
Quantum Information Processing (2019) 18:48
https://doi.org/10.1007/s11128-018-2163-8

Maximal thermal entanglement using three-spin
interactions

Marko Milivojević1
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Abstract
Three-spin interactions in three-qubit systems at thermal equilibrium can be used for
simple and efficient creation of maximally entangled states. We do not require set of
gates to achieve this goal; rather, maximal thermal entanglement naturally arises by
appropriately tuning the interactions present in the system. Within the broad range
of parameter regimes found, we identify the ones accessible in triple quantum dot
and triangular optical lattice, thus opening a way toward simple implementation of
maximally entangled states with different types of three-spin interactions. Our results
suggest tight connection between the presence of W type of entanglement and mag-
netization, enabling experimental detection of theW state.

Keywords Quantum entanglement · GHZ and W state · Three-spin interaction

1 Introduction

Entanglement, first described by Einstein et al. [1] and Schrödinger [2], is a quantum
mechanical phenomenon that can be experimentally observed, representing a deviation
of quantum from classical mechanics [3]. Entanglement has been in the focus of
intense investigation due to its importance in quantum information processing [4],
thus motivating protocols for its creation in different realistic platforms [5–7]. Among
quantum entangled states, special attention is devoted to the ones having maximal
amount of entanglement, since they differ the most from classical reality. In tripartite
systems, there are two types of maximally entangled states: the W state [8,9] and
the Greenberger–Horne–Zeilinger (GHZ) state [10]. The entanglement present in the
GHZ state disappears if one of the three qubits is traced over. On the other hand, W
state has nonzero entanglement after bipartition.
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Due to their diverse applications, finding simple and reliable resources to imple-
ment both types of states is of utmost importance. Heisenberg exchange interaction
is the standard tool for manipulation with spins, and it is used in different aspects of
quantum information [5,11,12]- and quantum computation [13–19]-related research.
Since three-spin interaction affects all three spins at the same time, while the pairwise
interactions are limited in the manipulation on the two spins only; in the context of
tripartite entanglement, assumption that sophisticated three-spin terms can enhance
entanglement naturally arises [20–22]. Up to now, variety of different types of effec-
tive three-spin interactions have been theoretically demonstrated in triple quantum dot
[16–19], 13C labeled Alanine [23], triangular optical lattice [24,25], trapped ions [26]
and cold polar molecules [27].

Here, we demonstrate that three-spin interaction can be used as an efficient resource
to create maximally entangled states. We do not require set of gates to implement our
scheme [11,12]; rather, we focus on the natural entanglement [20–22,28–32] of a
system at thermal equilibrium and identify the parameter regime for which thermal
entanglement reaches its maximum. Since main requirements needed to experimen-
tally construct maximally entangled states are met in triple quantum dot and triangular
optical lattice, obtained results are going to be illustrated on these systems.

The paper is organized as follows. In Sect. 2, we define entanglement measures
going to be used in the analysis of the effects of different types of three-spin inter-
actions. In Sect. 3, we discuss triple quantum dot system, while Sect. 4 is devoted
to triangular optical lattice. In Sect. 5, we analyze the possibility to indirectly detect
the presence of W type of entanglement by measuring magnetization in z direction.
Finally, conclusions are given in Sect. 6.

2 Entanglement measures

To start with, we define a thermal state ρ of a system at thermal equilibrium as

ρ = e−βH

Z
, (1)

whereHamiltonian H describes interactions present in the system,while Z = Tr e−βH

is the partition function (β = 1/kBT , kB is Boltzmann’s constant and T temperature).
In order to identify the presence of thermal entanglement in the system, tripartite and
bipartite entanglement measures will be introduced. Tripartite entanglement of the
thermal state ρ will be analyzed using the tripartite negativity [33]

N123 = (N1−23N2−13N3−12)
1
3 , (2)

equal to the geometric mean of bipartite negativities N1−23, N2−13 and N3−12 [34].
Bipartite negativity is defined as

NI−J K = −2
∑

i

λi

(
ρT
I

)
, (3)
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where λi (ρ
T
I ) are negative eigenvalues of partially transposed statistical operator ρT

I
with respect to the subsystem I , (I − J K = {1 − 23, 2 − 13, 3 − 12}). The authors
of [33] have shown that N123 reaches the value 1 for the GHZ state, while in the case
of the W state tripartite negativity is approximately 0.94.

In order to distinguish between two types of entanglement, it is useful to study the
concurrence [35–37], measuring the bipartite entanglement. First, we define three two-
qubit states ρJ K , being equal to the partial traces over the third spin I , ρJ K = Tr I ρ.
For a two-qubit state ρJ K , concurrence is defined as

C(ρJ K ) = max
{
0,

√
β1 − √

β2 − √
β3 − √

β4

}
, (4)

where βi (i = 1, 2, 3, 4) represent eigenvalues of the operator

ρJ K (σy ⊗ σy)ρ
∗
J K (σy ⊗ σy), (5)

sorted in the descending order. In (5), conjugate of ρJ K is employed, ρ∗
J K , as well

as Pauli σy matrix. Using the value C(ρ12)
2 + C(ρ23)

2 + C(ρ31)
2, W and GHZ

state can be distinguished. Namely, the GHZ state minimizes all three concurrences,
C(ρ12)

2+C(ρ23)
2+C(ρ31)

2 = 0, while for theW state this sum reaches 4/3. Putting
the two conditions together, we will use two auxiliary functions

FW (ρ) = 4

3
−

∑

J K

C(ρJ K )2 + N123(W ) − N123(ρ),

FGHZ(ρ) =
∑

J K

C(ρJ K )2 + N123(GHZ) − N123(ρ), (6)

which, if equal zero, confirm the presence of maximally entangled states. It should be
further emphasized that FW (ρ) and FGHZ(ρ) do not represent new measure, they are
just combined constraint of tripartite negativity and concurrence.

Moreover, since there is no absolutely accepted measure of tripartite entanglement,
it is plausible to use more than one measure and compare the obtained results. To
assure the reader of the correctness of the results derived from FW (ρ) and FGHZ(ρ),
we will also calculate the distance of a given density matrix ρ to the target maximally
entangled state |ψ〉 through fidelity 〈ψ |ρ|ψ〉, where the value 1 indicates that |ψ〉
and ρ represent equivalent states. Finally, we note that minimization of FW (ρ) and
FGHZ(ρ) does not always give us exact W and GHZ states, respectively, but rather
states that can be transformed into W /GHZ state using the local operations on each
qubit. In what follows, we will identify each class of maximally entangled states [38]
with their most prominent representatives, providing in each case concrete form of the
calculated states.

3 Triple quantum dot

We start by performing a detailed analysis of theHamiltonian describing the three-spin
solid state qubit in an equilateral triangle geometry [16–18]
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H =
3∑

i=1

(Jσ i · σ i+1 + bσ z
i ) + ασ 1(σ 2 × σ 3), (7)

where σ i = (σ x
i , σ

y
i , σ z

i ) is the vector made of Pauli matrices, while σ 4 = σ 1.
Exchange interaction has an isotropic form, with exchange interaction parameters
equal for each pair of spins. Zeeman term is proportional to b = gμB B, where B is
the external magnetic field in direction perpendicular to the system (z-axis), μB is the
Bohr magneton, while g factor depends on the material in which quantum dots are
embedded. In addition to the exchange and Zeeman term, three-spin interaction in the
box product form is present, usually called the chirality operator.

In what follows, we will represent matrix elements of the thermal state ρ in the
eight-dimensional basis V ,

V={|+ + +〉, |+ + −〉, |+ − +〉, |+ − −〉, |− + +〉, |− + −〉, |− − +〉, |− − −〉},
(8)

where |+〉 is an eigenvector of Pauli z matrix σz for positive eigenvalue, i.e. spin-up
state, while |−〉 is an eigenvector of σz for negative eigenvalue (spin-down state).
Nonzero matrix elements of ρ in the case of Hamiltonian (7) are the following (due
to the fact that ρ is Hermitian operator, by knowing ρi j , simply follows the relation
ρ j i = ρ∗

i j )

ρ11 = 1

(1 + e2βb)(1 + e4βb + 2e2β(b+3J ) cosh 2
√
3βα)

,

ρ88 = e6βb

(1 + e2βb)(1 + e4βb + 2e2β(b+3J ) cosh 2
√
3βα)

,

ρ22 = ρ33 = ρ55 = 1

3(1 + e2βb + e−2βb+e4βb

1+2e6β J cosh 2
√
3βα

)
,

ρ44 = ρ66 = ρ77 = 1

3(1 + e−2βb + e2βb+e−4βb

1+2e6β J cosh 2
√
3βα

)
,

ρ23 = ρ52 = ρ35 = e2βb A,

ρ47 = ρ64 = ρ76 = e4βb A, (9)

where

A = − (1 − i
√
3)e6β J − 2e2

√
3βα + (1 + i

√
3)e6β J+4

√
3βα

6(1 + e2βb)(e2
√
3βα(1 + e4βb) + e2β(b+3J )(1 + e4

√
3βα))

. (10)

By knowing ρ, desired quantities FW (ρ) and FGHZ(ρ) can be simply calculated.
Due to the fact that analytical results are not very illustrative, dependencies of FW (ρ)

and FGHZ(ρ) on various parameters are going to be analyzed numerically.
Wewill discuss both antiferromagnetic (AF), J > 0, and ferromagnetic (F), J < 0,

exchange interaction case and present the results in terms of the ratio of exchange
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Fig. 1 Creation of the W state using the chirality operator. For fixed β|J | = 101, dependence of FW (ρ)

on the ratios b/J ∈ (−10, 10) and α/J ∈ (−10, 10) in the antiferromagnetic (upper left panel) and
ferromagnetic (upper right panel) regime is presented. Dependence of fidelity on the same parameters is
given for the antiferromagnetic (lower left panel) and ferromagnetic (lower right panel) case

interaction energy and thermal energy, β|J |. First, independently of the value ofmodel
parameters and temperature, GHZ state is impossible to create. This is expected,
since the interactions present in the system do not mix the subspaces with different
z projections of total spin, being the essential requirement for the construction of
the GHZ state. On the other hand, the W state belongs to the subspace with fixed z
projection, making this type of entanglement more suitable for construction.

Neglecting the J = 0 situation, it turns out that β|J | needs to be larger or equal
to 101 in order to enable the W state creation. In Fig. 1 (upper panels), we plot the
dependency of FW (ρ) on b/J ∈ (−10, 10) and α/J ∈ (−10, 10) for the AF (upper
left panel) and F (upper right panel) case, keeping the value β|J | fixed at 101. Results
can be divided into three categories: The first category belongs to the maximal values
(light blue); the second regime is intermediate (blue) and finally, the third category
consists of minimal values (dark blue) of interest for us. Useful parameter regime
in the AF/F case is limited by the value of Zeeman/chirality term from above/under.
Additionally, rise of β|J | has a positive impact on the minimization of FW (ρ) and can
lead to the transition of intermediate values into the category of minimal values. As an
example, 1.03 value of FW (ρ) for β J = 101 and α/J = b/J = 10−1 can be lowered
to 1.21×10−4 and 2.43×10−8 by increasing the valueβ J to 102 and 103, respectively,
and keeping the other parameters fixed. Beside the fact that different phases of J have
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an impact on the parameter regime inwhich theW state can occur, exchange interaction
plays no fundamental role in the creation of W type of entanglement. In the J = 0
case, we were able to find the parameters that createW state (|α/b| ≥ 0.6, βb ≥ 103),
thus confirming the above statement. In all cases (J ≥< 0), obtained states are solely
dependent on the signs of b and α, being the eigenstates of the chirality operator, thus
confirming its essential role.

Furthermore, we find the concrete form of the ideal |W 〉 states by assuming that
fidelity 〈W |ρ|W 〉 should tend to 1 by appropriately adjusting the parameter regime.
Dependence of the W state on b and α is the following

|W 〉b>0,α>0 = 1√
3

(
|+ − −〉 + ei

4π
3 |− + −〉 + ei

2π
3 |− − +〉

)
,

|W 〉b>0,α<0 = 1√
3

(
|+ − −〉 + ei

2π
3 |− + −〉 + ei

4π
3 |− − +〉

)
,

|W 〉b<0,α>0 = 1√
3

(
|+ + −〉 + ei

2π
3 |+ − +〉 + ei

4π
3 |− + +〉

)
,

|W 〉b<0,α<0 = 1√
3

(
|+ + −〉 + ei

4π
3 |+ − +〉 + ei

2π
3 |− + +〉

)
. (11)

In Fig. 1 (lower panels), we plot the dependence of fidelity on b and α in the same
parameter regime as for FW (ρ). (It is to be noted that in the case b = 0 (similar for
α = 0), we have calculated fidelities b>0,α〈W |ρ|W 〉b>0,α = b<0,α〈W |ρ|W 〉b<0,α .)
As can be seen in Fig. 1, qualitatively both measures predict the same behavior of
entanglementwith respect to the given parameters, thus confirming the results acquired
from FW (ρ).

We discuss the obtained results in the context of GaAs triple quantum dot, being
the standard solid state platform for implementation and manipulation with localized
spins. AF regime is present in zero and low magnetic field, since only strong magnetic
field can induce a sign change of J [19]. In order to minimize FW (ρ), three-spin
interaction does not have to be comparable in strength to the exchange interaction.
This fact is convenient for us, since chirality is the weakest interaction present in the
system. Assuming small three-spin term, α/J = 0.05, at temperatures around mK
and J ≈ 20µeV [11], we have found very low values FW (ρ) ≈ 10−8 for magnetic
field b/J = 0.2, indicating the realizability ofW state with high accuracy.

Finally, we address the effects of spin–orbit interaction, having the potential to
interfere with the conclusions stated above. Effective spin–orbit Hamiltonian between
two spins can be written as a sum of two terms, antisymmetric Dzyaloshinskii–Moriya
(DM), and symmetric tensor term

HSO
i j = di j (σ i × σ j ) + 	i j (di j · σ i )(di j · σ j ). (12)

In GaAs quantum dots, at low perpendicular magnetic fields, all DM vectors are in
the plane in which quantum dots are embedded, say it to be the xy plane. Symmetric
contribution is a second-order correction to the total spin–orbit interaction, and we

will assume 	i j = J (

√
1 + |di j |2/J 2−1)/|di j |2 [39]. Furthermore, in the equilateral
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geometry, condition d12 + d23 + d31 = 0 is satisfied [19,40] and, to a good level of
approximation, all vectors have the same intensity. By setting the x-axis in d12 direc-
tion, vectors d23 and d31 are equal to Rez (2π/3)d12 and Rez (4π/3)d12, respectively,
where Rez (ϕ) is a rotational matrix around the z-axis for an angle ϕ. Assuming reason-
ably small DM vector’s strength [19], |di j |/|J | ≤ 10−2, it turns out that FW (ρ) is not
crucially affected by this interaction. In the parameter regime of interest (dark blue),
maximal impact of spin–orbit interaction on FW (ρ) is on the 10−3 scale, making the
triple quantum dot in GaAs an excellent platform for realization of the W state using
the chirality operator.

4 Optical triangular lattice

In this section, we analyze the effective spin Hamiltonian in a triangular optical lattice
[24,25],

H =
3∑

i=1

[
b · σ i + λ(1)σ z

i σ z
i+1 + λ(2) (

σ x
i σ x

i+1 + σ
y
i σ

y
i+1

)

+ λ(3)σ z
1σ z

2σ z
3 + λ(4) (

σ x
i σ z

i+1σ
x
i+2 + σ

y
i σ z

i+1σ
y
i+2

) ]
, (13)

containing single spin, two-spin and two types of three-spin interaction. Magnetic
field b can be arbitrarily tuned, as well as parameters λ(i), i = {1, 2, 3, 4}, being
independent one on another.

First, we note that within this model it is possible to create approximate GHZ
and exact W ground states [5] using the first three terms in (13) only. Alternatively,
XZX+YZY type of three-spin interaction can be used for ever simpler creation of the
W state. Using this term only, W state can be generated with highest precision. To
obtain it, β|λ(4)| should be larger than 102. However, even for β|λ(4)| = 101 excellent
value FW (ρ) ≈ 10−4 is achieved. Assuming |λ(4)| ≈ 1kHz, nK temperature mode is
needed to implement this state.

Numerical results can be easily analytically confirmed by directly studying the sta-
tistical operator ρ. If only interaction XZX+YZY is present, nonzero matrix elements
of ρ are

ρ11 = ρ88 = 1

8 cosh2 (βλ(4)) cosh (2βλ(4))
,

ρ22 = 1 + 3e6βλ(4)

3(1 + e2βλ(4)
)2(1 + e4βλ(4)

)
,

ρ33 = ρ55 = 2 + 3e6βλ(4)

6(1 + e2βλ(4)
)2(1 + e4βλ(4)

)
,

ρ44 =
(
2 cosh (3βλ(4)) − sinh (3βλ(4))

)(
1 + tanh (βλ(4))

)

12 cosh (βλ(4)) cosh (2βλ(4))
,
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ρ66 = ρ77 =
(
5 cosh (3βλ(4)) − sinh (3βλ(4))

)(
1 + tanh (βλ(4))

)

48 cosh (βλ(4)) cosh (2βλ(4))
,

ρ23 = ρ25 = 2 − 3e6βλ(4)

6(1 + e2βλ(4)
)2(1 + e4βλ(4)

)
,

ρ35 = 1

3(1 + e2βλ(4)
)2(1 + e4βλ(4)

)
,

ρ46 = ρ47 = −
(
cosh (3βλ(4)) − 5 sinh (3βλ(4))

)(
1 + tanh (βλ(4))

)

48 cosh (βλ(4)) cosh (2βλ(4))
,

ρ67 = e4βλ(4)

24 cosh2 (βλ(4)) cosh (2βλ(4))
. (14)

In the regime of interest, when β|λ(4)| � 1, depending on the sign of λ(4), there
are two possible results. If λ(4) > 0, dominant nonzero matrix elements of ρ tend to
1/3

ρ44 = ρ66 = ρ77 = ρ46 = ρ64 = ρ47 = ρ74 = ρ67 = ρ76 = 1

3
, (15)

meaning that the resulting state is

|W 〉λ(4)>0 = 1√
3
(|− − +〉 + |− + −〉 + |+ − −〉). (16)

In the opposite case, when λ(4) < 0, dominant nonzero ρ matrix elements approach
the value 1/3

ρ22 = ρ33 = ρ55 = ρ23 = ρ32 = ρ25 = ρ52 = ρ35 = ρ53 = 1

3
, (17)

describing the state

|W 〉λ(4)<0 = 1√
3
(|+ + −〉 + |+ − +〉 + |− + +〉). (18)

When the target state is identified, we can easily compare the results predicted from
the FW (ρ) and fidelity. In Fig. 2, we plot the dependence of FW (ρ) and fidelity on
βλ(4) ∈ (0, 10). Plots clearly show that fidelity approaches the desired value faster
than FW (ρ), indicating that combination of tripartite negativity and concurrence in
FW (ρ) gives an upper bound on the presence of the W state.

We now turn to the another type of three-spin interaction present in optical lattice
systems, the ZZZ term, which can be used to create both types of entanglement. To
obtain the GHZ state, besides ZZZ term, magnetic field in the xy plane should be
present. Resulting states are dependent on the sign of the λ(3) term, as well as of the
magnetic field’s direction. If the resulting magnetic field b builds an angle ϕ with the
x direction, thermal state ρ approaches the state
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Fig. 2 Creation of theW state using the XZX+YZY interaction. Dependence of FW (ρ) and fidelity on the
value βλ(4) ∈ (0, 10) is plotted, where the values 1 of fidelity and 0 of FW (ρ) indicate the presence of W
type of entanglement. Both fidelity and FW (ρ) are even to the sign change of λ(4)

|GHZ〉λ(3)>0 = 1

2
(|+ + −〉 + |+ − +〉 + |− + +〉 + e2iϕ |− − −〉),

|GHZ〉λ(3)<0 = 1

2
(e−2iϕ |+ + +〉 + |+ − −〉 + |− + −〉 + |− − +〉). (19)

We also provide parameter regime needed to obtain the GHZ state. Since the only
effect of the magnetic field is to induce a relative phase in the final state, see (19);
for simplicity, we will discuss magnetic field in the x direction. In Fig. 3, we plot
the dependence of FGHZ(ρ) and fidelity with respect to the ratio λ(3)/bx for four
different values of βbx : 101, 102, 103 and 104. The basic requirement to minimize
FGHZ(ρ) and maximize fidelity is that ZZZ interaction needs to be the dominant
source of interaction. However, depending on the value βbx , it is not always possible
to precisely generate the GHZ state. For βbx = 101, we do not reach the values below
10−1 for FGHZ(ρ) and above 0.95 for fidelity. If we have βbx = 102 minimal value of
FGHZ(ρ) is around 2.7 × 10−3 for λ(3)/bx ≈ 45, while the maximal value of fidelity
is close to 0.9985 for λ(3)/bx ≈ 43. To conclude, βbx governs the precision search
of the GHZ state, automatically increasing the ratio λ(3)/bx that minimizes FGHZ(ρ)

and maximizes fidelity. Keeping the ZZZ term at fixed strength means that bx should
be correspondingly lowered to decrease FGHZ(ρ) and increase fidelity. However, this
further lowers the optimal temperature. For T = 10−1nK and λ(3) = 1kHz, we were
able to find FW (ρ) only slightly below 2 × 10−2. Further reduction requires stronger
ZZZ term strength or lower temperatures.

Finally, to obtain the W state, in addition to the ZZZ term, ferromagnetic XX
coupling (λ(2) < 0 term) needs to be present. In Fig. 4, dependence of FW (ρ) and
fidelity on the ratio λ(3)/|λ(2)| ∈ (0, 2) is presented for β|λ(2)| equal to 100, 101

and 102. In order to create the W state very precise, β|λ(2)| ≥ 101 limit should be
used. For example, β|λ(2)| = 101 gives FW (ρ) ≈ 1.2 × 10−4 and excellent fidelity
1 − 2 × 10−9. Again, there is a trade-off between precision, coupling strengths and
the optimal temperature regime. Assuming that ZZZ and XX terms are of comparable
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Fig. 3 Creation of the GHZ state using the ZZZ interaction. In the regime in which only magnetic field in
x direction and λ(3) term are present, we plot the dependence of FGHZ(ρ) and fidelity on the ratio λ(3)/bx
in four cases: βbx = 101, βbx = 102, βbx = 103 and βbx = 104. Since FGHZ(ρ) and fidelity are even
to the sign change of λ(3), we have presented the results only for positive λ(3)

strengths, ≈ 1KHz, β|λ(2)| = 101 produces W state with 10−8 precision, according
to FW (ρ), at temperature slightly above the nK scale. Resulting state is equal to (18)
if λ(3) > 0 and (16) if λ(3) < 0.

The benefits of potential realization of XXX and YYY terms are worth mentioning.
Hamiltonian containing XXX and/or YYY term and magnetic field in z direction can
be used to implement the GHZ state. In this case, the state

|GHZ〉 = 1√
2
(|+ + +〉 + ei(π−θ)|− − −〉) (20)

can be obtained, where tan θ describes the ratio of intensities of YYY and XXX terms.

5 Detection of theW state bymeasuringmagnetization

In this section, we will discuss the possibility to indirectly detect [41,42] W type of
entanglement by measuring magnetization in z direction. Magnetization in z direction
is defined as
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Fig. 4 Creation of the W state using the ZZZ interaction. We analyze the regime in which beside ZZZ
term, ferromagnetic XX interaction (λ(2) term) is present. Dependence of FW (ρ) and fidelity on the ratio
λ(3)/|λ(2)| ∈ (0, 2) is given for three β|λ(2)| values: 100, 101 and 102. FW (ρ) and fidelity are even to the
sign change of λ(3)

Mz = 1

βZ

∂Z

∂bz
, (21)

where Z is the partition function, β = 1/kBT and bz magnetic field in z direction.
In the previous section, we have shown that by using only XZX+YZY term of the

Hamiltonian (13), W state can be realized. Using the different approach, we are able
to achieve the same result if, additionally, magnetic field in z direction is present. In
this case, partition function Z is equal to

Z = 8 cosh2
(
β(bz + λ(4))

)
cosh

(
β(2λ(4) − bz)

)
(22)

leading us to the magnetization

Mz = sinh
(
3βλ(4)

) − 3 sinh
(
β(λ(4) − 2bz)

)

cosh
(
3βλ(4)

) + cosh
(
β(λ(4) − 2bz)

) . (23)

On the other hand, nonzero matrix elements of ρ are
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Fig. 5 Creation of the W state using the XZX+YZY interaction. We plot the dependencies of FW (ρ)

and absolute magnetization |Mz | on the ratio of magnetic field in z direction and XZX+YZY three-spin
interaction, bz/λ(4), in three different situations: βbz = 100, βbz = 101, βbz = 102. Dip in absolute
magnetization at bz/λ(4) ≈ −1 represents a sign change of magnetic polarization

ρ11 = e−6βbzρ88 = e4βλ(4)

(e2βbz + e4βλ(4)
)(1 + e2β(bz+λ(4)))2

,

ρ22 = − (2 cosh (3βλ(4)) + sinh (3βλ(4)))(−1 + tanh (β(bz + λ(4))))

12 cosh (β(bz + λ(4))) cosh (β(2λ(4) − bz))
,

ρ33 = ρ55 = − (5 cosh (3βλ(4)) + sinh (3βλ(4)))(−1 + tanh (β(bz + λ(4))))

48 cosh (β(bz + λ(4))) cosh (β(2λ(4) − bz))
,

ρ44 = (2 cosh (3βλ(4)) − sinh (3βλ(4)))(1 + tanh (β(bz + λ(4))))

12 cosh (β(bz + λ(4))) cosh (β(2λ(4) − bz))
,

ρ66 = ρ77 = (5 cosh (3βλ(4)) − sinh (3βλ(4)))(1 + tanh (β(bz + λ(4))))

48 cosh (β(bz + λ(4))) cosh (β(2λ(4) − bz))
,

ρ23 = ρ25 = (cosh (3βλ(4)) + 5 sinh (3βλ(4)))(−1 + tanh (β(bz + λ(4))))

48 cosh (β(bz + λ(4))) cosh (β(2λ(4) − bz))
,

ρ35 = e2βbz

3(1 + e2β(bz+λ(4)))2(e2βbz + e4βλ(4)
)
,

ρ46 = ρ47 = − (cosh (3βλ(4)) − 5 sinh (3βλ(4)))(1 + tanh (β(bz + λ(4))))

48 cosh (β(bz + λ(4))) cosh (β(2λ(4) − bz))
,

ρ67 = eβ(bz+4λ(4))

24 cosh2 (β(bz + λ(4))) cosh (β(2λ(4) − bz))
. (24)

In Fig. 5, we plot the dependencies of FW (ρ) and |Mz| on bz/λ(4) for different βbz
values. By comparing these two functions, we see that appearance of magnetization
plateaus is clearly a sign of creation of the W state, while the parameter regime of
interest is placed on the |Mz | = 1 plateau. Ratio βbz plays a deterministic role in the
creation ofmaximal entanglement and appearance ofmagnetization plateaus.Roughly,
values βbz ≥ 102 provide the existence of W type of entanglement, while bz/λ(4) is
limited by the values −1 and 2. Optimal temperature regime in this situation is on the
same scale as in the case of XZX+YZY term only, providing that magnetic field and
three-spin interaction are of comparable strengths.
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Magnetization in systems described by the Hamiltonian (7), assuming that J and
α are independent on the strength of magnetic field, follows the same correlation
behavior with FW (ρ). Thus, magnetization can serve as an indicator of the presence
of theW state, opening a way toward trustworthy entanglement detection. However, in
the case of semiconductor quantum dots, exchange interaction J and three-spin term
α strongly depend on the magnetic field, indicating that a more elaborate analysis
should be performed, including the details of the materials in which quantum dots are
embedded. This is beyond the scope of the presented work.

6 Conclusions

Wehave investigated thermal entanglement in tripartite systemswith different types of
three-spin interactions present. Chiral and XZX+YZY terms are suitable for creation
of the W state, while ZZZ term can be used to construct both types of maximally
entangled states. Moreover, magnetization in z direction can be used to detect W
type of entanglement. Potential experimental platforms for realization of maximally
entangled states include triple quantum dot and triangular optical lattice.
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