‘vot1ll

<‘9v ‘vo1ll

6[[¢¢ < ‘00z ‘8zel]

O[[L1 < ‘001 ‘¥91]]

6[[¢¢ ‘00T ‘gl
6[[z¢ ‘vot ‘gcell

O[[11 ‘06¢ ‘g€l
o[[01 ‘6T 8Tell

o[[t ‘g1¢ ‘8Tl
o[[¢ ‘zre ‘geell

6[[G ‘0ST ‘+9111]
O[[t “¥ST “¥9T11]
6[[¢ ‘8ST “¥9T11]
SII8T ‘2t “vOTll
SILLY ‘9 “pO11]

o[[y¢ < “vIT ‘8Tello

6[[c¢ < ‘81T ‘8eell*
O[[1T < ‘v6T ‘8TE]*
6[[01 < ‘86T ‘8Tell*

o[l < ‘g1¢ ‘8eell
6[[¢ < ‘zze ‘seell
O[[8T < ‘¥IT ‘v9111<>
O[[LT < “PIT ‘pOT1*

O[[L < ‘ovI ‘v91lI<>
6[[9 < ‘08T ‘v9111<
o[y < “¥ST ‘+911]
O[[¢ < ‘8ST +911]
S[I8T < ‘o ‘pOT11*

[c1]1ur D0

[zl ur DO

[zl ur Do

[eclurD1O

€ wloay L, ur 5O

q‘b

penunuod ga|qel

-
I
50
=)
k=
a,
7
Al



127

Page 15 of 23

New quantum constacyclic codes

6[[8 < ‘879 ‘95911

o[y < ‘¥+9 ‘95911
O[[¢ < ‘819 ‘959]]

6[[99 < ‘00t ‘95911
6[[S9 < ‘v0t ‘95911
6[[+9 < ‘80t ‘95911
6[[€9 < ‘TIt ‘9591l

A

6[[8 < ‘879 ‘95911

A

o[y < ‘¥+9 ‘95911
O[[¢ < ‘849 ‘95911

6[[99 ‘01t ‘95911
6[[S9 “+1t ‘95911
6[[+9 ‘81t ‘95911
6[[¢9 ‘zTt ‘9591l

6[[8 ‘0£9 ‘95911

6[[ ‘9¥9 ‘96911
6[[¢ ‘059 ‘95911

6[[99 < ‘b1t ‘96911

6[[19 < ‘81+ ‘95911
6[[¢9 < ‘TTr ‘9591l

A

A

6[[8 < ‘0£9 ‘95911

[t < ‘919 ‘95911
6[[¢ < ‘059 ‘95911

I1=49

[21]1ur D0

[zl ur DO

[szl ur D0

[eclurDLO

€ waloay [, ur DO

q‘b

panunuod g 3jqel

pringer

As



R.Lietal.

127 Page 16 of 23

Llg < “zb1 ‘05T

L[[9 < ‘08z ‘00¢1]
L[ < ‘¥8z ‘00¢l]
L[t < ‘88z ‘00¢l]
L[[¢ < ‘z6T ‘00¢€l]

A

L[[8¢ < ‘96T ‘00¢]]
L[[Le < ‘091 ‘00¢]]

L[l9g < 491 ‘00¢]]
L[91 < ‘T ‘00¢l]
L[[s1 < *8%T ‘00¢l]
L[Ip1 < ‘TSt 00¢l]

L[[9 < ‘08z ‘00¢1]
L[ < ‘¥8z ‘00¢l]
L[t < ‘88z ‘00¢l]
L[[¢ < ‘z6T ‘00¢€l]

L[[eT p0T ‘05Tl
L[zt ‘801 ‘05111
L1zt fostll
L[[or ‘911 ‘0ST1]
L[[6 ‘0T ‘08111
L[[8 *¥T1 “0sTl]
LIl9 ‘zet “osTl

L[Ig “pp1 08T
L[[8¢ ‘291 “00¢€l]
L[ ‘991 “00¢€]
L[9¢ ‘LT “00¢€l]

L[[91 ‘otT ‘00l
L[[sT1 ‘0sT ‘00l
L[I¥1 *vsT 00€l]

L[L 8Lz ‘00¢€]
L[[9 “z8z ‘00¢l]
L[[s ‘98z “00¢l]
L[t ‘06z ‘00¢l]
L[[¢ ‘v6T ‘00¢€l]

L[zt <11 ‘0sTll*
L[TT <911 ‘08 T1]*
L[for < *ocT ‘0ST1l*
L[[6 < ‘¥T1 ‘0ST]]*
L[[8 < ‘8TI ‘0ST]]*

L[lo < zer os1l]

A

LI < “vp1 ‘05111
L[[8¢ < ‘991 ‘00¢]1*

L[log < ‘oL ‘00¢]]

A

L[[91 < ‘9T ‘00¢l]
L[[s1 < ‘0sT ‘00€]]
L[[y1 < *pST *00¢€]]

Al

A

L[[L < ‘8Lz ‘00¢€l]
L9 < ‘z8z ‘00¢l]
L[[s < ‘98z ‘00¢l]
L[ < ‘062 ‘00€l]
L[ < ‘p6T ‘00€l]

[c1]ur D0

[ecl ur DO

[sclur DO

[eclur D10

 WaI0dYL, Ut DO

4°q

L = Dbioy by om0 (1 + NSW&W = u [Im sopod wnuenb jo suostredwo) € ajqel

-
I
50
=)
ke
a,
7
Al



127

Page 17 of 23

New quantum constacyclic codes

Ll61 < 8L 0ST]]

L[I¥1 ‘00T ‘0ST1]

L[oz < ‘88 ‘0S 111

LI[8T1 <26 ‘0STIIO

LIIST < “p0T ‘0sT1IO
L[Ip1 < ‘801 ‘0STII*

[c1]urDo

gl ur DO

[zl urpo

[eclurpLO

¥ waI0dy [, ut DO

{4q

panunuod ¢ 3jqe]

pringer

As



127 Page 18 0f 23 R.Lietal.
Table 4 Comparisons of quantum codes with n = % (q2 + 1) over Fy
q r,b QC in Theorem 5 QTC in [33] QCin [23] QCin[12]

g=4 b=1,r=1

[[51,45, = 3]]4
[[51,41, = 4]]4
[[51,37, = 5114
[[51.33, = 6114
#[[51,29, = 814
#[[51,25, = 9114
*[[51,21, > 10]]4
*[[51,17, > 11]]4
#[[455, 449, > 3113
#[[455, 445, > 4]13
x[[455, 441, > 5]13
x[[455, 437, > 6]13
*[[455, 433, > 7113
x[[455, 429, > 8]]3

*[[455, 353, > 28]]g
*[[455, 349, > 30]]g
*[[455, 345, > 31]1g

*[[455, 325, > 36]]g
*[[455, 321, > 37]]g
*[[455, 317, > 38]]g

x[[455, 301, > 42]]g

*[[455, 297, > 44]]g
*[[455, 293, > 45]1g

*[[455, 273, > 50]]g
*[[455, 269, > 51]]g

[[51,45,3]14
(51,41, 414
[[51, 39, 5]l4
[[51, 35, 6]]4
[[51,31, 7]]4
[[51,27, 8]]4
[[51,23,9]]4
[[51, 19, 10]]4
(51, 15, 11714

[[51,43, > 3]]4
[[51.39. = 5114
[[51.35. = 6]]4
[[5L.31, = 7]l4
[[51,27. = 8]]4
[[51,23, = 9]l4
[[51,19, = 10]]4
[[51,15, = 11]]4
[[455,447, > 3]]g
[[455,443, > 4]]g
[[455,439, > 5]Ig
[[455,435, > 6]]g
[[455,431, > 7]Ig

[[455, 347, > 29]]g
[[455, 343, > 30]]g
[[455, 339, > 31]]g

[[455, 351, > 28]]g

[[455, 319, > 36]]g

[[455,315, = 38]]g
[[455,295, > 42]1g
[[455,291, > 43]Ig
[[455, 287, > 44]1g
[[455, 283, > 45]1g

[[455, 263, > 50]13
[[455,259, = 51]Ig

[[51,43,> 3]l4

[[455, 447, > 3]1g
[[455, 443, > 4]1g
[[455, 439, > 5]1g
[[455, 435, > 6]]g
[[455, 431, > 7]Ig

QCs have better code rate than QCs obtained in Refs. [12,23-25] and QTC:s listed in
the code tables given by Yves Edel [33]. On the other hand, some of our QCs have
larger maximum designed distances. For clarity, the previous results and some code
comparisons are shown below. The following are the known conclusions for the case
m = 2 given in Refs. [12,25].
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Lemma 8 ([12]; Theorem 21) Let m = ord,(¢%) = 2, where q is a power of a prime
and 2 < § < Spax = # then there exists a quantum code with parameters

[[n,n =416 — D1 —g 2], > 81,

Lemma9 ([25]; Theorem 9) Let ¢ > 3 be a prime power and n be an integer such
that ged(n, ¢%) = 1. Assume that n = r(g> + 1), where r | (¢> —1),1 <r < #.
Then, there exists an [[n,n —4r(q — 1).d 2 r(g — 1) + 11l quantum code.

Remark Observe that our QCs have the same parameters with QTCs in [33] for n =
(g + 1)(g* + 1). Thus, we do not list them in the following tables although they are
better than corresponding QCs in [12,24].

Tables 1, 2, 3 and 4 provide some examples and list code comparisons between QCs
in Theorems 2, 3,4,5 and QTCsin [33] as well as QCs in Refs. [12,23-25], respectively.
From these tables, it is easy to see that our QCs have better performance. Tables 5 and
6 list general code comparisons of lengths n = @(q2 + 1) andn = %(c]2 + 1)
forqg > 5.

These symbols &, k" and k" are denoted as the dimensions of QCs with given length
and designed distance in corresponding references, respectively. Additionally, the QC
marked with an asterisk “*” has the best parameters among the ones in every row. The
symbol “—" implies that there is no QC with given length and designed distance. And
“$” denotes new QCs from our construction.

Utilizing the computer algebra system MAGMA [34], we calculated actual param-
eters of QCs [[20, k1, > 6113, [[52, ka, = 8115, [[S1, k3, > &]]4 presented above, for
details see Table 7. From this table, one can see all the QCs are non-degenerate, and
actual distances of almost all QCs are equal to their designed distances except for the
[[51, 37, > 5]]4 code with actual distance 6.

Generally, it is a hard work to determine the minimum distances of these dual-
containing codes, their dual codes and the actual parameters of QCs given in
Theorems 2, 3, 4 and 5. Yet, we conjecture that all the QCs given in these theorems
are non-degenerate, and this is a problem that needs further study.

Acknowledgements The authors are very grateful to the anonymous reviewers and the Associate Editor,
Prof. Michael Frey, for their constructive comments and suggestions on our manuscript, which improve the
manuscript significantly.

References

1. Shor, PW.: Scheme for reducing decoherence in quantum computing memory. Phys. Rev. A 52, R2493
(1995)

2. Steane, A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452,
2551-2577 (1996)

3. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over
GF (4). IEEE. Trans. Inf. Theory 44, 1369-1387 (1998)

4. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. Thesis, California Institute of
Technology (1997)

5. Steane, A.M.: Enlargement of Calderbank—Shor—Steane quantum codes. IEEE. Trans. Inf. Theory 45,
2492-2495 (1999)

@ Springer



New quantum constacyclic codes Page230f23 127

10.

11.

12.

13.

14.

16.
17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.
33.

34.

. Ashikhim, A., Knill, E.: Non-binary quantum stabilizer codes. IEEE. Trans. Inf. Theory 47, 3065-3072

(2001)

. Li, R, Li, X.: Binary construction of quantum codes of minimum distance three and four. IEEE Trans.

Inf. Theory 50, 1331-1336 (2004)

. Ketkar, A., Klappenecker, A., Kumar, S.: Nonbinary stablizer codes over finite fields. IEEE Trans. Inf.

Theory 52, 4892-4914 (2006)

. Ling, S., Luo, J., Xing, C.: Generalization of Steane’s enlargement construction of quantum codes and

applications. IEEE Trans. Inf. Theory 56, 4080-4084 (2010)

Grassl, M., Beth, T.: Quantum BCH codes. In: Proceedings of Xth international symposium on theo-
retical. electrical engineering Magdeburg, pp 207-212 (1999)

Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: Primitive quantum BCH codes over finite fields. In:
Proceedings of international symposium on information theory, pp 1114-1118 (2006)

Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE. Trans. Inf.
Theory 53, 1183-1188 (2007)

La Guardia, G.G.: Constructions of new families of nonbinary quantum codes. Phys. Rev. A 80, 042331
(2009)

Li, R., Zuo, F, Liu, Y.: A study of skew symmetric q2—cyclotomic coset and its application. J. Air
Force Eng. Univ. 12(1), 87-89 (2011)

. Li,R.,Zuo, F, Liu, Y., Xu, Z.: Hermitian dual-containing BCH codes and construction of new quantum

codes. Quantum Inf. Comput. 12, 0021-0035 (2013)

Kai, X., Zhu, S.: Quantum negacyclic codes. Phys. Rev. A 88, 012326 (2013)

Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS cods. IEEE Trans. Inf. Theory
60, 2080-2086 (2014)

Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans.
Inf. Theory 61, 1474-1484 (2015)

Guardia, G.G.La: On optimal constacyclic codes. Linear Algebra Appl. 496, 594-610 (2016)

Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process.
14(3), 881-889 (2015). See also arXiv:1405:5421v1

Zhang, T., Ge, G.: Some new class of quantum MDS codes from constacyclic codes. IEEE Trans. Inf.
Theory 61, 5224-5228 (2015)

Liu, Y., Li, R, Lv, L., Ma, Y.: A class of constacyclic BCH codes and new quantum codes. Quantum
Inf. Process. 16(3), 1-16 (2017)

Yuan, J., Zhu, S., Kai, X., Li, P.: On the construction of quantum constacyclic codes. Des. Codes
Cryptogr. 85(1), 179-190 (2017)

Zhu, S., Sun, Z., Li, P.: A class of negacyclic BCH codes and its application to quantum codes. Des.
Codes Cryptogr. 86(10), 1-27 (2018)

Zhang, M., Li, Z., Xing, L., Tang, N.: Construction of some new quantum BCH codes. IEEE Access
4, 36122 (2018)

Song, H., Li, R., Wang, J., Liu, Y.: Two classes of BCH codes and new quantum codes. Quantum Inf.
Process. 17(10), 1-24 (2018)

Aydin, N., Siap, 1., Ray-Chaudhuri, D.K.: The structure of 1-generator quasi-twisted codes and new
linear codes. Des. Codes Cryptogr. 24, 313-326 (2001)

Krishna, A., Sarwate, D.V.: Pseudo-cyclic maximum-distance separable codes. IEEE Trans. Inf. Theory
36, 880-884 (1990)

Peterson, W.W., Weldon, E.J.: Error-Correcting Codes. The M.L.T. Press, Cambridge (1972)
Macwilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland Publishing
Company, Amsterdam (1977)

Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press,
Cambridge (2003)

Sloane, N.J.A., Thompson, J.G.: Cyclic self-dual codes. IEEE Trans. Inf. Theory 29, 364-366 (1983)
Yves Edel’s homepage. https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCH
Index.html

Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput.
24, 235-266 (1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


http://arxiv.org/abs/1405:5421v1
https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html
https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html

	New quantum constacyclic codes
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Review of constacyclic codes
	2.2 Description of Hermitian dual-containing conditions by cyclotomic cosets
	2.3 Notations and a preliminary result

	3 Construction of new QCs of length n=q+1r(q2+1)
	4 Construction of new QCs of length n=q-1b(q2+1)
	4.1  q=4a+15
	4.2 q=4a+37
	4.3 q4 is a power of 2

	5 Code comparisons and conclusion
	Acknowledgements
	References




