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Abstract

In this paper, some families of asymmetric quantum codes and quantum convolutional
codes that satisfy the quantum Singleton bound are constructed by utilizing consta-
cyclic codes with length n = %, where ¢ is an odd prime power with the form
q = 10hm +t or ¢ = 10hm + 10h — ¢, where m is a positive integer, and both
h and ¢ are odd with 10k = > + 1 and ¢ > 3. Compared with those codes con-
structed in the literature, the parameters of these constructed quantum codes in this
paper are more general. Moreover, the distance d, of optimal asymmetric quantum
codes [[n, k, d,/d,]] o) here is larger than most of the ones given in the literature.

Keywords Constacyclic codes - Asymmetric quantum codes - Quantum
convolutional codes - Quantum Singleton bound

1 Introduction

The construction of quantum error-correcting codes (quantum codes for short) with
good parameters is a hot topic in the area of quantum information and quantum comput-
ing. Some scholars used classical codes to construct some classes of good quantum
codes in [4,9,24,26,27,44]. In particular, maximal-distance-separable (MDS) codes
that satisfy the classical Singleton bound are an important part of cyclic codes which
have been fully studied in [20]. These codes that attain the Singleton bound are opti-
mal codes. Some scholars have researched other classes of cyclic codes in [5-8,10]. In
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[23], Kai et al. studied some families of constacyclic codes attaining the classical Sin-
gleton bound that are called optimal codes. Moreover, constacyclic codes contained
cyclic codes and negacyclic codes. The construction of optimal codes is an impor-
tant research in classical coding theory as well as in quantum coding theory, where
quantum codes satisfying the quantum Singleton bound are optimal [13]. Relative
to cyclic codes, constacyclic codes can provide a good source to construct optimal
quantum codes. In [21], Kai et al. utilized negacyclic codes to construct two fami-
lies of optimal quantum codes. In [22], Kai et al. constructed two families of good
quantum codes and a family of optimal quantum codes by using negacyclic codes.
Some families of constacyclic codes were used to construct optimal quantum codes
in [45]. In [11], the authors constructed some families of constacyclic codes that were
different from the ones in [23] and utilized them to construct optimal quantum codes.
For more details of constructions of optimal quantum codes, the readers can consult
[40,43].

Quantum codes defined over quantum channels where qudit-flip errors and phase-
shift errors may have different probabilities are called asymmetric quantum codes
[29]. In many quantum mechanical systems, the probabilities of occurrence of
qudit-flip and phase-shift errors are quite different [28]. For the past two decades,
some researchers studied the constructions of good asymmetric quantum codes
[32,33,37]. In [28-30], La Guardia obtained some families of good asymmetric
quantum codes compared with the ones in [1]. Qian et al. used g2-ary cyclotomic
cosets to construct a family of optimal asymmetric quantum codes in [42]. In
[12], Chen et al. studied optimal asymmetric quantum codes by using negacyclic
codes. In [16], Chen et al. also constructed some families of optimal asymmet-
ric quantum codes from constacyclic codes. In [46], Wang et al. used constacyclic
codes in [23] to obtain some classes of optimal asymmetric quantum codes. Xu
et al. constructed two families of optimal asymmetric quantum codes by using a
skew symmetric coset and skew asymmetric coset pair of constacyclic codes in
[47]. For more constructions of asymmetric quantum codes, the readers can consult
[13,17,19,39].

Recently, some researchers studied the constructions of good quantum convolu-
tional codes [2,3,14-16,18]. In [31], La Guardia utilized some classes of cyclic codes
to construct some good quantum convolutional codes compared with the ones in
[2]. In [34], the optimal quantum convolutional codes constructed from BCH cyclic
codes were studied by La Guardia. In [35], La Guardia used negacyclic codes to
construct two families of optimal quantum convolutional codes. In [36], La Guardia
constructed some families of optimal convolutional codes and asymmetric quantum
codes by using constacyclic codes. In [38,48], the authors studied some families
of optimal quantum convolutional codes by using constacyclic codes with different
lengths.

In this work, some families of optimal quantum convolutional codes and asymmetric
quantum codes are constructed from constacyclic codes with length n = qlzo—+hI, where
q is an odd prime power with the form ¢ = 10hm + ¢ or ¢ = 10hm + 10h — 1,
where m is a positive integer, both & and ¢ are odd with 10h = 2+ 1andt > 3.
Compared with [12,16,17,42,46,49], in which the authors constructed some classes of
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optimal asymmetric quantum codes with parameters [[n, k, d; /d,]] ¢ in the Hermitian
case, where d; is the minimum distance corresponding to phase-shift errors and d
is the minimum distance corresponding to qudit-flip errors, the minimum distance
d, of optimal asymmetric quantum codes constructed in this paper is larger except
for very a few codes. It also shows that these constructed codes in this paper have
greater asymmetry than most of the ones in [12,16,17,42,46,49] and are shown as
follows.

@)) [[ql(;;ll, 10h —2(81+682+2),281+3/252+311 2, whereq1sanoddprlmepower
of the form 10Am +¢, m is an odd, both 4 and ¢ are odd with 10k = r2+1and¢ > 3,
both §; and82 areintegers such thatQ < §; < q7210h7t dE <& < E+q31

2) [[%, W — 281 + 82 + 2),281 + 3/2872 + 3]] 2, where ¢ is an odd prime

power of the form 10hm 4 ¢, m > 2 is an even, both h and t are odd with

10h =2+ 1 and t > 3, both 81 and &, are integers such that 0 < §; < g 22821 !

and 452 <8, < 452 4 g,

(3) (1%, Gl — 2(81 + 82 +2), 261 + 3/265 + 3112, where g is an odd prime
power of the form 10hm + 10h — ¢, m is an odd both & and ¢ are odd with
10h =2+ 1 and ¢ > 3, both 81 and &, are integers such that 0 < §; < 4 228,};“
andz# =8 < 13 4 g5y

@ (o Gt — 2081 + 82 +2), 261 + 3/28; + 3112, where ¢ is an odd prime

107 > “10h
power of the form 10hm 4 10h — ¢, m > 2 is an even, both % are ¢ are odd with

10h = t2 4+ 1 and ¢ > 3, both 81 and &; are integers such that 0 < §; < 4 238}};“
and ? <& < ? +qd.

Additionally, we construct two new families of optimal quantum convolutional
codes that are more general relative to the ones in [16,34,35,38,48,50,51] and showed
as follows.

(1) [(ql(;ll, ql(;;ll 48,1; 2,28 + 3)],, where g is an odd prime power of the form
10hm + t, m > 2 is a positive integer, both 4 and ¢ are odd with 10k = 2+1

and 7 > 3, and § is an integer such that 2 < § < W.
2 2
@) (4L, 4L — 45, 152,28 + 3)],, where g is an odd prime power of the form
10hm + 10h — t, m is a positive integer, both & and ¢ are odd with 10k = 241

2
and ¢ > 3, and § is an integer such that 2 < § < (’+1)q_(’202’+2)_20h.

The main organization of this paper is as follows. In Sect. 2, we present some
basic concepts and results about g2-cyclotomic cosets and n-constacyclic codes. In
Sect. 3, we review the method of classical convolutional codes constructed from the
parity check matrix in the Hermitian case, and then we introduce some concepts and
basic results of quantum convolutional stabilizer codes based on a quantum stabilizer.
Finally, two families of optimal quantum convolutional codes are constructed by using

2
constacyclic codes with length %. In Sect. 4, we recall some basic concepts and
results of asymmetric quantum codes under the Hermitian construction, and then we
construct four families of optimal asymmetric quantum codes by using constacyclic

codes with length quh )
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2 Review of constacyclic codes

In this section, we recall some basic results about constacyclic codes in [11,23].

Throughout this paper, let F,2> be the finite field with g? elements, where ¢ is a
power of p and p is an odd prime number. We assume that n is a positive integer
relatively prime to ¢, i.e., gcd(n,q) = 1. If C is a k-dimensional subspace of F;z,
then C is said to be an [n, k]-linear code. The number of nonzero components of ¢ € C
is said to be the weight wt(c) of the codeword c. The minimum nonzero weight d of
all codewords in C is said to be the minimum weight of C. Given n € F;z, a linear
code C of length n over F,» is said to be n-constacyclic if

(N€n—1,¢0,C15 .., cn—2) €C
for every
(co, ¢ty .-y cn1) €C.

When n = —1, then C is a negacyclic code. When n = 1, then C is a cyclic code. We
know that a g2-ary n-constacyclic code C of length n is an ideal of Felx]/(x" —n)
and C can be generated by a monic polynomial g(x) which divides x" — n. Leta? =
(ag, a?, e, aZ_l) denote the conjugation of the vector a = (ag, ay, ..., a,—1). For
u = (ug,ug,...,up—1) and v = (vo, vy, ...,v,—1) € F;z, the Hermitian inner
product is defined as

q

(, v)p = uovg + urv{ + -+ +up_1v?_,.

The Hermitian dual code of C can be defined as

obh — i” € F' | (u, v}y =0forallv e c}.

If C € C*#, then C is called a Hermitian self-orthogonal code. If C*# C C, then C is a
Hermitian dual-containing code. Let w be a primitive element of F,» and = w’@=D

q+1
scd(vg s From
[23], we can see that the Hermitian dual C1* of an n-constacyclic code over qu is an
n-constacyclic code according to nn? = 1. We assume that n € Fq*2 is a primitive r-th

forsomev € {0, 1,2, ..., g}. Then the order r of 1 in Fq*2 is equal to

root of unity, and then there exists a primitive rn-th root of unity over some extension
field of qu, denoted by &, such that £ = 1. Hence, the elements & I+ri are the roots
of x" —npforl <i<n-—1LetO,,, ={14+jr|0 <j <n-—1}.Foreachi € O,,
let

C; = {i, iq2, iq4, R iq(2k_2)} (mod rn),

where k is the smallest positive integer such that i(¢g>)* = i(mod rn), and then
C; is called the g2-cyclotomic coset modulo rn containing i. It is easy to see that the
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defining set Z is a union of some ¢>-cyclotomic cosets modulo 7. The defining setof a
constacycliccode C = (g(x))oflengthnisthesetZ = {i € O,, | &' isarootof g(x)}.
Let C be an [n, k] constacyclic code over F, e with defining set Z. Then the Hermitian

dual C** has a defining set
Z = {z € Opy| — qz(mod rn) ¢ Z}.

Proposition 1 [11,23,25] (The BCH bound for constacyclic codes) Assume that
ged(n, q) = 1. Let C be a q*-ary n-constacyclic code of length n. If the genera-
tor polynomial g(x) of C has the elements {€'17 | 0 < i < d — 2} as the roots where
& is a primitive rn-th root of unity, then the minimum distance of C is at least d.

Proposition 2 [41] (Singleton bound) If an [n, k, d] linear code C exists, then
k<n-—d+1.

Ifk =n—d+ 1, then C is called an optimal code.

3 Constructions of optimal quantum convolutional codes

In this section, we firstly state some basic notions of classical convolutional codes in
the Hermitian case, and then we state the construction of classical convolutional codes
by utilizing the method of dividing the parity check matrix into some submatrices
[2,3]. Additionally, based on classical convolutional codes and stabilizer of quantum
codes, we state some concepts and basic results of quantum convolutional stabilizer
codes. Finally, we construct two families of optimal quantum convolutional codes by

using constacyclic codes with length % in the Hermitian case. For more details
about classical convolutional codes and quantum convolutional codes, the readers can
consult [2,3,31,34-36].

A polynomial encoder matrix G(D) = (g;;) € qu[D]kX" is called basic if G(D)
has a polynomial right inverse. If the overall constraint length y = Zf-czl y; has the
smallest value among all basic generator matrices of the convolutional code C, then the
basic generator matrix of the convolutional code C is said to be reduced. For this case,
the overall constraint length y is called the degree of the convolutional code C. The
weight of an element v(D) € qu[D]" is defined as wt(v(D)) = Z?:l wt(v; (D)),
where wt (v; (D)) is the number of nonzero coefficients of v; (D). Foru(D) = Zi u; D'
and v(D) = Y iV D/ in qu[D]", the Hermitian inner product is defined as
D)D) = Y ; uivf, where u;,v; € F;2 and vlq = (v?i, vgi, vl

> Vni

Cth = {u(D) € qu[D]”|(u(D)|v(D))h =0 for all v(D) € C} denotes the Hermi-
tian dual of a convolutional code C.

Definition 1 [2,3] A rate k/n convolutional code C with parameters (n, k, y; u, d f)qz
is a submodule of qu[D]" generated by a reduced basic matrix G(D) = (g;;) €
Fp[D]*", that is, C = {u(D)G(D)|u(D) € Fp[D]}, where n is the length, k
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is the dimension, y = Zf:l vi is the degree, where y; = maxi<;<, {deg gij}
W = max|<j<k{y;} is the memory and dy = wt(C) = min{wt(v(D))| v(D) €
C, v(D) # 0} is the free distance of the code.

Now, we state some results about classical convolutional codes available in [2,3,34—
36].

Let [n, k, d]qz be a block code with the parity check matrix H, which can be
partitioned into p + 1 disjoint submatrices H; such that H = [Hy, Hi, ...HM]T,
where each H; has n columns. Therefore, the polynomial matrix G(D) is given as
follows.

G(D)=ﬁ0+ﬁ1D+ﬁ2D2+...+ﬁuDu. 1)

A convolutional code V can be generated by the matrix G (D) that has « rows, where
k is the maximum number of rows among the matrices H;. The matrices H; can be
derived from the matrices H; by adding zero-rows at the bottom such that the matrices

H; have « rows in total. Using this method, the authors constructed different classical
convolutional codes in [2,3,34,35].

Theorem 1 [2,3,34,35] LetC C F;z bean|n, k, d]qz code with the parity check matrix

H € Fq(';_k)xn. Assume that H is partitioned into submatrices Hy, Hy, ..., H, as

above such that k = rkHy and rkH; < « for 1 <i < . Consider the matrix G (D)
in (1), and then we have:

(a) The matrix G(D) is a reduced basic generator matrix.

(b) If Cth C C, then the convolutional code V = {v(D) = u(D)G(D)|u(G) €
F;;k (D} satisfies V. .C V-4t

(c) Ifdy and d}‘" denote the free distance of V and V", respectively, d; denotes the
minimum distance of the code C; = {v € Fq"2 |le.’ = 0} and d*" is the minimum

distance ofCJ-’l, then one has min{dy + d,,, d} < d;‘h <danddy > d+n.

Based on classical convolutional codes, the authors introduced the stabilizer of
quantum block codes into constructing quantum convolutional stabilizer codes in [2,
3,34,35].

The stabilizer is given by a matrix of the form

S(D) = (X(D)|Z(D)) € Fy[D]" 702"
which satisfies X (D)Z(1/D)! — Z(D)X(1/D)" = 0. Consider a quantum convolu-
tional code C defined by the full-rank stabilizer matrix S(D) given above, and then C
is arate k/n quantum convolutional code with parameters [(n, k, u; y, df)],, where
n is called the frame size and k is the number of logical qudits per frame. The memory
of the quantum convolutional code is

W = Mmax|<j<p—k, 1<j<nimax{degX;;(D), degZ;;(D)}},
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while d f is the free distance and y is the degree of the code. Additionally, the constraint
lengths of quantum convolutional codes are defined as

Yi = max;<j<,{max{degX;;(D),degZ;j(D)}}.

Moreover, the overall constraint length is defined as y = Zf;lk y;. For more details
about quantum convolutional stabilizer codes, readers can consult [2,3,34,35].

In order to construct quantum convolutional stabilizer codes with good parameters,
the authors used classical convolutional codes to construction of quantum convolu-
tional stabilizer codes in [2].

Theorem 2 [2] Let C be an (n, (n — k)/2,y; u, d* )qz convolutional code such that

C C CLh. Then there exists an [(n, k, w; v, dy)ly quantum convolutional stabilizer
code, where dy = wt (CH\C).

Proposition 3 [2] (Quantum Singleton bound) The free distance of an [(n,k,
w; ¥, dyr)ly pure convolutional stabilizer code is bounded by

Iy (S
F=" \\nxk v
If a quantum convolutional stabilizer code can achieve this bound, then it is called an
optimal quantum convolutional stabilizer code.
In the following part of this section, we compute g>-cyclotomic cosets of con-

2
stacyclic codes with length % and study the case of Hermitian dual contain of
constacyclic codes over F, s Here, we focus on the construction of quantum convo-
lutional stabilizer codes (quantum convolutional codes for short).

2
Lemma1l Letn = qla;ll and s = qT, where q is an odd prime power of the form

10hm + t or 10hm + 10h — t, m is a positive integer, both h and t are odd with
10h =+ Landt > 3. Then Cy = (s} and C,_ =1 = {s — (g + D25t -

i),s+(q@+ DG = for0<i <25t -1

Proof Since s¢> = s(g> 4+ 1 — 1) = s mod (g + 1)n, it follows that C; = {s}. For

OgiS”T_l—l,WChave

1 1
Cs—(qﬂ)(%—i) = {s —(@+0 <T — 1) s+(@+1) (T _ ,>}

from

s—@+ (=L oi)) = (s—@+ (=L -i)) @11
2 2

—1
ES+(q+1)<nT—i> mod (g + )n
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and

<s+(q+1)<71—i>>q2=<s+(q+1)<%—l>><q +1-1)

n—1
ES—(q+l)<——l> mod (g + 1)n.

Moreover, we show that

| n—1
Co (i) = {S—@H) (T—z),s+(q+1) (T—l)}

is disjoint for 0 < i < % —1.

In fact, we assume that there exist two integersi and j,0 <i # j < % — 1, such
that

Cs—(q+1>(%—i) - Cs—(q+1>("%—j)’

and then we have

1 ok 1
(s—(q+1)<T—t))q _s—(q+1)<T—]) mod (g + Dn

for k € {0, 1}.
If £k = 0, we have

s—(q+1)(Tl—i>—s—(q+1)<Tl—J) mod (¢ + Dn,

which is equivalent to i = j, where it is in contradiction with 0 <1i # j < % — 1.
If k = 1, we have

(s—(q+1)<Tl—i))qz_s—(q—f-l)(Tl—]> mod (¢ + Dn,

which is equivalent to n — 1 = i 4+ j mod n, where it is in contradiction with 0 <

i + j < n — 3. Therefore, the result follows. O
2
Theorem3 Letn = 1(;1 and s = % where q is an odd prime power of the form

10hm + t, m is a positive integer, both h and t are odd with 10h = 2+ 1landt > 3.
If C is a constacyclic code whose defining set is given by Z = U?ZOC

where 0 < § < W, then Cth C C.

s—(g+D (St —iy
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Proof From Lemma 1 and Lemma 2.7 of [11], we only need to consider that Z N

—qZ =0.1f ZN —qZ # 1, then there exist two integers i and j, where 0 < i, j <

W, such that

n—1 . n—1 . 2%
S—(Q+1)<T—l>E—Q<S—(Q+1)(T—1>>CI mod (g + D)n

for k € {0, 1}. We can seek some contradictions as follows.

(1) Whenk =0,

n—1 n—1 |
s—(q+1)<T—z)E—q<s—(q+l)(T—]>> mod (g + Dn

is equivalent to

1
E%—}—qj—}—imodn.

(t4+1)(g—1)—20h
= 20%

From 0 <1, j , we can seek some contradictions by considering

the following cases.

(i) When 0 < j < 242290221 e have

20h
g+1 _gq+1 .
= <« =
) +qj+1
qg+1 2g —20h =2t  (t+1)(g —t) —20h
<
=T Ty 20h
2¢> —q(10h +1t —1) — 10h —t* — ¢t
= <n.
20h
It is in contradiction with the congruence
1
0= %—I—qj—kimodn.
(i) When 24520 < j < 4a=20hdt yoq jr— j_ 202002 gy < jr < 24220
Then we have
1 2g —20h — 2t
which is equivalent to
2¢* — 10hqg — 2qt + 10h
0 = ./ .
qj] + 0h +1i
—10hqg — 2gqt + 10h — 2
=gqj’ el 26(])h+ + i mod n.
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Moreover,

0

10hg — 2qt + 10h — 2 —10hq — 2qt + 10k — 2
< =q+

20h 20h
.,  —10hg —2qt + 10h —2
<gqj + 0h +1i
<q(2q—2t> —10hq — 2gt + 10h — 2
- 20h 20h
(t+ 1)(g —1t) —20h
+ 20h
_ 2¢7—q(3t—1+10h)—10h—2—1* — ¢
= 20/1 <n.

It is in contradiction with the congruence

—10hg — 2qt 4+ 10h — 2
0=qj + el 26(])h+ + i mod n.

(iii) When % <j< W, where 3 < ¢ < % (here, if there

. oo 2(e—1)g—20n—2(e—1 o 292
exists the case of 1 > 3). Let j/ = j — 24200 2C =D gy < jr < 24220
Then we have
g+1 L 2(e—1)g —20h —2(c — i\ .
= mod n,
> +q <] + 20k +1 n

which is equivalent to

2(s — 1)g*> — 10hg — 2(s — 1)qt + 10h L

0=gqj’
a7+ 200
—10hg — 2(e — 1)gt + 10h — 2(e — 1
=qj + el (e )26(1)h+ e-D + i mod n.

Moreover,

10hg — (t — 1)(gt + 1) + 10h
<
20h
- 10hg — 2(e — 1)qt + 10h — 2(e — 1)
- 20h
n —10hg — 2(¢ — 1)qt + 10h — 2(e — 1)
20h
—10hg — 2(e — 1)gt + 10h —2(e — 1) Li
i
20h
- 2g — 2t —10hqg — 2(e — 1)qt + 10h — 2(e — 1)
- 20h 20h

0

<qj' +
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L+ D@ =1 —20h

20h
242 — q(5t — 1+ 10h) — 10h — 4 — 12 —¢
= < n.
- 20h
It is in contradiction with the congruence
—10hg —2(e — 1)gt + 10h —2(e — 1
0=4qj"+ . ¢ )2%h+ (e ) + i mod n.
(2) When k = 1,

n—1 . 3 n—1 .
S—(Q+1)<T—l)5—q (s—(q+l)<T—]>> mod (g + Dn

is equivalent to

g—-1 .
OET—i—qJ—lmodn.

(i) WhenO < j < W, we have

(10h—t—1Dg+10h+t(t+1) g—1 (t+1)(g—1) —20h
- _ _

0 —
20h 2 20h
qg—1 .
< — —
S 5 taii
qg—1 2q —20h — 2t
<
=" +q< 20h
2¢g% — q(10h + 2t) — 10h
= <n
20h

It is in contradiction with the congruence

g-—1 .
ET+q]—lm0dl’l.

. 2g-2t _ . _ 4q—20h—4t o . 2q—20h-21 o 2q=2t
(i) When == < j < 55— let j' = j son—— for 1 < j' < =5=.

Then we have

0= ta 20h

-1 2¢ — 20h — 2t
q2 <j/+ q

)—imodn,

which is equivalent to

., 2g*—10hqg —2qt — 10h .
0=aj'+ 20/ -
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o, —10hg —2q1 —10n —2

=gqj 0% — i mod n.
Moreover,
0 10hg —q@Bt + 1)+ 10h =241tz + 1)
<
20h
. —10hg —2qt — 10h —2  (t+ 1)(g —t) —20h
N 20h 20h
., —10hg —2qt — 10h —2 |
<qj _
=q; + 0% !
_ 2g — 2t —10hg — 2qt — 10h — 2
=7\ "20m 20h
2g% — q(4t + 10h) — 10h — 2
= <n
20h
It is in contradiction with the congruence
—10hg — 2qt — 10h — 2
Oqu'+ q e + i mod n.

20h

(iii) When W <j< W, where 3 < e < % (here, if there
 2(e—1)g—20h—2(e— D)t 2g—21
20h 20

exists the case of > 3). Let j' = j
Then we have

forl <) <

—1 2(e — 1)g — 20h — 2(e — 1)t
OE—q +q<j’+ (e ) >0h (& )>—imodn,

which is equivalent to

2(e — 1)g*> — 10hg — 2(s — 1)qt — 10h .

0=gqgj
4+ 201
—10hg — 2(e — 1)gt — 10h — 2(e — 1
=qj + 1 (e )ZZ)h S ) — i mod n.
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Moreover,

_ 10hg — ¢ = (gt + D) + 10k — (¢t + (g — 1)

20h
_ 10hg —2(e = (gt +1) +10h — (t + 1)(g — 1)
- 20h

—10hg —2(¢ — I)qt — 10h —2(e — 1) (1 + 1)(g — 1) — 20h
=at 204 - 20
., —10hg —2(¢ — 1)gt — 10h —2(s — 1)

=4 200 -
- (2q—2t> —10hg — 2(¢ — 1)qt — 10h —2(e — 1)
- 20h 20h

2% — g(10h + 2et) — 10h — 2(s — 1)
- 200 ="

It is in contradiction with the congruence

o, ~10hg —2( — gt — 10k —2( — )

0=gqj 0% + i mod n.

O

2
Theorem4 Letn = 10h Land s = T where q is an odd prime power of the form
10hm + t, m > 2 is a positive integer, both h and t are odd with 10h = 2 +1
andt > 3 Then there exist optimal quantum convolutional codes with parameters

(L 445 1.2,25 4 3)],, where 2 < 8 < CHDg=0=200

Proof Assume that the defining set of the constacyclic code C is
2= Comigrnegh Y Cgan(5t-1) U Y S (25t o)

where 2 < § <
Let

(t+1)(g—t)—20h
20h '

H25+3,s—(q+1)(%_5)

1 gy 52[~v—(q+1>%} §<n—1>[s—<q+1)%]
o) (o] gl

iés—(q+l)(.ngl_8+l) Ez[s—(q-l-l).(%—zwl)] %_(n—l)[s—(q+.1)(%—8+1)]
1 gs_(q“)(%_‘s) g[s (45t -0)] g Dls—@+n(*5' )]
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Since 2 = ordg+1)n (qz) from Theorem 4.2 in [36] (readers also can see Lemma 4 in
[25]), the parity check matrix H of C can be obtained from H, +3.5—(g+D) (551 ) by

expanding each entry as a column vector over some F,> —basis of F 4. Therefore Cisa

2 2
constacyclic code with parameters ["10—+hl, "10—+hl —28—2,28+3],2 from Propositions 1
and 2, where 2 < § < w.
Similarly, consider the case that the defining set of a constacyclic code Cy over F»
is

Zy =

Cs—(q+1)(";‘) v Cs—(q+1)(%—1) U Cs—(q+1)("2;'—5+1)'
Let
H st s (q+1)(” 8+1>

1 gl 52F—@+U9%} N ém—nb—m+nl;]
1 %_sf(qul)(%f]) 52[5‘7(6]+1)<%71)] %_(nfl)[sf(q+l)<%71>]

igs—(q+1)(.%—8+l> E2[s—(q+1).(%—6+1)} s 1)[9 (q+.1)( 5+1)]

From Theorem 4.2 in [36], the parity check matrix Hy of Cy can be obtained from
Hys\y oo (g+1)(25L —5+1) by expanding each entry as a column vector over some

F,>—basis of Fs. Then Cy is a constacyclic code with parameters [th , qlgzl

q
26,28 + 1],2 from Propositions 1 and 2, where 2 < § < w

Now, assume that the defining set of the constacyclic code C over F2 is Z; =
s—(q+D (%5 —8)"

Let

C

Hz,s—(q+1)(%—a)
_ [1 £ (q+1)(Tl 5) gz[s—(qﬂ)(%—a)} g(n—l)[s—(q—&—l)("%l—&)]]_

From Theorem 4.2 in [36], the parity check matrix H; of C; can be obtained from

Hy (5 ) by expanding each entry as a column vector over some F,>—basis

of F 4. We can see that C; is a constacyclic code with parameters [ql(;;ll, qlgzl 2,d >
2],2 from Proposition 1.
From the above discussion, we know that rkHy > rkH1 Therefore the con-

volutional code V generated by the matrix G(D) = Ho + HD has parameters
(th ,268,2;1 df) 2, where H() = Hj and H1 can be obtained from H; by adding

zero-rows at the bottom such that H1 has the same number of rows as Hy. We
also have d;" = 26 + 3 from Theorem 1. From Theorem 1 and Theorem 3, one
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Table 1 Sample parameters of

optimal quantum convolutional i o kowiy il

codes constructed from 157 493 [[493, 485, 15 2, 711157

Theorems 4 and 6
157 493 [[493, 481, 1; 2, 911157
157 493 [[493,477,1;2, 11]]157
157 493 [(493,473, 152, 13]];57
157 493 [[493,469, 1; 2, 15]];57
157 493 [[493,465, 152, 1711157
157 493 [[493,461, 152, 19]1;57
157 493 [[493,457,1;2,21])157
157 493 [[493, 453, 1; 2, 23]1;57
157 493 [[493, 449, 1; 2, 2511157
193 745 [[745,737,1;2, 71193
193 745 [[745,733,1;2, 911193
193 745 [[745,729, 1; 2, 11]]193
193 745 [[745,725, 1; 2, 1311193
193 745 [[745,721, 1; 2, 15]1193
193 745 [[745,717, 1; 2, 1711193
193 745 [[745,713,1; 2, 19]]193
193 745 [[745. 709, 1; 2, 2111103
193 745 [[745.705, 1: 2, 2311103
193 745 [[745. 701, 1: 2, 25]]103
193 745 [[745. 697, 1: 2, 2711103
193 745 [[745, 693, 1; 2, 2911193
193 745 [[745, 689, 1; 2, 3111193

has V C V1. Therefore, there exist quantum convolutional codes with parameters

?+1 g*+1 . (t+1)(g—1)—20h
[(W’ o — 46,152,286 + 3)], from Theorem 2, where 2 < § < o
From Proposition 3, we can see that these codes constructed here are optimal. O

The following Theorem 5 is obtained by using the method of Theorem 3.

2 2
Theorem5 Letn = % and s = %, where q is an odd prime power of the form
10hm~+10h—t, m is a positive integer, both h andt are odd with 10h = t>*+1 andt > 3.

If C is a constacyclic code whose defining set is given by Z = U?:OCS—(qH)(%—i)’

(2 —pa)—
where 0 < § < 14 (tzoht+2) 201 then CLh C C.

Theorem 6 Letn = q120_+hl ands = #, where g = 10hm + 10h — t is an odd prime,
m is a positive integer, both h and t are odd with 10h = t2+1andt > 3. Then there

2 2
exist quantum convolutional codes with parameters [(%, % —48,1;2,25+3)]y,

(t+1)g— (12 —1+42)—20h
where2 < § < 0% .
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Proof Since the proof presented here uses the same method of Theorem 4, we just
give a sketch. Assume that the defining set of the constacyclic code C is

Cs—(q-i—l)(%) U CS_(Q"'I)(”E] _1) J---u Cs—(q+1)(%—5)’

(2 —t42)— . . .
where 2 < § < U+l (’20h1+2) 20" Then C is a constacyclic code with parameters

2 2 2
(o> done =28 — 2,26+ 3]pfor2 <6 < (g~ ~1FD=200 334 assume that
its parity check matrix is H. Similarly, consider the case that the defining set of the

constacyclic code Cp over F 2 is

Zo = Cs—(q+1)("7*1) U Cs—(q+1)(%—1) U U Cs—(q+1)(%—5+1)'

Then Cp is a constacyclic code with parameters [ 10h , qthll — 268,28 + 1]q2 and
assume that its parity check matrix is Hy. Now, assume that the defining set of the

constacyclic code C; over F isZ =C,_ (q+1) (258" Then C; is a constacyclic
g +1 241

code with parameters ["IOh s Ton —-2,d > Z]qz and assume that its parity check
matrix is Hj.
From the above discussion, we know that rkHy > rkH;. Therefore, the con-

volutional code V generated by the matrix G(D) = Ho + HiD has parameters
(ql(;;l ,28,2;1,d f)qz where Ho = Hp and H1 can be obtained from Hj by adding

zero-rows at the bottom such that H1 has the same number of rows as Hy. We have
d L — 2 + 3 from Theorem 1. From Theorems 1 and 5, one has V C Vlh Therefore,

there exist quantum convolutional codes with parameters [(ql(;l1 - () h —46,1;2,26+

(2 —142)—
3)]4 from Theorem 2, where 2 < § < (t+Dg (t20h1+2) 201 From Proposition 3, we
can see that these codes constructed here are optimal. O

Example1 Leth = 5, m = 3 and t = 7, then we have ¢ = 157 and n = 493 from
Theorem 4. Moreover, we can obtain some optimal quantum convolutional codes listed
in Table 1.

Example2 Leth = 5, m = 3 and t = 7, then we have ¢ = 193 and n = 745 from
Theorem 6. Moreover, we can obtain some optimal quantum convolutional codes listed
in Table 1.

4 Constructions of optimal asymmetric quantum codes

In this section, we state some definitions and basic results in [28-30,32,33], and then
we utilize the constacyclic codes to construct some families of optimal asymmetric
quantum codes with greater asymmetry compared with those codes constructed from
[12,16,17,42,46,49] except for very a few codes.

Let H be the Hilbert space H = C4" = C4 ® - -- X CY. Let |x) be the vectors of
an orthonormal basis of C?, where the notion x represents the elements of F;,. Given
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a, b € F,, the unitary operators X (a) and Z(b) in C? are defined by
X(a) | x) =|x +a)
and
Z(®) | x) = " | x),
respectively, where w = exp(27i/p) is a pth root of unity and ¢r is the trace map

from Fj to F),. Considera = (a1, az, -+, a,) € Fq" andb = (b, by,--- ,by,) € Fq”.
Let

X(a) = X(a1) @ X(a2) ® --- ® X(an)
and
Z(a)=2Z(b1)®Z(b) ®--- & Z(bn)

be the tensor products of n error operators. The set
E, = {X(a)Z(b) la,be F;}
is an error basis on the complex vector space C?" and the set
G, = {ch(a)Z(b) la,beF" cc F,,}

is the error group associated with E,. For a quantum error ¢ = w“X(a)Z(b) € G,,
the quantum weight wg(e), the X-weight wx (e) and the Z-weight wz(e) of e, are
defined, respectively, by

wo(e) =1{i : 1 <i <n,(a;,b;) #(0,0)},
wxle) =i : 1 <i <n,a #0},
wz(e) =8{i : 1 <i <n,b #0}.

Definition 2 [28] A g-ary asymmetric quantum code Q, denoted by [[n, k, d; /d\]l,,
is a ¢*-dimensional subspace of the Hilbert space C¢", which can control all qudit-flip
errors up to | (dy — 1)/2] and all phase-shift errors up to | (d; — 1)/2].

Theorem 7 given as follows from [42] shows the construction of construct asym-
metric quantum codes. This result holds for the Euclidean and Hermitian case.

Theorem 7 [42] (CSS Construction) Let C; be a classical code with parameters
[n, k;, di]qz fori = 1,2, with CIL” C Cy. Then there exists an asymmetric quan-
tum code Q with parameters [[n, ki + ky — n, dz/dx]]qz, where d, = wt(Cl\C;‘h)
and d, = wt(C2\C™).

@ Springer



40 Page 180f29 J.Chenetal.

Proposition 4 [42] (Quantum Singleton bound) If an [[n,k, d, /dx]]qz asymmetric
quantum code C exists, then

d;+dy <n—k+2.

Ifd, +dy, =n —k + 2, then C is called an optimal asymmetric quantum code.

In the following part of this section, we focus on the construction of optimal asym-
metric quantum codes by using constacyclic codes with length ql (;;l Additionally,

these families of optimal asymmetric quantum codes have larger asymmetry com-
pared with most of the ones in the literature.

2
Theorem 8 Letn = 10h Lands = 2+ L Then there exist optimal asymmetric quantum
codes as follows.
q2+1 q2+1 . .
(D [[IO_h’ Ton — 2(81 + 82 + 2),281 +3/2672 + 3]]q2, where q is an odd prime
power of the form 10hm +t, m is an odd, both h and t are odd with 10h = 1> + 1
andt > 3, both 81 and &, are integers such that 0 < §; < 4 2]82 ! and 153
& < % + qéd1.
2 2
) [[qlT';l, % —2(81 + 82 +2),281 + 3/282 + 3112, where q is an odd prime
power of the form 10hm +t, m > 2 is an even, both h and t are odd with
10h =2+ 1andt > 3, both 81 and &y are integers such that 0 < §; < quzgzl*t
and 42 < 8, < 42 + ¢é).

Proof Let C; be a constacyclic code with the defining set

Z, = C
L= Yj=0%_ (q+1)(——1)
from Lemma 1, where 0 < §; < 4= 1(());: ! and then C; is an optimal constacyclic code

with parameters [n,n — 281 — 2,281 + 3] P from Propositions 1 and 2. Let C> be a
constacyclic code with the defining set

from Lemma 1, where % <& < % +¢41, then C; is an optimal constacyclic code

with parameters [n, n — 28, — 2,262 + 3]q2 from Propositions 1 and 2. For 0 < §; <

4 218;: ! and == =3 <5, < %3 + g8}, we can obtain Cf‘h C C,, where Cf"’ and C; are

both constacychc codes from Lemma 2.5 of [1 1]. In fact, we only need to show that
ZoN—qZ; = Pfor0 < & < 90" and 152 < 8, < 423 44811 ZoN—qZ; # 0,

IOh t -3 -3
then there exist two integers 0 < 8 < 4= >on— and qT <é < qT + ¢4} such that

s—(q+1)(Tl—32>E_q<s—(q+1)(Tl—a>>q2kmod(q+1)n
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for k € {0, 1}.
If Kk = 0, we have

n—1 , n—1 ,
S—(Q+1)<T—52>E—CI(S—(Q+1)<T—51)) mod (g + Dn,

ie.,

1
05%4—5&—1—613/1 mod .

Since

—10h—1  q*—1tq— 10k
20n 10h

<n,

+1
q—liqT+5§+f15§§q—1+2qq

which is in contradiction with 0 = qzil + 8, + ¢8| mod n.

If k = 1, we have

—1 -1
s—<q+1>(”T—3§>s—q3(s—<q+1>(”7—ai>) mod (g + Dn,

/ 1 /
8, = — + ¢6; mod n.

Since % < 8’2 < % +¢8, itis a contradiction. Therefore, we can obtain asymmet-
ric quantum codes with parameters [[n, n — 2(81 + 82 +2), 262 + 3/261 + 3]]q2 from

Theorem 7, where 0 < §; < 4_218;:_’, % <& < % + ¢81. From Proposition 4,
we can see that these codes are asymmetric quantum MDS codes.
(2) The proof is similar with (1), so we omit it. m|

Example3 Let h = 5, m = 3 and t = 7, then we have ¢ = 157 and n = 493.
Furthermore, we have 0 < §; < 1 and 77 < 6, < 77 + 1576;. Therefore, there exist
some optimal asymmetric quantum codes from Theorem 8 listed in Table 2.

Example4 let h = 5, m = 2 and t = 7, then we have ¢ = 107 and n = 229.
Furthermore, we have §; = 0 and §; = 52. Therefore, there exists an optimal asym-
metric quantum codes with parameters [[229, 121, 107/3]] g% Leth =5, m = 6 and
t =7, then we have ¢ = 307 and n = 1885. Furthermore, we have 0 < §; < 2 and
152 < 87 < 152 + 3076;. Therefore, there exist some optimal asymmetric quantum
codes from Theorem 8 listed in Table 2.

2 2
Theorem 9 Letn = q10_+hl ands = %. Then there exist optimal asymmetric quantum
codes as follows.
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Table2 Sample parameters of
optimal asymmetric quantum
codes constructed from
Theorem 8

@ Springer

q n [[n, &, dz/dx 11,2
157 493 (1493, 335, 157/3]] 572
157 493 (1493, 333, 157/5]] 572
157 493 (1493, 331, 159/5]] 572
157 493 (1493, 329, 161/5]] 572
157 493 (1493, 327, 163/5]] 572
157 493 (1493, 325, 165/5]] 572
157 493 (1493, 323, 167/5]] 572
157 493 (1493, 27, 463/5]1, 52
157 493 [[493, 25, 465/5]1, 52
157 493 (1493, 23, 467/511, 52
157 493 (1493, 21, 469/511, 52
157 493 (1493, 19, 471/5]1, 52
307 1885 (11885, 1577, 307/31]572
307 1885 (11885, 1575, 307/51]372
307 1885 (11885, 1573, 309/51]572
307 1885 [[1885, 1571, 311/5])572
307 1885 (11885, 1569, 313/51]572
307 1885 [[1885, 1567, 315/5]]372
307 1885 (11885, 969, 913/5]132
307 1885 (11885, 967, 915/5]132
307 1885 [[1885,965,917/5]132
307 1885 (11885, 963, 919/5]132
307 1885 [[1885,961,921/5]132
307 1885 (11885, 1573, 307/71]3072
307 1885 (11885, 1571, 309/71]5072
307 1885 (11885, 1569, 311/7]1372
307 1885 (11885, 1597, 313/71]372
307 1885 [[1885, 351, 1529/71]572
307 1885 [[1885.349, 1531/71]372
307 1885 (11885, 347, 1533/71]3072
307 1885 [[1885. 345, 153571372
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Table 3 Sample parameters of
optimal asymmetric quantum

codes constructed from
Theorem 9

[in k. d /dx 11,2

193
193
193
193
193
193
193

193
193
193
193
193
443
443
443
443
443

443
443
443
443
443
443
443

443
443
443
443
443
443
443

443
443
443

745
745
745
745
745
745
745

745
745
745
745
745
3925
3925
3925
3925
3925

3925
3925
3925
3925
3925
3925
3925

3925
3925
3925
3925
3925
3925
3925

3925
3925
3925

[[745. 551, 193/3]] 932
(1745, 549, 193/51], 932
[[745. 547, 193/5]1 932
[1745, 545, 195/51] 932
[[745. 543, 197/5]1 952
(1745, 541, 199/5]] 952
[1745, 539, 201/51] 932

[[745. 171, 571/5]1 932
(1745, 169, 573/5]1 932
(1745, 167, 575/51] 932
[[745. 165, 577/511 932
[[745. 163, 579/5]1 932
[[3925, 3481, 443/3]],, 32
[[3925, 3479, 443 /511,32
[[3925, 3477, 445/51]45
[[3925, 3475, 447/5]],, 32
[[3925, 3473, 449/51],,2

[[3925, 2597, 1325/5]1,432
[[3925, 2595, 1327/5]1,43
[[3925, 2593, 1329/5]1,432
[[3925, 3477, 443 /7], 32
[[3925. 3475, 445/7]],432
[[3925, 3473, 447/71],32
[[3925, 3471, 449/7],, 2
[[3925, 1709, 2211/7]1,5
[[3925, 1707, 2213/711 432
[[3925, 1705, 2215/7]1432
[[3925, 3475, 443 /911,32
[[3925, 3473, 44591132
[[3925. 3471, 447/9]],432
[[3925, 3469, 449/911,., 32

(13925, 821,3097/9]] 452
(13925, 819, 3099/91],52
(13925, 817, 3101/91] 452
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(1) [[%, W — 2081 + 82+ 2),281 +3/26, + 3]] 2, where q is an odd prime
power of the form 10hm + 10h — t, m is an odd both h and t are odd with
10h =2+ 1andt > 3, both 81 and &y are integers such that 0 < §; < %
and 152 < 5y < 153 + 6.

2) [[qlzo—+hl, q120_+hl — 2081 + 82 +2),251 +3/26, + 3]]q2, where q is an odd prime
power of the form 10hm + 10h — t, m > 2 is an even, both h and t are odd with
10h =12 +1 andt > 3, both 81 and 8, are integers such that 0 < §; < 4= 30n+t

20h
and q; < <L~ —I— qd1.

Proof We omit the proof of this theorem because it is similar with the proof of Theo-
rem 8. o

Example5 Let h = 5, m = 3 and t = 7, then we have ¢ = 193 and n = 745.
Furthermore, we have 0 < §; < 1 and 95 < 8, < 95 + 1936;. Therefore, there exist
optimal asymmetric quantum codes from Theorem 9 listed in Table 3.

Example6 Let h = 5, m = 8 and t = 7, then we have ¢ = 443 and n = 3925.
Furthermore, we have 0 < §; < 3 and 220 < 8, < 220 + 44365;. Therefore, there
exist asymmetric quantum codes from Theorem 9 listed in Table 3.

5 Conclusion and discussion

In this paper, constacyclic codes with length n = ‘112()—+hl are utilized to construct
two families of optimal quantum convolutional codes, where g is an odd prime
power with the form ¢ = 10hm + t or ¢ = 10hm + 10h — t, where m is a pos-
itive integer, both 4 and ¢ are odd with 104 = > + 1 and t > 3. Additionally,

optimal quantum convolutional codes constructed in this paper with length 4 10h
are not covered in [16,34,35,38,48,50,51] except for the case of # = 1. In [50],
Zhang et al. studied a class of optimal quantum convolutional codes with parameters

[(‘1131, qlgl 48,1;2,28 + 3)],, where g is an odd prime power with the form

10m 4 3 or 10m + 7, where m > 2 is a positive integer and § is a positive inte-

ger such that 2 < § < 2m — 1 (the range of § is equivalent to 2 < § < q;S or

2<48< —) while the range of § from Theorems 4 and 6is 2 < § < 58 or

2<46< %, respectively, which implies that optimal quantum convolutional codes

2
with length % constructed from Theorem 6 are better than the ones in [50]. Finally,
we weaken the case of Hermitian dual-containing codes applied to construct optimal
asymmetric quantum codes with parameters [[n, k, d; /d ]] 2 and obtain four families

of asymmetric quantum codes with length ql()+h When i = 1, we can obtain the result

of Theorems 5 and 6 in [19] with length q dlrectly In Table 4, we state some fam-
ilies of optimal asymmetric quantum codes available in [12,16,17,42,46,49] as well
as the new families of optimal asymmetric quantum codes constructed in this paper.
We give the parameters [[n, k, d; /dx]],> of optimal asymmetric quantum codes in the
first column; the range of parameters in the second column; the minimum distance
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d, of the corresponding asymmetric quantum codes in the third column, and the cor-
responding references in the fourth column. From Table 4, although the lengths are
different, the lower bound of the range of d, of those codes constructed in this paper
is larger than the upper bound of the codes in [12,16,17,42,46,49] except for very a
few codes that can achieve the bound ¢ + 1 or ¢ in [12,42,49]. It means that these
codes constructed from Theorems 8 and 9 can correct quantum errors with greater
asymmetry. In the future work, we will search for other methods to construct opti-
mal asymmetric quantum codes with greater asymmetry and other optimal quantum
convolutional codes.
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