
Vol.:(0123456789)

Quantum Information Processing (2019) 18:74
https://doi.org/10.1007/s11128-019-2187-8

1 3

Two‑party quantum key agreement over a collective noisy 
channel

Yu‑Guang Yang1 · Shang Gao1 · Dan Li2 · Yi‑Hua Zhou1 · Wei‑Min Shi1

Received: 5 October 2018 / Accepted: 16 January 2019 / Published online: 29 January 2019 
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Quantum key agreement (QKA) allows participants to establish a shared key over a 
quantum channel, and no one of the participants can determine the shared key alone. 
Actually, particles are usually affected by noise during transmission in the quantum 
channel, and an aggressor can launch a baleful attack under the cover of noise. In 
this paper, based on logical Bell states, we propose two robust two-party QKA pro-
tocols immune to collective-dephasing noise and collective-rotation noise, respec-
tively. The measurement correlation of quantum entanglement is utilized to estab-
lish a shared key. The proposed protocols are globally better in terms of quantum 
resource cost and qubit efficiency than existing two-party QKA protocols against 
collective noise. The security analysis demonstrates that they can resist common 
insider and outsider attacks.

Keywords  Quantum cryptography · Quantum key agreement · Collective noise · 
Qubit efficiency

1  Introduction

As a combination of classical cryptography and quantum mechanics, quantum cryp-
tography can achieve unconditional security, where the security is provided by quan-
tum physics laws rather than the difficulty of mathematical computation. Quantum 
cryptography includes many important branches such as quantum key distribution 
[1–3], quantum secure direct communication [4, 5], quantum secret sharing [6, 7], 
quantum authentication [8], quantum private comparison [9–11], quantum signature 
[12–15], quantum private query [16–24] and so on.
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Recently, key agreement has been introduced into quantum cryptography and 
pursued. It is aimed to establish shared keys among two or more parties where each 
party contributes its part to the shared key, and the shared key should not be deter-
mined fully by any party alone [25]. Since Zhou et al. proposed the first QKA proto-
col [26], lots of QKA schemes were proposed [27–41].

Most of QKA protocols were presented in the ideal environment [26–41]; that is, it is 
assumed that there is no noise in the channel. Actually, particles are usually affected by 
noise during transmission in the quantum channel and an aggressor can launch a baleful 
attack under the cover of noise. Thus, it is necessary to consider channel noise in the 
design of QKA protocols. Decoherence-free subspace (DFS) can help to realize reliable 
particle transmission under collective noise channel [42]. At present, there have been 
some relevant studies on robust QKA by constructing DF states [43–48]. For exam-
ple, Cai et al. [43] proposed a multiparty QKA protocol against collective noise. Huang 
et al. [44] gave a QKA protocol and introduced two corresponding variations against 
collective noise. Later, they also proposed a robust QKA protocol with DF states [45]. 
In 2016, based on logical χ states, He et al. [46] presented two QKA protocols immune 
to collective noise. Using logical five-particle states, He et al. [47] proposed two robust 
QKA protocols. In 2018, based on four-particle logical GHZ states and logical qubits, 
Gao et al. [48] presented two QKA protocols under collective noise channel.

In existing schemes against collective noise, we found that these protocols usu-
ally have some drawbacks like high quantum resource cost or low efficiency. In this 
paper, based on logical Bell states, we propose two robust two-party QKA protocols 
over two kinds of collective noise channels, respectively. Our proposed QKA proto-
cols are globally better in terms of quantum resource cost and qubit efficiency than 
existing two-party QKA protocols against collective noise.

The rest of this paper is organized as follows. The next section introduces rele-
vant theoretical knowledge. In Sect. 3, we give the description of our QKA protocols 
in detail. Sections 4 and 5 involve the security analysis and the comparison between 
ours and other QKA protocols against collective noise in terms of quantum resource 
cost and qubit efficiency, respectively. Finally, a conclusion is given in Sect. 6.

2 � Preliminaries

In this article, we discuss two types of collective noises: the collective-dephasing 
noise and the collective-rotation noise [42]. The collective-dephasing noise can be 
depicted as follows:

Then, the collective-rotation noise can be formalized by

where � and � are the fluctuation factors of the noise with time.
There are two nonorthogonal bases {�0⟩, �1⟩} (Z-basis) and {�+⟩, �−⟩} (X-basis), 

where �+⟩ = 1√
2
(�0⟩ + �1⟩) and �−⟩ = 1√

2
(�0⟩ − �1⟩) . Four Bell states are defined as 

(1)�� ∶ �0⟩ → �0⟩, �� ∶ �1⟩ → ei��1⟩.

(2)�� ∶ �0⟩ → cos ��0⟩ + sin ��1⟩,�� ∶ �1⟩ → − sin ��0⟩ + cos ��1⟩.
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��±⟩ = 1√
2
(�00⟩ ± �11⟩) and ��±⟩ = 1√

2
(�01⟩ ± �10⟩) . The four Pauli operations are 

defined as

According to the characteristics of the collective-dephasing noise [42], the sub-
spaces 

{|||0dp
⟩
,
|||1dp

⟩}
 and 

{|||+dp

⟩
,
|||−dp

⟩}
 can form a DFS against the collective-

dephasing noise, where ���0dp
�
= �01⟩ , ���1dp

�
= �10⟩ , |||±dp

⟩
=

1√
2

����0dp
�
±
���1dp

��
= ��±⟩ . Similarly, the subspaces 

���0r⟩, ��1r⟩
�
 and 

���+r⟩, ��−r⟩
�
 

can form a DFS against the collective-rotation noise, where ��0r⟩ = ��+⟩ , ��1r⟩ = ��−⟩ , 
��±r⟩ =

1√
2

���0r⟩ ± ��1r⟩
�
=

1√
2

�
��+⟩ ± ��−⟩

�
.

The four logical Bell states are shown as follows:

Obviously, these four logical Bell states are immune to the collective-dephasing 
noise. Similarly, the following four logical Bell states are resistant to the collective-
rotation noise:

I = �0⟩⟨0� + �1⟩⟨1�, X = �1⟩⟨0� + �0⟩⟨1�, Z = �0⟩⟨0� − �1⟩⟨1�, iY = �0⟩⟨1� − �1⟩⟨0�.

(3)

����
+

dp

�

1234
=

1√
2

����0dp
����0dp

�
+
���1dp

����1dp
��

1234
=

1√
2

����+
����+

�
− ��−⟩��−⟩

�
1324

,

(4)

����
−
dp

�

1234
=

1√
2

����0dp
����0dp

�
−
���1dp

����1dp
��

1234
=

1√
2

�
��−⟩���+

�
− ���+

�
��−⟩

�
1324

,

(5)

����
+

dp

�

1234
=

1√
2

����0dp
����1dp

�
+
���1dp

����0dp
��

1234
=

1√
2

����+
����+

�
− ��−⟩��−⟩

�
1324

,

(6)

����
−
dp

�

1234
=

1√
2

����0dp
����1dp

�
−
���1dp

����0dp
��

1234
=

1√
2

�
��−⟩���+

�
− ���+

�
��−⟩

�
1324

,

(7)

���+
r

�
1234

=
1√
2

���0r⟩��0r⟩ + ��1r⟩��1r⟩
�
1234

=
1√
2

����+
����+

�
+ ��−⟩��−⟩

�
1324

,

(8)

���−
r

�
1234

=
1√
2

���0r⟩��0r⟩ − ��1r⟩��1r⟩
�
1234

=
1√
2

�
��−⟩��−⟩ + ���+

����+
��

1324
,

(9)

���+
r

�
1234

=
1√
2

���0r⟩��1r⟩ + ��1r⟩��0r⟩
�
1234

=
1√
2

�
��−⟩���+

�
− ���+

�
��−⟩

�
1324

,

(10)

���−
r

�
1234

=
1√
2

�
��0r⟩��1r⟩ −

���1dp
���0r⟩

�

1234
=

1√
2

����+
�
��−⟩ − ��−⟩���+

��
1324

.



	 Y.-G. Yang et al.

1 3

74  Page 4 of 17

Let us define the four unitary operations under the collective-dephasing noise as

and the four unitary operations under the collective-rotation noise as:

A logical quantum state against the collective-dephasing noise can be constructed 
as

and the logical quantum state against the collective-rotation noise is given by:

where the subscripts Ai and Bi (i = 1, 2, 3, 4) represent physical qubits. So |||�dp

⟩
 and 

���r⟩ are composed of eight physical qubits, respectively.
Table  1 shows the transformations of the four logical Bell states |||�

+

L

⟩
 , |||�

−
L

⟩
 , 

|||�
+

L

⟩
 , |||�

−
L

⟩
 under UL

00
 , UL

01
 , UL

10
 , UL

11
 , respectively. Here, L represents ‘dp’ or ‘r.’

3 � Description of the QKA protocol

Step (1) Alice and Bob randomly generate their 2n-bit secret keys, respectively:

where Ki
A
,Ki

B
∈ {00, 01, 10, 11} for i = 1, 2,… , n.

(11)U
dp

00
= I ⊗ I, U

dp

01
= Z ⊗ I, U

dp

10
= X ⊗ X, U

dp

11
= iY ⊗ X,

(12)Ur
00

= I ⊗ I, Ur
01

= Z ⊗ Z, Ur
10

= Z ⊗ X, Ur
11

= I ⊗ iY .

(13)

���𝛬dp

�
=
���𝛷

+

dp

�

A1A2B1B2

⊗
���𝛷

+

dp

�

A3A4B3B4

=
1√
2

����0dp
����0dp

�
+
���1dp

����1dp
��

A1A2B1B2

⊗
1√
2

����0dp
����0dp

�
+
���1dp

����1dp
��

A3A4B3B4

=
1

4

���𝜑+
���𝜑+

���𝜑+
���𝜑+

�
− ��𝜑+

���𝜑+
�
�𝜑−⟩�𝜑−⟩ + ��𝜑+

�
�𝜑−⟩��𝜑+

�
�𝜑−⟩

− ��𝜑+
�
�𝜑−⟩�𝜑−⟩��𝜑+

�
− �𝜑−⟩��𝜑+

���𝜑+
�
�𝜑−⟩ + �𝜑−⟩��𝜑+

�
�𝜑−⟩��𝜑+

�

− �𝜑−⟩�𝜑−⟩��𝜑+
���𝜑+

�
+ �𝜑−⟩�𝜑−⟩�𝜑−⟩�𝜑−⟩ + ��𝜓+

���𝜓+
���𝜓+

���𝜓+
�

− ��𝜓+
���𝜓+

�
�𝜓−⟩�𝜓−⟩ + ��𝜓+

�
�𝜓−⟩��𝜓+

�
�𝜓−⟩ − ��𝜓+

�
�𝜓−⟩�𝜓−⟩��𝜓+

�

− �𝜓−⟩��𝜓+
���𝜓+

�
�𝜓−⟩ + �𝜓−⟩��𝜓+

�
�𝜓−⟩��𝜓+

�
− �𝜓−⟩�𝜓−⟩��𝜓+

���𝜓+
�

+�𝜓−⟩�𝜓−⟩�𝜓−⟩�𝜓−⟩)A1A3A2A4B1B3B2B4

=
1

2

����𝛷
+

dp

����𝛷
+

dp

�
+
���𝛷

−
dp

����𝛷
−
dp

�
+
���𝛹

+

dp

����𝛹
+

dp

�
+
���𝛹

−
dp

����𝛹
−
dp

��

A1A3A2A4B1B3B2B4

,

(14)

��𝛬r⟩ = ��𝛷+
r

�
A1A2B1B2

⊗ ��𝛷+
r

�
A3A4B3B4

=
1√
2

���𝜑+
���𝜑+

�
+ �𝜓−⟩�𝜓−⟩

�
A1A2B1B2

⊗
1√
2

���𝜑+
���𝜑+

�
+ �𝜓−⟩�𝜓−⟩

�
A3A4B3B4

=
1

2

���𝛷+
r

���𝛷+
r

�
+ ��𝛷−

r

���𝛷−
r

�
+ ��𝛹+

r

���𝛹+
r

�
+ ��𝛹−

r

���𝛹−
r

��
A1A3A2A4B1B3B2B4

,

KA = {K1

A
,K2

A
,… ,Kn

A
}, KB = {K1

B
,K2

B
,… ,Kn

B
},
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Alice and Bob agree on the coding rules: |||�
+

L

⟩
:00, |||�

−
L

⟩
:01, |||�

+

L

⟩
:10, |||�

−
L

⟩
:11.

Step (2) Alice prepares a sequence including n quantum states

where L represents ‘dp’ or ‘r,’ and Alice divides these quantum states into two 
ordered sequences SA and SB , where the sequences SA and SB are composed of qubits [(
A1

1
,A1

2
,A1

3
,A1

4

)
,… ,

(
An
1
,An

2
,An

3
,An

4

)]
 and 

[(
B1

1
,B1

2
,B1

3
,B1

4

)
,… ,

(
Bn
1
,Bn

2
,Bn

3
,Bn

4

)]
 , 

respectively. Alice prepares decoy logical qubits each of which is randomly in one 
of the four nonorthogonal logical states 

���0L⟩, ��1L⟩, ��+L⟩, ��−L⟩
�
 , inserts them into SB 

randomly to obtain S′

B
 and keeps a record of the inserting positions. The number of 

decoy states can be set to � which is enough for eavesdropping check. Then, Alice 
sends S′

B
 to Bob via the quantum channel and keeps the sequence SA herself.

Step (3) The first security check for checking eavesdropping. After Bob receives 
the sequence S′

B
 , Alice announces the positions and the measurement basis of the 

decoy logical qubits. By utilizing the announced basis, Bob measures the decoy 
logical qubits and announces their measurement results. Alice computes the error 
rate by comparing the measurement results and the initial states of the decoy logical 
qubits. If the error rate is less than the given threshold value � , they will perform the 
next step. Otherwise, Alice and Bob will terminate this protocol and restart it.

Step (4) Alice and Bob perform the measurement on qubits 
(
Ai
1
,Ai

3
,Ai

2
,Ai

4

)
 and (

Bi
1
,Bi

3
,Bi

2
,Bi

4

)
 with the basis { |||�

+

L

⟩
 , |||�

−
L

⟩
 , |||�

+

L

⟩
 , |||�

−
L

⟩
 } for i = 1, 2,… , n , respec-

tively. After the measurement, the quantum states in SA and SB collapse into the new 
quantum state sequences S1

A
 and S1

B
 , respectively. Concretely, after the measurement, 

the state ���L⟩ collapses into one of the four states {|||�
+

L

⟩ |||�
+

L

⟩
,
|||�

−
L

⟩|||�
−
L

⟩
,
|||�

+

L

⟩|||�
+

L

⟩
,
|||�

−
L

⟩|||�
−
L

⟩}
 . Alice and Bob can deduce the 

post-measurement states of each other according to the measurement correlation of 
Eqs. (13) and (14). According to the coding rules: |||�

+

L

⟩
:00, |||�

−
L

⟩
:01, |||�

+

L

⟩
:10, |||�

−
L

⟩

:11, Alice and Bob’s post-measurement states are translated into a classical bit string 
M = M1||M2||⋯ ||Mn , where Mi ∈ {00, 01, 10, 11} (i = 1, 2,… , n) . For example, if 
the post-measurement state of Alice’s and Bob’s qubits is |||�

+

L

⟩
 , they can translate it 

into Mi = 00 . The similar conclusions can be obtained for other post-measurement 
states.

��𝛬L⟩ =
���𝛷

+

L

�
A1A2B1B2

⊗
���𝛷

+

L

�
A3A4B3B4

=
1

2

����𝛷
+

L

� ���𝛷
+

L

�
+ ��𝛷−

L

���𝛷−
L

�
+
���𝛹

+

L

����𝛹
+

L

�
+ ��𝛹−

L

���𝛹−
L

��

A1A3A2A4B1B3B2B4

,

Table 1   Transformations 
between four logical Bell states

|||�
+

L

⟩ |||�
−
L

⟩ |||�
+

L

⟩ |||�
−
L

⟩

U
L

00

|||�
+

L

⟩ |||�
−
L

⟩ |||�
+

L

⟩ |||�
−
L

⟩

U
L

01

|||�
−
L

⟩ |||�
+

L

⟩ |||�
−
L

⟩ |||�
+

L

⟩

U
L

10

|||�
+

L

⟩ |||�
−
L

⟩ |||�
+

L

⟩ |||�
−
L

⟩

U
L

11

|||�
−
L

⟩ |||�
+

L

⟩ |||�
−
L

⟩ |||�
+

L

⟩
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Step (5) Alice can encode the key Ki
A
 by performing the unitary operation UL

Ki
A

 on 
her ith post-measurement state in S1

A
 to obtain the encoded quantum state sequence 

S2
A
 . Later, Alice selects a permutation operator �n randomly and performs the per-

mutation operator �n on S2
A
 to obtain the new quantum state sequence S3

A
 . Then, 

Alice randomly selects � decoy states from 
���0L⟩, ��1L⟩, ��+L⟩, ��−L⟩

�
 , inserts them into 

S3
A
 randomly to obtain the new quantum state sequence S3′

A
 and keeps a record of the 

inserting positions. Alice sends S3′
A

 to Bob via the quantum channel.
Step (6) Similar to the first security check, two parties perform the second eaves-

dropping check after Bob receives the sequence S3′
A

.
Step (7) Bob informs Alice the value K �

B
=
{
K1

B
⊕M1,K

2

B
⊕M2,… ,Kn

B
⊕Mn

}
 . 

So according to the value M , Alice can derive the key KB.
Step (8) Alice publishes the permutation operator �n so that Bob applies its 

inverse permutation on the sequence S3
A
 to obtain S2

A
 and then measures these states. 

By comparing his measurement results and his post-measurement states obtained in 
step (4), Bob can deduce KA according to Table 1. For example, if his post-measure-
ment state in step (4) is |||�

+

L

⟩
 and his post-measurement state in step (8) is |||�

−
L

⟩
 , Bob 

can infer Alice’s operation UL

Ki
A

 is UL
01

 and obtain Alice’s key bits Ki
A
= 01.

Step (9) Alice and Bob compute the shared key 
KAB =

(
KA ⊕ KB

)
||
(
KA ⊕ KB ⊕M

)
.

4 � Security analysis

In this section, we will discuss the security of the protocol. The security analysis 
shows that the proposed QKA protocol can resist common attacks from the internal 
and external attackers. For the outsider eavesdropper Eve, she maybe tries to obtain 
Alice and Bob’s agreement key KAB by taking various attacks including the passive 
attack and the active attack.

4.1 � Outsider attack

4.1.1 � Active attack from the outside eavesdropper

Assume Eve wants to get the shared key. She has to eavesdrop the information of 
M and KA . The possible attacks are Trojan horse attacks, the intercept-resend attack 
and the entangle-measure attack.

Trojan horse attacks

Trojan horse attack is a common attack in classical cryptography. Trojan horse 
attack may be generated from the drawback of construction of the system (e.g., 
device, computer program, algorithm or protocol). When a Trojan horse is hidden 
without easy detection in a system, the attacker can break the system and obtain 
useful information by employing Trojan horses.
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Unfortunately, this attack is also available in quantum cryptography [49–53]. Tro-
jan horse attacks are major threats for two-way quantum communication protocols 
[49–53]. There are several kinds of common Trojan horse attacks such as the gen-
eral Trojan horse attack [49], the invisible-photon Trojan horse attack [50], the large 
pulse attack [51] and the delay-photon Trojan horse attack [52, 53]. The first one 
is the general Trojan horse attack [49], in which Eve sends a light pulse to Alice, 
same as Bob. The second one is the invisible-photon Trojan horse attack [50]. Its 
main idea is that Eve inserts an invisible photon in each signal prepared by Bob and 
sends it to Alice. As Alice’s detector cannot click this photon and performs a unitary 
operation on each signal, Eve can steal the information about Alice’s operation by 
means that she intercepts the signal operated and separates the invisible photon from 
each signal. With the measurement on the invisible photon, Eve can read out Alice’s 
information. The third one is the so-called large pulse Trojan horse attack [51], in 
which Eve probes the properties of a component inside Alice or Bob by sending in a 
bright pulse and analyzing a suitable back-reflected pulse. The last one is the delay-
photon Trojan horse attack [52, 53]. Concretely, Eve intercepts the signal transmit-
ted from Bob to Alice and then inserts a fake photon in the signal with a delay time, 
shorter than the time windows [49]. In this way, Alice cannot detect this fake photon 
as it does not click Alice’s detector. After the operation done by Alice, Eve inter-
cepts the signal again and separates the fake photon. She can get the full informa-
tion about Alice’s operation with measurement. To prevent those attacks, a photon 
number splitter (PNS:50/50) and a wavelength filter can be used. In practice, PNS is 
not easy to be implemented with current technology [49], and a photon beam splitter 
(PBS:50/50) can be used to replace the PNS. In this way, a PBS and a wavelength 
filter can be used to protect the two-way quantum communication protocols against 
these types of Trojan horse attacks.

In the proposed QKA protocol, since each particle is transmitted only once via 
the quantum channel. Thus, the proposed QKA protocol can resist Trojan horse 
attacks.

Intercept-resend attack

In this paper, the decoy particles are chosen randomly from four nonorthogonal 
logical quantum states 

���0L⟩, ��1L⟩, ��+L⟩, ��−L⟩
�
 and then randomly inserted into the 

transmitted sequences. Eve does not know the positions and the states of the 
decoy logical qubits before the eavesdropping check. If Eve performs the inter-
cept-resend attack and measures it randomly with the basis 

���0L⟩, ��1L⟩
�
 or ���+L⟩, ��−L⟩

�
 , similar to the BB84 protocol [1], her attack will be discovered with 

the probability of 1 −
(

3

4

)�

 . Here, � denotes the number of decoy logical qubits.

Entangle-measure attack

In this attack, Eve uses an auxiliary particle to interact with the travel particles and 
measures the auxiliary particle to get some useful information. Later, it will be shown 
that Eve cannot achieve any information about the message in the condition that no 
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errors are to occur. In the eavesdropping process, Eve adds the ancilla �E⟩ and performs 
the unitary operation U on the transmitted logical qubits and her ancillary qubits �E⟩ . 
Here, we take the collective-dephasing noise as an example. The similar conclusion can 
be obtained for the collective-rotation noise. The most general operation U Eve can do 
can be written as:

where |||eiej
⟩
 and |||e

′

i
e
′

j

⟩
 (i, j ∈ {0, 1}) are the pure ancilla’s states determined uniquely 

by the unitary operation U . According to the normalization and orthogonality of 
quantum states, it should be satisfied, i.e.,

(15)
U
����0dp

�
�E⟩

�
= a00�00⟩��e0e0⟩ + a01�01⟩��e0e1⟩ + a10�10⟩��e1e0⟩ + a11�11⟩��e1e1⟩,

(16)
U
����1dp

�
�E⟩

�
= b00�00⟩

���e
�

0
e
�

0

�
+ b01�01⟩

���e
�

0
e
�

1

�
+ b10�10⟩

���e
�

1
e
�

0

�
+ b11�11⟩

���e
�

1
e
�

1

�
,

(17)

U
����+dp

�
�E⟩

�
=

1√
2

�
U
����0dp

�
�E⟩

�
+ U

����1dp
�
�E⟩

��

=
1

2

�
���+

��
a00

��e0e0⟩ + a11
��e1e1⟩ + b00

���e
�

0
e
�

0

�
+ b11

���e
�

1
e
�

1

��

+ ��−⟩
�
a00

��e0e0⟩ − a11
��e1e1⟩ + b00

���e
�

0
e
�

0

�
− b11

���e
�

1
e
�

1

��

+ ���+
��

a01
��e0e1⟩ + a10

��e1e0⟩ + b01
���e

�

0
e
�

1

�
+ b10

���e
�

1
e
�

0

��

+��−⟩
�
a01

��e0e1⟩ − a10
��e1e0⟩ + b01

���e
�

0
e
�

1

�
− b10

���e
�

1
e
�

0

���
,

(18)

U
����−dp

�
�E⟩

�
=

1√
2

�
U
����0dp

�
�E⟩

�
− U

����1dp
�
�E⟩

��

=
1

2

�
���+

��
a00

��e0e0⟩ + a11
��e1e1⟩ − b00

���e
�

0
e
�

0

�
+ b11

���e
�

1
e
�

1

��

+ ��−⟩
�
a00

��e0e0⟩ − a11
��e1e1⟩ − b00

���e
�

0
e
�

0

�
− b11

���e
�

1
e
�

1

��

+ ���+
��

a01
��e0e1⟩ + a10

��e1e0⟩ − b01
���e

�

0
e
�

1

�
+ b10

���e
�

1
e
�

0

��

+��−⟩
�
a01

��e0e1⟩ − a10
��e1e0⟩ − b01

���e
�

0
e
�

1

�
− b10

���e
�

1
e
�

0

���
,

(19)

⟨E�
�
0dp

���U
+U

���1dp
�
�E⟩

= (a00�00⟩��e0e0⟩ + a01�01⟩��e0e1⟩ + a10�10⟩��e1e0⟩ + a11�11⟩��e1e1⟩)+

(b00�00⟩
���e

�

0
e
�

0

�
+ b01�01⟩

���e
�

0
e
�

1

�
+ b10�10⟩

���e
�

1
e
�

0

�
+ b11�11⟩

���e
�

1
e
�

1

�
) = 0.
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According to the unitary property, UU+ = I , it should be satisfied, i.e.,

For every transmitted decoy logical quantum state, the action of Eve’s eavesdrop-
ping will introduce an error rate

where P0
e
 , P1

e
 , P+

e
 and P−

e
 are the error rate introduced by Eve’s eavesdropping on 

decoy logical quantum states ��0L⟩, ��1L⟩, ��+L⟩, ��−L⟩ , respectively. In other words, P0
e
 , 

P1
e
 , P+

e
 and P−

e
 are the probabilities of the decoy logical quantum states being changed 

after Eve applies the unitary operation U on the decoy logical quantum states 
��0L⟩, ��1L⟩, ��+L⟩, ��−L⟩ and her ancillary qubits �E⟩ in Eqs. (15)–(18), respectively.

Eve is supposed to be clever enough to prevent Alice and Bob from detecting her 
eavesdropping by finding the discrepancy in the error rates of quantum states, i.e.,

If Eve tries to achieve the eavesdropping without being detected, then the error rate 
pe has to be zero in the ideal environment. From Eqs. (19) to (25), we obtain the fol-
lowing equations

(20)
∑

i,j=0,1

|||aij
|||
2⟨
eiej|eiej

⟩
= 1,

∑

i,j=0,1

|||bij
|||
2
⟨
e
�

i
e
�

j
|e�

i
e
�

j

⟩
= 1.

(21)P0

e
= 1 −

����
⟨E�

�
0dp

���U
����0dp

�
�E⟩

�����

2

= 1 − ��a01��
2⟨e0e1�e0e1⟩,

(22)P1

e
= 1 −

����
⟨E�

�
1dp

���U
����1dp

�
�E⟩

�����

2

= 1 − ��b10��
2�
e
�

1
e
�

0
�e�

1
e
�

0

�
,

(23)

P+
e
= 1 −

����
⟨E�

�
+dp

���U
����+dp

�
�E⟩

�����

2

= 1 −
1

4

�
a∗
01
⟨e0e1�� + a∗

10
⟨e1e0�� + b∗

01

�
e
�

0
e
�

1

��� + b∗
10

�
e
�

1
e
�

0

���
�

�
a01

��e0e1⟩ + a10
��e1e0⟩ + b01

���e
�

0
e
�

1

�
+ b10

���e
�

1
e
�

0

��
,

(24)

P−
e
= 1 −

����
⟨E�

�
−dp

���U
����−dp

�
�E⟩

�����

2

= 1 −
1

4

�
a∗
01
⟨e0e1�� − a∗

10
⟨e1e0�� − b∗

01

�
e
�

0
e
�

1

��� − b∗
10

�
e
�

1
e
�

0

���
�

�
a01

��e0e1⟩ − a10
��e1e0⟩ − b01

���e
�

0
e
�

1

�
− b10

���e
�

1
e
�

0

��
,

(25)P0

e
= P1

e
= P+

e
= P−

e
= pe.

(26)
��a01��

2⟨e0e1�e0e1⟩ = 1, ��b10��
2�
e
�

1
e
�

0
�e�

1
e
�

0

�
= 1

��e0e0⟩ = ��e1e0⟩ = ��e1e1⟩ = O,
���e

�

0
e
�

0

�
=
���e

�

0
e
�

1

�
=
���e

�

1
e
�

1

�
= O.
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As a result, from Eq. (26), we find that the whole system involving the transmitted 
logical qubits and her ancillary photons �E⟩ in Eqs. (15)–(18) are in a tensor-product 
state. This implies that it is impossible for Eve to pass the two security checks by 
entangling the ancilla with the travel particles and measuring it without introducing 
any error. Thus, Eve cannot derive the useful information about M and KA.

4.1.2 � Passive attack from the outside eavesdropper

After the information K ′

B
 is published, Eve may attempt to gain the shared secret key. 

However, she cannot get any information about the measurement results of M and 
infer Alice or Bob’s secret key. So it is not possible for Eve to obtain the final shared 
secret key.

4.2 � Participant attack

The participant attack is first proposed by Gao et al. [54–56]. The participant attack 
means that the legal participant instead of the outsider eavesdropper may be dishon-
est and try to perform an attack for his own purpose. The purpose of the participant 
is different for different quantum cryptography protocols. For example, for QKA 
protocols, the dishonest participant may hope to control the shared secret key and 
determine it fully by himself alone.

Next, we will analyze the security against possible malicious Alice or Bob. 
Assume Bob is dishonest. In this case, Alice is assumed to be honest. Although Bob 
can decode KA by measuring the particles once they are received, and then decide 
the corresponding KB to generate his favorite KAB , without the correct permutation 
operator �n of Alice, he can only decode KA accurately with the probability 1

n!
 . Even 

though Bob uses the wrong permutation operator �n , he can also obtain two bits of 
KA correctly with probability 1/4. Accordingly, to control the 2n-bit shared key KAB 
as well as to perform the security check (via 2m-bit checking sets C ), Bob succeeds 
only with the probability 

(
1

4

)n

 , which is negligible.
Next we assume Alice is dishonest. In this case, Bob is assumed to be honest. 

Upon receiving KB from Bob in step (6), if Alice wants to control KAB , she needs to 
modify her key KA appropriately. However, Alice can only get the key KB after Alice 
has sent the encoded message qubits.

Therefore, Alice or Bob’s participant attack will not succeed.

5 � Comparison with other two‑party QKA protocols against collective 
noise

In this section, we consider the Cabello’s qubit efficiency [57] of our QKA proto-
cols. It is defined as � =

c

q+b
 , where c , q and b are the number of the agreement 

classical bits, the number of qubits used and the number of classical bits 
exchanged for decoding, respectively. Let n be the number of eight-particle states 
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and � be the number of decoy states in each transmitted quantum sequence, the 
qubit efficiency of our first QKA protocol is � =

4n

8n+4�+4�+n+2n
 . Let � = n , we have 

� =
4

19
= 21.05%.

Table  2 gives the comparisons among several kinds of two-party QKA pro-
tocols against collective noise. There are so many indicators for evaluating the 
performance of QKA protocols such as the difficulty of preparing quantum states, 
quantum resource cost, the difficulty of necessary quantum operations, quantum 
efficiency, one-way or two-way quantum communication and so on. Therefore, 
it is rather difficult to evaluate the performance of QKA protocols precisely and 
quantitatively and it is also very difficult to provide a precise weight to the impor-
tance of these indicators. It is more rational to evaluate the performance of QKA 
protocols in a qualitative way.

As is shown in Table 2, although the proposed protocol does not have the high-
est qubit efficiency in existing two-party QKA schemes against collective noise, 
they are globally better in terms of quantum resource cost and qubit efficiency. 
We define the meaning of a protocol being ‘globally better in terms of quantum 
resource cost and qubit efficiency’ in a qualitative way. Concretely, we first rank 
the QKA protocols in Table 2 in terms of each indicator. For example, we rank 
the QKA protocols in terms of the size of the qubit efficiency and also rank the 
QKA protocols in terms of the difficulty of performing measurements and so on. 
Then, we sum the ranks of all the indicators of each QKA protocol and make 
a rank. If the value is smallest for some QKA protocol, it shows that this pro-
tocol is globally the best. The rest can be done in the same manner. Therefore, 
in terms of the qubit efficiency, our proposed protocol is runner-up. However, in 
other aspects such as the preparation of quantum states, the difficulty of perform-
ing measurements, it is easier to implement our protocol than other QKA proto-
cols against collective noise. Therefore, our protocol is globally better in terms of 
quantum resource cost and qubit efficiency.

Table 2   Comparisons among several kinds of QKA protocols against collective noise

Quantum resource Quantum measurement basis Operation Qubit 
efficiency 
(%)

[44] Logical Bell states Z-basis and X-basis CNOT 16.67
[45] Four-qubit DF states ZZXX-basis and XZXZ-basis Permutation 10
[46] Logical χ-states ZZ-basis and BSM CNOT and permutation 21.05
[47] Logical five-particle states ZZ-basis and BSM CNOT and permutation 20
[48] Logical GHZ states and 

logical Bell states
Z-basis, X-basis and BSM CNOT 26.67

Ours Logical Bell states Logical BSM Permutation 21.05
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6 � Conclusion

Based on logical Bell states, we propose two QKA protocols against the collective-
dephasing noise and the collective-rotation noise, respectively. Compared with 
existing two-party QKA protocols against collective noise, the proposed protocols 
are globally better in terms of quantum resource cost and qubit efficiency. The secu-
rity analysis shows that the proposed protocols are secure enough and can effectively 
resist common insider and outsider attacks.

For future work, there are several open questions. Firstly, here we only proved the 
security of the proposed QKA protocol against common inside and outside attacks, 
and its security has not been studied by strict mathematical proof. It would be inter-
esting to study how to give a mathematical proof of the proposed QKA protocol 
[58–131]. Therefore, we take it as an open problem and will make the further study 
in the future. Secondly, we only proposed a two-party QKA protocol, and the gen-
eralization to multiparty QKA has not been studied. Therefore, it is also interesting 
to study how to construct robust multiparty QKA protocols. Finally, in the proposed 
protocols, the quantum resource cost and qubit efficiency are not optimal. Therefore, 
the optimization of the proposed protocols should be performed in the future.
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