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Abstract
Understanding quantum speed-up over classical computing is fundamental for the
development of efficient quantum algorithms. In this paper, we study such problem
within the framework of the quantum query model, which represents the probability
of output x ∈ {0, 1}n as a function π(x). We present a classical simulation for output
probabilities π , whose error depends on the Fourier 1-norm of π . Such dependence
implies upper-bounds for the quotient between the number of queries applied by an
optimal classical algorithm and our quantum algorithm, respectively. These upper-
bounds show a strong relation between Fourier 1-norm and quantum parallelism. We
show applications to query complexity.

Keywords Quantum query · Randomized query · Simulation

1 Introduction

A primary motivation in quantum computing is obtaining algorithms that solve prob-
lems much faster than the best classical counterparts. The quantum and classical
decision tree models allow us to prove the existence of quantum speed-up in relation
to classical query for several problems [6,17,27]. Query problems can be formu-
lated as computing Boolean functions from inputs in {0, 1}n , with complexity being
defined as the number of queries to the input, ignoring other computations [12]. This
implies an important simplificationof the analysis in comparisonwith problems formu-
lated by Turing machines, where separations between complexity classes are usually
much harder to prove [2]. Several quantum algorithms can be formulated within query
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models,1 thus this formalism is powerful enough for analyzing important algorithms,
such as search algorithms [1] or even non-query algorithms as Shor’s algorithm [3].

A complete understanding of quantum speed-up implies determining where and
how it occurs. Thus, we can study such question from two distinct approaches:
determining which functions or which algorithms allow a gap between quantum and
classical computing. The first approach is intensively used in quantum query complex-
ity, where effort is mainly invested in obtaining bounds for complexity measures and
checking their tightness [1,12]. The second approach is commonly implemented by
identifying which quantum features are hard to simulate within classical sources [5].
One of the earliest attempts to explain quantum advantage is the discussion of quantum
parallelism in quantum algorithms [16].

Awell-studied quantum feature is quantumentanglement [20],which has been iden-
tified as a necessary condition for quantum speed-up in pure-state algorithms [21].
At the same time, the study of quantum entanglement depends on whether pure or
mixed quantum states are allowed [14] and the measure defined for such entangle-
ment [21,29]. As an example of a widely applied entanglement measure, we can
consider the size of partitions that describe product states in the quantum algorithm.
If the size of the subsets in those partitions is upper-bounded by a constant through all
the steps of the quantum algorithm, then it has an efficient classical simulation [21]. In
addition,we can analyze the entanglement in a quantumstate bymeasuring theSchmidt
rank, where a polynomial upper-bound for this measure implies a polynomial classi-
cal simulation [29]. Using a model previously defined by Knill and Laflamme [22],
different conditions for quantum speed-up were also identified. Such conditions are
formulated on quantum correlations that are analyzed by ameasure known as quantum
discord [13]. A recent proposal comes from no-go theorems, identifying contextual-
ity [11,23] as a necessary condition for quantum speed-up—this condition presents
an inequality violation in contrast to the other conditions based on measures [19]. The
identification of necessary conditions for quantum advantages is an important issue
for theoretical purposes and for the design of better quantum algorithms, specially if
the conditions can be monitored in our design. Summarizing, a general goal in this
line of research is to obtain sufficient and necessary conditions for quantum speed-up.

The present work offers a new perspective about speed-up produced by quantum
algorithms in the quantum query model (QQM), which is the quantum generalization
for decision tree models. First, we consider that the probability of obtaining a given
output is a linear combination of orthonormal functions, where such set of functions
is denoted as Fourier basis [15]. This approach is usually referred to as analysis of
Boolean functions and has several results in quantum query and computer science
[24–26,28]. Using such representation of the output probability, we define a classical
simulation of the quantum algorithm. The idea of our simulation is implementing
minor simulations for parity functions from the Fourier basis, where each simulated
function appears in the Fourier decomposition of the output probability. Similarly to
related works in the context of quantum entanglement or quantum discord, in this
paper we follow a strategy known as dequantization [5], which consists in analyzing

1 For details and up-to-date examples, the reader may refer to S. Jordan, Quantum Algorithm Zoo, https://
math.nist.gov/quantum/zoo/.
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how hard is the simulation of some algorithm in relation to a given measure. We prove
that the error in our simulation depends on the L1 norm defined over the Fourier basis,
where such norm is computed for the output probability. Thereby, a necessary property
for a hard classical simulation of a given quantum algorithm is having a large Fourier
1-norm for its output probability functions. This necessary condition is formalized as
an upper-bound for the quotient between the number of queries of an optimal classical
algorithm and of the simulated quantum algorithm, respectively. Notice that a well-
designed algorithm in the QQM setting should maximize such quotient.

The state of any algorithm in the QQM can be described as a sum of vectors whose
phase change depends on the input. The phase of each of these vectors may depend
on different values from input, which shows quantum parallelism in action [18]. We
show that the minimum size and the number of such vectors limit the value of the
Fourier 1-norm, which allows alternative necessary conditions for quantum speed-up.
The Fourier 1-norm is maximized by the homogeneity on the size of the vectors,
which implies that simulating such balanced probabilities can be expensive by clas-
sical means. Therefore, our results give more formalism to the notion of quantum
parallelism. Finally, we show applications of our results on (1) upper-bounds for
randomized query, (2) lower-bounds for exact quantum query, and (3) polynomial
simulation by randomized query.

We interpret the Fourier 1-norm as a measure for the quantity of Walsh functions
that are “compressed” into the output probability function. The Walsh functions can
be seen as individual computations in quantum query parallelism. Our intuition is that
Fourier 1-norm is the amount of quantum parallelism on the output, and that quantum
parallelism has potentially a quadratic influence on the relation between classical and
quantum query complexities. Another reason for preferring the Fourier 1-norm over
other measures is the possibility of controlling this parameter on a family of bound
degree polynomials. We believe this can be an alternative strategy for the design of
quantum algorithms with speed-up over the classical counterparts.

Thiswork is structured as follows. In Sect. 2, we introduce preliminary formulations
and theorems about theQQM. In Sect. 3, we describe a classical simulation of quantum
algorithms. In Sect. 4, we present the upper-bounds from our simulation. In Sect. 5, we
present alternative applications of our results. In Sect. 6, we present our conclusion.

2 Preliminary notions

The QQM [9] describes algorithms computing functions whose domain is a subset of
{0, 1}n . We describe the states and operations within such model, over a Hilbert space
Hwith basis states |i〉 | j〉, where i ∈ {0, 1, . . . , n} and j ∈ {1, . . . ,m}, for an arbitrary
m. The query operator is defined as Ox |i〉 | j〉 = (−1)xi |i〉 | j〉, where x ≡ x0x1 · · · xn
is the input, and x0 ≡ 0. The final state of the algorithm over input x is defined as
∣
∣
∣�

f
x

〉

= Ut OxUt−1 · · · OxU0 |�〉, where {Ui } is a set of unitary operators overH and

|�〉 is a fixed state in H. The number of queries or steps is defined as the times that
Ox occurs in the algorithm.
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Definition 1 An indexed set of pairwise orthogonal projectors {Pz : z ∈ T } is called
a complete set of orthogonal projectors (CSOP) if it satisfies

∑

z∈T
Pz = IH, (1)

taking IH as the identity operator for H.

Given a CSOP defined for the algorithm, the probability of obtaining the output

z ∈ T is πz (x) =
∥
∥
∥Pz

∣
∣
∣�

f
x

〉∥
∥
∥

2
. We say that an algorithm computes a function f :

D → T within error ε if π f (x) (x) ≥ 1 − ε for all input x ∈ D ⊂ {0, 1}n .

2.1 An alternative formulation for the QQM

In this section, we introduce notation from a previouswork [18].We define a product of
unitary operators Ũn = UnUn−1 . . .U0. We denote a CSOP

{

P̄k : 0 ≤ k ≤ n
}

, where
the range of each P̄i is composed by vectors of the form |i〉 |ψ〉 ∈ H, for i ∈ {0, 1, .., n}
and any state |ψ〉 . We also introduce the notation P̃ j

i = Ũ †
j P̄i Ũ j . Notice that for any

fixed j we have that
{

P̃ j
k : 0 ≤ k ≤ n

}

is also a CSOP. The following definition

introduces an alternative representation for quantum query algorithms on the QQM.

Definition 2 Consider a set Zn+1 = {0, 1, . . . , n}. An indexed set of vectors

{|� (k)〉 ∈ H : k ∈ Z
t+1
n+1

}

is associated with a quantum query algorithm if we

have that
|� (a)〉 = P̃ t

at . . . P̃
1
a1 P̃

0
a0 |�〉 , (2)

for all a ∈ Z
t+1
n+1.

In Lemma 1, we show that vectors associated with some algorithm represent the
final state as phase flips [18]. In Sect. 4, we analyze the relation between minimum
norm (or cardinality) of such vectors, and the computational gap between classical
and quantum query.

Lemma 1 If the indexed set of vectors
{

|� (k)〉 ∈ HA : k ∈ Z
t+1
n+1

}

is associated with

a quantum algorithm then

Ũ †
t OxUt . . .U1OxU0 |�〉 =

n
∑

kt=0

. . .

n
∑

k0=0

(−1)
∑t

i=0 xki |� (k0, . . . , kt )〉 . (3)

Proof Following Ref. [18], we give a proof by induction on t . For t = 0, we have that
Eq. (3) holds,

Ũ †
0 OxU0 |�〉 = U †

0 OxU0 |�〉 (4)

=
n

∑

k0=0

(−1)xk0 |� (k0)〉 . (5)
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For the second part of the induction, we shall notice that the equation

Ox |�〉 =
∑

i∈{k:xk=0}
P̄i |�〉 −

∑

i∈{k:xk=1}
P̄i |�〉 (6)

implies the equation

Ũ †
j OxŨ j |�〉 =

∑

i∈{k:xk=0}
Ũ †

j P̄i Ũ j |�〉 −
∑

i∈{k:xk=1}
Ũ †

j P̄i Ũ j |�〉 . (7)

Suppose that Eq. (3) holds for some t , then applying Eq. (7) we obtain

Ũ †
t+1OxUt . . .U1OxU0 |�〉

=
n

∑

kt=0

. . .

n
∑

k0=0

(−1)
∑t

i=0 xki

n
∑

kt+1=0

(−1)xkt+1 P̃ t+1
kt+1

|� (k0, . . . , kt )〉

=
n

∑

kt+1=0

. . .

n
∑

k0=0

(−1)
∑t+1

i=0 xki P̃ t+1
kt+1

|� (k0, . . . , kt )〉

=
n

∑

kt+1=0

. . .

n
∑

k0=0

(−1)
∑t+1

i=0 xki |� (k0, . . . , kt+1)〉 .

	

The previous theorem shows that a quantum state depends on several components

whose phases change independently on input x . Notice that the phase (−1)
∑t

i=0 xki of
each component |� (k0, . . . , kt )〉 is a Walsh function. Then, each of the components
depends on t values from input, which at first sight is not impressive, considering that
deterministic classical algorithms compute any function that depends on t values using
t queries. However, all components together depend on the size n of input. Thus, we
have the possibility of computing on n variables using just t queries, which gives us
another intuition about the computational speed-up by quantummeans. Therefore, this
formulation presents quantum parallelism more explicitly than a sequence of unitary
operators.

3 A classical simulation for quantum query algorithms and
polynomials

In this section, we introduce our simulation of quantum query algorithms by classi-
cal algorithms. However, our simulation can also be extended to polynomials. This
simulation is defined over the output probability πz (x) of the quantum algorithm.

We consider the Fourier basis for the vector space of all functions f : {0, 1}n →
R [15] given by the functions

χb : {0, 1}n → {1,−1} ,
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such that χb(x) = (−1)b·x for b ∈ {0, 1}n and b · x = ∑

i bi xi . This family contains a
constant function that we denote as χ0 = 1. Therefore, any function f : {0, 1}n → R

can be represented as a linear combination

f =
∑

b∈{0,1}n
αbχb, (8)

and we denote the Fourier 1-norm of f as

L ( f ) =
∑

b∈{0,1}n
|αb| . (9)

Another measure is the degree of f , which is defined as

deg ( f ) = max|b|
{b : αb �= 0} , (10)

where |b| denotes the number of ones in b.
Figure 1 presents the intuition behind our simulation. At the right, we have π1 (x),

the probability of obtaining output 1 by a quantum query algorithm on input x . Such
function is decomposed into a linear combination of functions χb, following Eq. (8).
The sub-simulations imply emulating each function χb by a classical algorithm that
outputs 1 with probability π̂b

1 (x) , where: (1) χb(x) = 1 implies that π̂b
1 (x) = 1;

and, (2) χb(x) = −1 implies that π̂b
1 (x) = 0. Notice that each π̂b

1 (x) is a probability
and cannot have negative values as functions χb. The composition step is assigning
appropriate probabilities to each output π̂b

1 (x) , such that the sum produces an output
probability whose shape resembles π1 (x). As each π̂b

1 (x) is similar but different
in relation to χb, this procedure accumulates an important error. The proof of the
following theorem shows the details.

Theorem 1 Let A be a quantum algorithm that computes f : S → {0, 1} for
S ⊂ {0, 1}n, within error ε and t queries. Then, there is a classical algorithm which
computes f within error

ε̃ = ε + L (π1)

1 + 2L (π1)

and 2t queries.

Fig. 1 The simulation produces a contracted version of the original output probability. The new output
probability can be represented as a linear transformation applied over the original output probability
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Proof If a quantum algorithm applies t queries, then deg (πz) ≤ 2t for every output z
[10]. Let D (b) be the deterministic classic algorithm which outputs

π̂b
1 (x) = 1

2
+ sgn (αb)

(
χb(x)

2

)

, (11)

for input x , where sgn is the sign function and |b| ≤ 2t . We consider a randomized
algorithm R which simply selects either: (1) an algorithm D (b), with probability

2|αb|
1+2L(π1)

; or, (2) an algorithm that outputs 0 for any x , with probability 1
1+2L(π1)

.

Notice that algorithm R is the composition of sub-simulations, as we represent in
Fig. 1. Since we denote by π̂1 (x) the probability of obtaining output 1 given x with
R, by Eq. (11) we have

π̂1 (x) =
∑

b
2 |αb| π̂b

1 (x)

1 + 2L (π1)
(12)

=
∑

b
|αb| + ∑

b
αbχb(x)

1 + 2L (π1)
. (13)

The algorithm R applies no more than 2t queries, since D (b) applies no more than
2t queries for each |b| ≤ 2t .

Now, we must prove an upper-bound for the error in the simulation. We divide
such proof in two cases, when f (x) = 1 and f (x) = 0. If f (x) = 1, then ε ≥
1 − π1 (x) = 1 − ∑

b
αbχb(x). This implies that

1 − π̂1 (x) = 1 −

(

L (π1) + ∑

b
αbχb(x)

)

1 + 2L (π1)
(14)

=
1 + L (π1) − ∑

b
αbχb(x)

1 + 2L (π1)
(15)

≤ ε̃. (16)

Analogously, if f (x) = 0, then ε ≥ π1 (x) = ∑

b
αbχb(x) and this implies that

π̂1 (x) ≤ ε + L (π1)

1 + 2L (π1)
= ε̃. (17)

	

We described a classical simulation that imitates the output probability of a given

quantum algorithm, but within a big error. Thus, the next theorem just gives a reduction
in such error using probabilistic amplification.

Theorem 2 Let A be a quantum algorithm that computes f : S → {0, 1} for S ⊂
{0, 1}n, with error ε and t queries. Then, there is a classical algorithmwhich computes
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f within error exp
(

− j
2(1−ε̃)

( 1
2 − ε̃

)2
)

, where ε̃ = ε+L(π1)
1+2L(π1)

and using 2 j t queries

for j ∈ N.

Proof We use a corollary of Chernoff bound [8]. For j, p, β such that 0 ≤ p ≤ 1,
0 ≤ β ≤ 1 and 0 ≤ j , we have

m
∑

i=0

(
j

i

)

pi (1 − p) j−i ≤ exp
(

−β2 j p/2
)

, (18)

where m = �(1 − β) j p.
We define an algorithm R̂ using the classical algorithm R within error ε̃ from

Theorem 1. Algorithm R̂ consists in applying probability amplification onR, that is,
executing algorithm R j times and then selecting the most frequent result. Define X
as the random variable that represents the number of correct answers. Taking β =
1 − 1

2(1−ε̃)
and p = (1 − ε̃) in Eq. (18), then the error in R̂ is upper-bounded by

P

[

X ≤
⌊
j

2

⌋]

≤ exp

(

− j

2 (1 − ε̃)

(
1

2
− ε̃

)2
)

. (19)

	


3.1 Polynomial simulation

The same technique can be applied for simulating a polynomial p (x) approximating
a function, instead of simulating the output probabilities of a given quantum algo-
rithm. In this sense, Theorems 1 and 2 can be generalized. In order to formulate the
corresponding theorems, we consider the usual notion of polynomial approximation:

Definition 3 A polynomial p : Rn → R ε-approximates a function f : S → {0, 1}
for S ⊂ {0, 1}n , if |p (x) − f (x)| ≤ ε for all x ∈ {0, 1}n .
Theorem 3 Let p : Rn → R be a polynomial that ε-approximates f : S → {0, 1} for
S ⊂ {0, 1}n. If p has a degree equal or less than 2t , then there is a classical algorithm
which computes f within error

ε̃ = ε + L (p)

1 + 2L (p)

and 2t queries.

Proof The proof is similar to the proof of Theorem 1. 	

We similarly introduce the corresponding reduction error theorem.

Theorem 4 Let p be a polynomial that ε-approximates f : S → {0, 1} for S ⊂ {0, 1}n.
If p has a degree equal or less than 2t , then there is a classical algorithm which

computes f within error exp
(

− j
2(1−ε̃)

( 1
2 − ε̃

)2
)

, where ε̃ = ε+L(p)
1+2L(p) and using 2 j t

queries for j ∈ N.
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Proof The proof is similar to the proof of Theorem 2, but reducing error in Theorem
3 instead Theorem 1. 	


4 Upper-bounds for quantum speed-up

In this section, we describe conditions which can slow down our simulation. Quan-
tum speed-up only occurs when no classical simulation is efficient enough, thus any
condition that makes difficult any classical simulation is a necessary condition for
this computational gain. In this sense, we measure the quantum speed-up for a given
quantum algorithm by the quotient R

t , where (1) such quantum algorithm applies t
queries, and (2) an optimal classical algorithm executes the same computational task in
R queries. This quotient can be interpreted as howmuch faster is a quantum algorithm
in relation to the best classical algorithm.

The following theorem, which upper-bounds quantum speed-up using Fourier 1-
norm, is the core of our results. It basically shows how high values for Fourier 1-norm
are related to the speed quotient that we denoted.

Theorem 5 Consider D ⊂ {0, 1}n and a function f : D → {0, 1} that is computed
within error ε > 0 and t queries, by a quantum query algorithm. If we define

Fε (l) =
⌈−16 ln (ε) (1 + l) (1 + l − ε)

(1 − 2ε)2

⌉

, (20)

then
Rε ( f )

t
≤ Fε (L (π1)) , (21)

where (1) Rε ( f ) denotes the minimum number of queries that are necessary for
computing f within error ε by a randomized decision tree (See [12] for a detailed
definition.) and (2) π1(x) is the probability of the quantum algorithm returning output
1 for a given input x.

Proof Suppose that we simulate the quantum algorithm using the randomized algo-
rithm of Theorem 2 and promising an error that does not exceed ε for f . Thereby,
from Eq. (19), we have

ε = exp

(

− j

2 (1 − ε̃)

(
1

2
− ε̃

)2
)

. (22)

As Rε( f )
t ≤ �2 j�, if we obtain j from Eq. (22) we have Eq. (21). 	


Last theorem has consequences in exact quantum complexity, as we find in the
following corollary.

Corollary 1 Consider a total function f : D → {0, 1}, then
Rε ( f )

QE ( f )
≤ Fε (L ( f )) , (23)
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where QE ( f ) denotes the number of queries applied by an exact quantum query
algorithm computing f .

Proof If a quantum query algorithm is exact, optimal and computes a total function
then t = QE ( f ) and π1 = f . 	


Theorem 5 can also be formulated for approximate polynomials, as follows.

Theorem 6 Consider D ⊂ {0, 1}n and a function f : D → {0, 1} that is ε-
approximated by a polynomial p : Rn → R. If deg (p) ≤ 2t, then

Rε ( f )

2t
≤ Fε (L (p)) . (24)

Proof Similar proof as for Theorem 5, but applying Theorem 4. 	

We may expect from Fourier 1-norm that low values must imply problems that

are easily simulated by classical means. Theorem 5 guarantees that low values of the
Fourier 1-norm in relation to t imply such efficient classical simulation. Notice that
Fourier 1-norm is defined on the output probability. Then, an explicit expression for
the Fourier 1-norm as a function of the algorithm itself may be useful. Let k, h be
vectors in Zt

n+1 and |b| ≤ 2t . We denote (k, h) ∼ b, if

(−1)

∑

i
xki +

∑

i
xhi = χb(x).

Thus, for a t-query algorithm, we have the expression

L (π1) =
∑

|b|≤2t

∣
∣
∣
∣
∣
∣
∣

∑

(k, h) ∼ b

〈� (k)| P1 |� (h)〉

∣
∣
∣
∣
∣
∣
∣

, (25)

by applying Lemma 1. Considering that each pair (k, h) is related to a unique b, we
can obtain the following upper-bound for L (π1),

L̃ (π1) =
∑

k

∑

h

|〈� (k)| P1 |� (h)〉| . (26)

These expressions are based on the state decomposition given by Definition 2.
Lemma 1 implies that each quantum algorithm has its own state decomposition, thus
next theorem relates metrics on such set of vectors with the gap between quantum and
classical query.

Theorem 7 Using the same hypothesis of Theorem 5, denoting #S as the cardinality
of set S and defining d = # {k : |� (k)〉 �= 0}, we have

Rε ( f )

t
≤ Fε

(

L̃ (π1)
)

, (27)
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Rε ( f )

t
≤ Fε

⎛

⎝

(
∑

k

‖|� (k)〉‖
)2

⎞

⎠ , (28)

Rε ( f )

t
≤ Fε (d) , (29)

and

Rε ( f )

t
≤ Fε

⎛

⎝
1

min
k

〈� (k)| � (k)〉

⎞

⎠ . (30)

Proof As Fε is an increasing function, Eq. (27) follows directly from Eq. (26) and
Theorem 5. Equation (28) is also derived from Eq. (26) by observing that

|〈� (k)| Pz |� (h)〉| ≤ ‖|� (k)〉‖ ‖|� (h)〉‖ , (31)

which gives

L (π1) ≤
(

∑

k

‖|� (k)〉‖
)2

. (32)

Applying Lemma 1, we obtain

〈�| �〉 =
∑

k,h

〈� (k)| � (h)〉 = 1. (33)

Then, using it with
∑

k
‖|� (k)〉‖ ≤ √

d
∑

k
〈� (k)| � (k)〉 and Eq. (32), we have

L (π1) ≤ d. (34)

Finally, Eq. (30) follows from d

(

min
k

〈� (k)| � (k)〉
)

≤ 1. 	


5 Alternative applications

Our results from Sect. 4 have a main theoretical motivation, which is showing the rela-
tion between quantum speed-up and quantum parallelism. Furthermore, the theorems
are interesting for related subjects that we discuss below.

5.1 Upper-bounds for randomized complexity

Theorems 5 and 6 may be applied for finding upper-bounds on Rε. For example,
consider Deutsch–Jozsa algorithm, thereby we have the output probability

π1 (x) = 1

n2
(n − 2 |x |)2
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for inputs of size n. We obtain the terms {αb} by applying the pairwise orthogonality
between functions χb. The algorithm works by applying just one query. Thus, from
the fact that deg (π1 (x)) ≤ 2 [10], we have that if |b| > 2 then αb = 0. This leaves us
with three cases to analyze. First, if |b| = 0, then αb = 1

n , notice that there is just one

index b satisfying |b| = 0. Second, if |b| = 1, then αb = 0. Third, there are n(n−1)
2

indices b such that |b| = 2, in this case αb = 2
n2
. Therefore, we have that

∑ |αb| = 1,
which implies

Rε ≤
⌈−16 ln (ε) (2 − ε)

(1 − 2ε)2

⌉

by Eq. (21). This is not quite tight numerically because a classical decision tree applies
2 queries in order to solve Deutsch–Jozsa problem within error 1

3 . However, this
is asymptotically tight and proves that Deutsch–Jozsa algorithm can be simulated
classically using a constant number of queries and fixed error.

5.2 Lower-bounds for exact quantum complexity

Corollary 1 can be applied for finding lower-bounds on QE . For example, consider the
total function ANDn : {

0, 1
}n → {0, 1} where ANDn (x) = 1 if and only if xi = 1

for all i .We denoteweight of input x as the number of ones in x . A randomized decision
tree computing ANDn must discriminate the input with weight n from the set of inputs
with weight n−1. Suppose that some randomized decision tree computes ANDn with
less than n

3 queries, then such randomized tree is a probabilistic distribution over a
set of deterministic decision trees querying less than n

3 values in x . Then, in order
to discriminate an input of weight n from the set of inputs with weight n − 1, the
randomized tree will find 0 for some xi with expectation less than 1

3 . In this sense,
R 1

3
(ANDn) ≥ n

3 − 1.
Considering that L (ANDn) = 1, we have QE (ANDn) ∈ 	(n) by Eq. (23),

which is asymptotically tight [7].

5.3 Polynomial approximation by quantum algorithms

There is an equivalence between 1-query algorithms and degree-2 polynomials. That
is, a partial Boolean function f can be approximated by a polynomial for some error
bounded by ε > 1

2 if and only if f can be computed by a quantum algorithm with
error bounded by ε′ > 1

2 and a single query. However, the problem of transforming
polynomials of higher degree to quantum algorithms still needs more results [4].
Theorem 3 implies that t-query algorithms compute any function approximated by
degree-t polynomials with Fourier 1-norm bounded by a constant. Then, the high
degree problem is reduced to find algorithms for polynomials with a high Fourier
1-norm.
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6 Conclusion

In the present work, we identified a necessary property for a hard classical simulation
of quantum query algorithms, namely a high Fourier 1-norm defined over the output
probability. A remarkable feature about Fourier 1-norm is that it depends on both
evolution and measurement steps. Properties like quantum entanglement are defined
just on the quantum states, which implies that a poor measurement step can cancel
advantages obtained in the evolution stage, where we assume that such evolution stage
was hard to simulate. Nevertheless, the accuracy of Fourier 1-norm for approximating
quantum gain depends on a simulation, whose relation with the most efficient classical
simulation is unknown.

We also formalized the advantage given by quantum algorithms, as the quotient
between the classical and quantum complexities for a given task. We have that such
quotient is upper-boundedby an expressionwhichdepends quadratically on theFourier
1-norm. Thus, a large factor produced between quantum and classical algorithms
implies a large Fourier 1-norm. Our result suggests the following intuitions:

1. Output probabilities with large Fourier 1-norms imply that such output probability
can be represented by a function whose shape is much different from any function
in the Fourier basis—functions that can be efficiently simulated by classicalmeans.

2. Output probabilities with high Fourier 1-norms imply that many functions from
Fourier basis are acting simultaneously. This strongly suggests quantum paral-
lelism.

We can also link Fourier 1-norm to quantum parallelism as follows. A quantum
query algorithm can be viewed as a state decomposition by Lemma 1, which is
denoted as a set of vectors associated to the algorithm. This formulation empha-
sizes the presence of quantum parallelism, because each combination of vectors in
the decomposition represents a function in the Fourier basis, where such functions
are added producing an output probability function. The Fourier 1-norm is related
to this decomposition. Since a high Fourier 1-norm implies: (a) a big number of
nonzero vectors in such decomposition, i.e., high values for # {k : |� (k)〉 �= 0}; and,
(b) minimum product values that are not too big for such vectors, i.e., low val-

ues for

(

min
k

〈� (k)| � (k)〉
)

; then (a) and (b) are also necessary conditions for a

hard classical simulation. Both measures can be linked to quantum parallelism by
the following intuition. If # {k : |� (k)〉 �= 0} is low, then there are less combina-
tions of vectors adding functions on the output probability function. Larger values
for min

k
〈� (k)| � (k)〉 imply lower values for # {k : |� (k)〉 �= 0}. However, it also

implies that the output probability function has a shape closer to functions in the
Fourier basis, hence such output probability has a cheap classical simulation. The
intuition behind is that Fourier 1-norm is a measure for quantum parallelism and gives
a quadratic upper-bound to the potential quantum speed-up.

Finally, the present work leaves the following open problems:

– An additional motivation for studying the Fourier 1-norm is that it is a parameter
that we may control. Finding degree-2 polynomials is an alternative strategy for
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obtaining 1-query quantum algorithms [4]. Thus, developing a method for obtain-
ing high 1-norm polynomials of degree 2 and bounded in {0, 1}n would help to
find algorithms offering a potential advantage over classical algorithms.

– A high Fourier 1-norm implies a necessary condition for quantum query speed-up.
Can we obtain a necessary and sufficient condition by adding another property?
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