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Abstract
In this paper, some families of asymmetric quantum codes and quantum convolutional
codes that satisfy the quantum Singleton bound are constructed by utilizing consta-

cyclic codes with length n = q2+1
10h , where q is an odd prime power with the form

q = 10hm + t or q = 10hm + 10h − t , where m is a positive integer, and both
h and t are odd with 10h = t2 + 1 and t ≥ 3. Compared with those codes con-
structed in the literature, the parameters of these constructed quantum codes in this
paper are more general. Moreover, the distance dz of optimal asymmetric quantum
codes [[n, k, dz/dx ]]q2 here is larger than most of the ones given in the literature.

Keywords Constacyclic codes · Asymmetric quantum codes · Quantum
convolutional codes · Quantum Singleton bound

1 Introduction

The construction of quantum error-correcting codes (quantum codes for short) with
goodparameters is a hot topic in the area of quantum information and quantumcomput-
ing. Some scholars used classical codes to construct some classes of good quantum
codes in [4,9,24,26,27,44]. In particular, maximal-distance-separable (MDS) codes
that satisfy the classical Singleton bound are an important part of cyclic codes which
have been fully studied in [20]. These codes that attain the Singleton bound are opti-
mal codes. Some scholars have researched other classes of cyclic codes in [5–8,10]. In

B Yuanyuan Huang
yyhuangcuit@126.com

1 College of Computer and Information Sciences, Fujian Agriculture and Forestry University,
Fuzhou 350002, China

2 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan 430079, China

3 Department of Network Engineering, Chengdu University of Information Technology, Chengdu
610225, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-018-2156-7&domain=pdf
http://orcid.org/0000-0001-9114-375X


40 Page 2 of 29 J. Chen et al.

[23], Kai et al. studied some families of constacyclic codes attaining the classical Sin-
gleton bound that are called optimal codes. Moreover, constacyclic codes contained
cyclic codes and negacyclic codes. The construction of optimal codes is an impor-
tant research in classical coding theory as well as in quantum coding theory, where
quantum codes satisfying the quantum Singleton bound are optimal [13]. Relative
to cyclic codes, constacyclic codes can provide a good source to construct optimal
quantum codes. In [21], Kai et al. utilized negacyclic codes to construct two fami-
lies of optimal quantum codes. In [22], Kai et al. constructed two families of good
quantum codes and a family of optimal quantum codes by using negacyclic codes.
Some families of constacyclic codes were used to construct optimal quantum codes
in [45]. In [11], the authors constructed some families of constacyclic codes that were
different from the ones in [23] and utilized them to construct optimal quantum codes.
For more details of constructions of optimal quantum codes, the readers can consult
[40,43].

Quantum codes defined over quantum channels where qudit-flip errors and phase-
shift errors may have different probabilities are called asymmetric quantum codes
[29]. In many quantum mechanical systems, the probabilities of occurrence of
qudit-flip and phase-shift errors are quite different [28]. For the past two decades,
some researchers studied the constructions of good asymmetric quantum codes
[32,33,37]. In [28–30], La Guardia obtained some families of good asymmetric
quantum codes compared with the ones in [1]. Qian et al. used q2-ary cyclotomic
cosets to construct a family of optimal asymmetric quantum codes in [42]. In
[12], Chen et al. studied optimal asymmetric quantum codes by using negacyclic
codes. In [16], Chen et al. also constructed some families of optimal asymmet-
ric quantum codes from constacyclic codes. In [46], Wang et al. used constacyclic
codes in [23] to obtain some classes of optimal asymmetric quantum codes. Xu
et al. constructed two families of optimal asymmetric quantum codes by using a
skew symmetric coset and skew asymmetric coset pair of constacyclic codes in
[47]. For more constructions of asymmetric quantum codes, the readers can consult
[13,17,19,39].

Recently, some researchers studied the constructions of good quantum convolu-
tional codes [2,3,14–16,18]. In [31], La Guardia utilized some classes of cyclic codes
to construct some good quantum convolutional codes compared with the ones in
[2]. In [34], the optimal quantum convolutional codes constructed from BCH cyclic
codes were studied by La Guardia. In [35], La Guardia used negacyclic codes to
construct two families of optimal quantum convolutional codes. In [36], La Guardia
constructed some families of optimal convolutional codes and asymmetric quantum
codes by using constacyclic codes. In [38,48], the authors studied some families
of optimal quantum convolutional codes by using constacyclic codes with different
lengths.

In thiswork, some families of optimal quantumconvolutional codes and asymmetric

quantum codes are constructed from constacyclic codes with length n = q2+1
10h , where

q is an odd prime power with the form q = 10hm + t or q = 10hm + 10h − t ,
where m is a positive integer, both h and t are odd with 10h = t2 + 1 and t ≥ 3.
Compared with [12,16,17,42,46,49], in which the authors constructed some classes of
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optimal asymmetric quantum codeswith parameters [[n, k, dz /dx ]]q2 in theHermitian
case, where dz is the minimum distance corresponding to phase-shift errors and dx
is the minimum distance corresponding to qudit-flip errors, the minimum distance
dz of optimal asymmetric quantum codes constructed in this paper is larger except
for very a few codes. It also shows that these constructed codes in this paper have
greater asymmetry than most of the ones in [12,16,17,42,46,49] and are shown as
follows.

(1) [[ q2+1
10h ,

q2+1
10h −2(δ1+δ2+2), 2δ1+3/2δ2+3]]q2 ,where q is an odd prime power

of the form10hm+t ,m is an odd, both h and t are oddwith 10h = t2+1 and t ≥ 3,
both δ1 and δ2 are integers such that 0 ≤ δ1 ≤ q−10h−t

20h and q−3
2 ≤ δ2 ≤ q−3

2 +qδ1.

(2) [[ q2+1
10h ,

q2+1
10h − 2(δ1 + δ2 + 2), 2δ1 + 3/2δ2 + 3]]q2 , where q is an odd prime

power of the form 10hm + t , m ≥ 2 is an even, both h and t are odd with
10h = t2 + 1 and t ≥ 3, both δ1 and δ2 are integers such that 0 ≤ δ1 ≤ q−20h−t

20h

and q−3
2 ≤ δ2 ≤ q−3

2 + qδ1.

(3) [[ q2+1
10h ,

q2+1
10h − 2(δ1 + δ2 + 2), 2δ1 + 3/2δ2 + 3]]q2 , where q is an odd prime

power of the form 10hm + 10h − t , m is an odd, both h and t are odd with
10h = t2 + 1 and t ≥ 3, both δ1 and δ2 are integers such that 0 ≤ δ1 ≤ q−20h+t

20h

and q−3
2 ≤ δ2 ≤ q−3

2 + qδ1.

(4) [[ q2+1
10h ,

q2+1
10h − 2(δ1 + δ2 + 2), 2δ1 + 3/2δ2 + 3]]q2 , where q is an odd prime

power of the form 10hm + 10h − t , m ≥ 2 is an even, both h are t are odd with
10h = t2 + 1 and t ≥ 3, both δ1 and δ2 are integers such that 0 ≤ δ1 ≤ q−30h+t

20h

and q−3
2 ≤ δ2 ≤ q−3

2 + qδ1.

Additionally, we construct two new families of optimal quantum convolutional
codes that are more general relative to the ones in [16,34,35,38,48,50,51] and showed
as follows.

(1) [( q2+1
10h ,

q2+1
10h − 4δ, 1; 2, 2δ + 3)]q , where q is an odd prime power of the form

10hm + t , m ≥ 2 is a positive integer, both h and t are odd with 10h = t2 + 1
and t ≥ 3, and δ is an integer such that 2 ≤ δ ≤ (t+1)(q−t)−20h

20h .

(2) [( q2+1
10h ,

q2+1
10h − 4δ, 1; 2, 2δ + 3)]q , where q is an odd prime power of the form

10hm + 10h − t , m is a positive integer, both h and t are odd with 10h = t2 + 1

and t ≥ 3, and δ is an integer such that 2 ≤ δ ≤ (t+1)q−(t2−t+2)−20h
20h .

The main organization of this paper is as follows. In Sect. 2, we present some
basic concepts and results about q2-cyclotomic cosets and η-constacyclic codes. In
Sect. 3, we review the method of classical convolutional codes constructed from the
parity check matrix in the Hermitian case, and then we introduce some concepts and
basic results of quantum convolutional stabilizer codes based on a quantum stabilizer.
Finally, two families of optimal quantum convolutional codes are constructed by using

constacyclic codes with length q2+1
10h . In Sect. 4, we recall some basic concepts and

results of asymmetric quantum codes under the Hermitian construction, and then we
construct four families of optimal asymmetric quantum codes by using constacyclic

codes with length q2+1
10h .
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2 Review of constacyclic codes

In this section, we recall some basic results about constacyclic codes in [11,23].
Throughout this paper, let Fq2 be the finite field with q2 elements, where q is a

power of p and p is an odd prime number. We assume that n is a positive integer
relatively prime to q, i.e., gcd(n, q) = 1. If C is a k-dimensional subspace of Fn

q2
,

then C is said to be an [n, k]-linear code. The number of nonzero components of c ∈ C
is said to be the weight wt(c) of the codeword c. The minimum nonzero weight d of
all codewords in C is said to be the minimum weight of C. Given η ∈ F∗

q2
, a linear

code C of length n over Fq2 is said to be η-constacyclic if

(ηcn−1, c0, c1, . . . , cn−2) ∈ C

for every

(c0, c1, . . . , cn−1) ∈ C.

When η = −1, then C is a negacyclic code. When η = 1, then C is a cyclic code. We
know that a q2-ary η-constacyclic code C of length n is an ideal of Fq2 [x]/〈xn − η〉
and C can be generated by a monic polynomial g(x) which divides xn − η. Let aq =
(aq0 , aq1 , . . . , aqn−1) denote the conjugation of the vector a = (a0, a1, . . . , an−1). For
u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . , vn−1) ∈ Fn

q2
, the Hermitian inner

product is defined as

〈u, v〉h = u0v
q
0 + u1v

q
1 + · · · + un−1v

q
n−1.

The Hermitian dual code of C can be defined as

C⊥h =
{
u ∈ Fn

q2 | 〈u, v〉h = 0 for all v ∈ C
}

.

If C ⊆ C⊥h , then C is called a Hermitian self-orthogonal code. If C⊥h ⊆ C, then C is a
Hermitian dual-containing code. Let ω be a primitive element of Fq2 and η = ωv(q−1)

for some v ∈ {0, 1, 2, . . . , q}. Then the order r of η in F∗
q2

is equal to q+1
gcd(v,q+1) . From

[23], we can see that the Hermitian dual C⊥h of an η-constacyclic code over Fq2 is an
η-constacyclic code according to ηηq = 1. We assume that η ∈ F∗

q2
is a primitive r -th

root of unity, and then there exists a primitive rn-th root of unity over some extension
field of Fq2 , denoted by ξ , such that ξn = η. Hence, the elements ξ1+ri are the roots
of xn − η for 1 ≤ i ≤ n − 1. Let Orn = {1 + jr |0 ≤ j ≤ n − 1}. For each i ∈ Orn ,
let

Ci =
{
i, iq2, iq4, . . . , iq(2k−2)

}
(mod rn),

where k is the smallest positive integer such that i(q2)k ≡ i(mod rn), and then
Ci is called the q2-cyclotomic coset modulo rn containing i . It is easy to see that the
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defining set Z is a union of some q2-cyclotomic cosetsmodulo rn. The defining set of a
constacyclic codeC = 〈g(x)〉of lengthn is the set Z = {i ∈ Orn | ξ i isa root of g(x)}.
Let C be an [n, k] constacyclic code over Fq2 with defining set Z . Then the Hermitian
dual C⊥h has a defining set

Z⊥h = {z ∈ Orn| − qz(mod rn) /∈ Z}.

Proposition 1 [11,23,25] (The BCH bound for constacyclic codes) Assume that
gcd(n, q) = 1. Let C be a q2-ary η-constacyclic code of length n. If the genera-
tor polynomial g(x) of C has the elements {ξ1+ri | 0 ≤ i ≤ d − 2} as the roots where
ξ is a primitive rn-th root of unity, then the minimum distance of C is at least d.

Proposition 2 [41] (Singleton bound) If an [n, k, d] linear code C exists, then

k ≤ n − d + 1.

If k = n − d + 1, then C is called an optimal code.

3 Constructions of optimal quantum convolutional codes

In this section, we firstly state some basic notions of classical convolutional codes in
the Hermitian case, and then we state the construction of classical convolutional codes
by utilizing the method of dividing the parity check matrix into some submatrices
[2,3]. Additionally, based on classical convolutional codes and stabilizer of quantum
codes, we state some concepts and basic results of quantum convolutional stabilizer
codes. Finally, we construct two families of optimal quantum convolutional codes by

using constacyclic codes with length q2+1
10h in the Hermitian case. For more details

about classical convolutional codes and quantum convolutional codes, the readers can
consult [2,3,31,34–36].

A polynomial encoder matrix G(D) = (gi j ) ∈ Fq2 [D]k×n is called basic if G(D)

has a polynomial right inverse. If the overall constraint length γ = ∑k
i=1 γi has the

smallest value among all basic generator matrices of the convolutional code C, then the
basic generator matrix of the convolutional code C is said to be reduced. For this case,
the overall constraint length γ is called the degree of the convolutional code C. The
weight of an element v(D) ∈ Fq2 [D]n is defined as wt(v(D)) = ∑n

i=1 wt(vi (D)),

wherewt(vi (D)) is the number of nonzero coefficients of vi (D).Foru(D) = ∑
i ui D

i

and v(D) = ∑
j v j D j in Fq2 [D]n , the Hermitian inner product is defined as

〈u(D)|v(D)〉h = ∑
i uiv

q
i , where ui , vi ∈ Fn

q2
and v

q
i = (v

q
1i , v

q
2i , . . . , v

q
ni ).

C⊥h = {u(D) ∈ Fq2 [D]n|〈u(D)|v(D)〉h = 0 f or all v(D) ∈ C} denotes the Hermi-
tian dual of a convolutional code C.
Definition 1 [2,3] A rate k/n convolutional code C with parameters (n, k, γ ; μ, d f )q2

is a submodule of Fq2 [D]n generated by a reduced basic matrix G(D) = (gi j ) ∈
Fq2 [D]k×n, that is, C = {u(D)G(D)|u(D) ∈ Fq2 [D]k}, where n is the length, k
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is the dimension, γ = ∑k
i=1 γi is the degree, where γi = max1≤ j≤n {deg gi j },

μ = max1≤i≤k{γi } is the memory and d f = wt(C) = min{wt(v(D))| v(D) ∈
C, v(D) �= 0} is the free distance of the code.

Now,we state some results about classical convolutional codes available in [2,3,34–
36].

Let [n, k, d]q2 be a block code with the parity check matrix H , which can be
partitioned into μ + 1 disjoint submatrices Hi such that H = [H0, H1, . . . Hμ]T,

where each Hi has n columns. Therefore, the polynomial matrix G(D) is given as
follows.

G(D) = H̃0 + H̃1D + H̃2D
2 + · · · + H̃μD

μ. (1)

A convolutional code V can be generated by the matrix G(D) that has κ rows, where
κ is the maximum number of rows among the matrices Hi . The matrices H̃i can be
derived from the matrices Hi by adding zero-rows at the bottom such that the matrices
H̃i have κ rows in total. Using this method, the authors constructed different classical
convolutional codes in [2,3,34,35].

Theorem 1 [2,3,34,35]Let C ⊆ Fn
q2

be an [n, k, d]q2 codewith the parity checkmatrix
H ∈ F (n−k)×n

q2
. Assume that H is partitioned into submatrices H0, H1, . . . , Hμ as

above such that κ = rkH0 and rkHi ≤ κ for 1 ≤ i ≤ μ. Consider the matrix G(D)

in (1), and then we have:

(a) The matrix G(D) is a reduced basic generator matrix.
(b) If C⊥h ⊆ C, then the convolutional code V = {v(D) = u(D)G(D)|u(G) ∈

Fn−k
q2

[D]} satisfies V ⊂ V⊥h .

(c) If d f and d
⊥h
f denote the free distance of V and V⊥h , respectively, di denotes the

minimum distance of the code Ci = {v ∈ Fn
q2

|v H̃ t
i = 0} and d⊥h is the minimum

distance of C⊥h , then one has min{d0 + dμ, d} ≤ d⊥h
f ≤ d and d f ≥ d⊥h .

Based on classical convolutional codes, the authors introduced the stabilizer of
quantum block codes into constructing quantum convolutional stabilizer codes in [2,
3,34,35].

The stabilizer is given by a matrix of the form

S(D) = (X(D)|Z(D)) ∈ Fq [D](n−k)×2n

which satisfies X(D)Z(1/D)t − Z(D)X(1/D)t = 0. Consider a quantum convolu-
tional code C defined by the full-rank stabilizer matrix S(D) given above, and then C
is a rate k/n quantum convolutional code with parameters [(n, k, μ; γ, d f )]q , where
n is called the frame size and k is the number of logical qudits per frame. The memory
of the quantum convolutional code is

μ = max1≤i≤n−k,1≤ j≤n{max{degXi j (D), degZi j (D)}},
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while d f is the free distance and γ is the degree of the code. Additionally, the constraint
lengths of quantum convolutional codes are defined as

γi = max1≤ j≤n{max{degXi j (D), degZi j (D)}}.

Moreover, the overall constraint length is defined as γ = ∑n−k
i=1 γi . For more details

about quantum convolutional stabilizer codes, readers can consult [2,3,34,35].
In order to construct quantum convolutional stabilizer codes with good parameters,

the authors used classical convolutional codes to construction of quantum convolu-
tional stabilizer codes in [2].

Theorem 2 [2] Let C be an (n, (n − k)/2, γ ;μ, d∗
f )q2 convolutional code such that

C ⊆ C⊥h . Then there exists an [(n, k, μ; γ, d f )]q quantum convolutional stabilizer
code, where d f = wt(C⊥h\C).

Proposition 3 [2] (Quantum Singleton bound) The free distance of an [(n, k,
μ; γ, d f )]q pure convolutional stabilizer code is bounded by

d f ≤ n − k

2

(
 2γ

n + k
� + 1

)
+ 1 + γ.

If a quantum convolutional stabilizer code can achieve this bound, then it is called an
optimal quantum convolutional stabilizer code.

In the following part of this section, we compute q2-cyclotomic cosets of con-

stacyclic codes with length q2+1
10h and study the case of Hermitian dual contain of

constacyclic codes over Fq2 . Here, we focus on the construction of quantum convo-
lutional stabilizer codes (quantum convolutional codes for short).

Lemma 1 Let n = q2+1
10h and s = q2+1

2 , where q is an odd prime power of the form
10hm + t or 10hm + 10h − t , m is a positive integer, both h and t are odd with
10h = t2 + 1 and t ≥ 3. Then Cs = {s} and Cs−(q+1)( n−1

2 −i) = {s − (q + 1)( n−1
2 −

i), s + (q + 1)( n−1
2 − i)} for 0 ≤ i ≤ n−1

2 − 1.

Proof Since sq2 = s(q2 + 1 − 1) ≡ s mod (q + 1)n, it follows that Cs = {s}. For
0 ≤ i ≤ n−1

2 − 1, we have

Cs−(q+1)( n−1
2 −i) =

{
s − (q + 1)

(
n − 1

2
− i

)
, s + (q + 1)

(
n − 1

2
− i

)}

from

(
s − (q + 1)

(
n − 1

2
− i

))
q2 =

(
s − (q + 1)

(
n − 1

2
− i

))
(q2 + 1 − 1)

≡ s + (q + 1)

(
n − 1

2
− i

)
mod (q + 1)n
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and

(
s + (q + 1)

(
n − 1

2
− i

))
q2 =

(
s + (q + 1)

(
n − 1

2
− i

))
(q2 + 1 − 1)

≡ s − (q + 1)

(
n − 1

2
− i

)
mod (q + 1)n.

Moreover, we show that

C
s−(q+1)

(
n−1
2 −i

) =
{
s − (q + 1)

(
n − 1

2
− i

)
, s + (q + 1)

(
n − 1

2
− i

)}

is disjoint for 0 ≤ i ≤ n−1
2 − 1.

In fact, we assume that there exist two integers i and j , 0 ≤ i �= j ≤ n−1
2 −1, such

that

C
s−(q+1)

(
n−1
2 −i

) = C
s−(q+1)

(
n−1
2 − j

),

and then we have
(
s − (q + 1)

(
n − 1

2
− i

))
q2k ≡ s − (q + 1)

(
n − 1

2
− j

)
mod (q + 1)n

for k ∈ {0, 1}.
If k = 0, we have

s − (q + 1)

(
n − 1

2
− i

)
≡ s − (q + 1)

(
n − 1

2
− j

)
mod (q + 1)n,

which is equivalent to i = j , where it is in contradiction with 0 ≤ i �= j ≤ n−1
2 − 1.

If k = 1, we have

(
s − (q + 1)

(
n − 1

2
− i

))
q2 ≡ s − (q + 1)

(
n − 1

2
− j

)
mod (q + 1)n,

which is equivalent to n − 1 ≡ i + j mod n, where it is in contradiction with 0 ≤
i + j ≤ n − 3. Therefore, the result follows. ��

Theorem 3 Let n = q2+1
10h and s = q2+1

2 , where q is an odd prime power of the form
10hm + t , m is a positive integer, both h and t are odd with 10h = t2 + 1 and t ≥ 3.
If C is a constacyclic code whose defining set is given by Z = ∪δ

i=0Cs−(q+1)( n−1
2 −i),

where 0 ≤ δ ≤ (t+1)(q−t)−20h
20h , then C⊥h ⊆ C.
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Proof From Lemma 1 and Lemma 2.7 of [11], we only need to consider that Z ∩
−qZ = ∅. If Z ∩ −qZ �= ∅, then there exist two integers i and j , where 0 ≤ i, j ≤
(t+1)(q−t)−20h

20h , such that

s − (q + 1)

(
n − 1

2
− i

)
≡ −q

(
s − (q + 1)

(
n − 1

2
− j

))
q2k mod (q + 1)n

for k ∈ {0, 1}. We can seek some contradictions as follows.

(1) When k = 0,

s − (q + 1)

(
n − 1

2
− i

)
≡ −q

(
s − (q + 1)

(
n − 1

2
− j

))
mod (q + 1)n

is equivalent to

0 ≡ q + 1

2
+ q j + i mod n.

From 0 ≤ i, j ≤ (t+1)(q−t)−20h
20h , we can seek some contradictions by considering

the following cases.

(i) When 0 ≤ j ≤ 2q−20h−2t
20h , we have

q + 1

2
≤ q + 1

2
+ q j + i

≤ q + 1

2
+ q

2q − 20h − 2t

20h
+ (t + 1)(q − t) − 20h

20h

= 2q2 − q(10h + t − 1) − 10h − t2 − t

20h
< n.

It is in contradiction with the congruence

0 ≡ q + 1

2
+ q j + i mod n.

(ii) When 2q−2t
20h ≤ j ≤ 4q−20h−4t

20h , let j ′ = j − 2q−20h−2t
20h for 1 ≤ j ′ ≤ 2q−2t

20h .
Then we have

0 ≡ q + 1

2
+ q

(
j ′ + 2q − 20h − 2t

20h

)
+ i mod n,

which is equivalent to

0 ≡ q j ′ + 2q2 − 10hq − 2qt + 10h

20h
+ i

≡ q j ′ + −10hq − 2qt + 10h − 2

20h
+ i mod n.
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Moreover,

0 <
10hq − 2qt + 10h − 2

20h
= q + −10hq − 2qt + 10h − 2

20h

≤ q j ′ + −10hq − 2qt + 10h − 2

20h
+ i

≤ q

(
2q − 2t

20h

)
+ −10hq − 2qt + 10h − 2

20h

+ (t + 1)(q − t) − 20h

20h

= 2q2−q(3t−1+10h)−10h−2−t2 − t

20h
< n.

It is in contradiction with the congruence

0 ≡ q j ′ + −10hq − 2qt + 10h − 2

20h
+ i mod n.

(iii) When 2(ε−1)q−2(ε−1)t
20h ≤ j ≤ 2εq−20h−2εt

20h , where 3 ≤ ε ≤ t+1
2 (here, if there

exists the case of t > 3). Let j ′ = j− 2(ε−1)q−20h−2(ε−1)t
20h for 1 ≤ j ′ ≤ 2q−2t

20h .
Then we have

0 ≡ q + 1

2
+ q

(
j ′ + 2(ε − 1)q − 20h − 2(ε − 1)t

20h

)
+ i mod n,

which is equivalent to

0 ≡ q j ′ + 2(ε − 1)q2 − 10hq − 2(ε − 1)qt + 10h

20h
+ i

≡ q j ′ + −10hq − 2(ε − 1)qt + 10h − 2(ε − 1)

20h
+ i mod n.

Moreover,

0 <
10hq − (t − 1)(qt + 1) + 10h

20h

≤ 10hq − 2(ε − 1)qt + 10h − 2(ε − 1)

20h

= q + −10hq − 2(ε − 1)qt + 10h − 2(ε − 1)

20h

≤ q j ′ + −10hq − 2(ε − 1)qt + 10h − 2(ε − 1)

20h
+ i

≤ q

(
2q − 2t

20h

)
+ −10hq − 2(ε − 1)qt + 10h − 2(ε − 1)

20h
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+ (t + 1)(q − t) − 20h

20h

≤ 2q2 − q(5t − 1 + 10h) − 10h − 4 − t2 − t

20h
< n.

It is in contradiction with the congruence

0 ≡ q j ′ + −10hq − 2(ε − 1)qt + 10h − 2(ε − 1)

20h
+ i mod n.

(2) When k = 1,

s − (q + 1)

(
n − 1

2
− i

)
≡ −q3

(
s − (q + 1)

(
n − 1

2
− j

))
mod (q + 1)n

is equivalent to

0 ≡ q − 1

2
+ q j − i mod n.

(i) When 0 ≤ j ≤ 2q−20h−2t
20h , we have

0 <
(10h − t − 1)q + 10h + t(t + 1)

20h
= q − 1

2
− (t + 1)(q − t) − 20h

20h

≤ q − 1

2
+ q j − i

≤ q − 1

2
+ q

(
2q − 20h − 2t

20h

)

= 2q2 − q(10h + 2t) − 10h

20h
< n.

It is in contradiction with the congruence

0 ≡ q − 1

2
+ q j − i mod n.

(ii) When 2q−2t
20h ≤ j ≤ 4q−20h−4t

20h , let j ′ = j − 2q−20h−2t
20h for 1 ≤ j ′ ≤ 2q−2t

20h .
Then we have

0 ≡ q − 1

2
+ q

(
j ′ + 2q − 20h − 2t

20h

)
− i mod n,

which is equivalent to

0 ≡ q j ′ + 2q2 − 10hq − 2qt − 10h

20h
− i
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≡ q j ′ + −10hq − 2qt − 10h − 2

20h
− i mod n.

Moreover,

0 <
10hq − q(3t + 1) + 10h − 2 + t(t + 1)

20h

= q + −10hq − 2qt − 10h − 2

20h
− (t + 1)(q − t) − 20h

20h

≤ q j ′ + −10hq − 2qt − 10h − 2

20h
− i

≤ q

(
2q − 2t

20h

)
+ −10hq − 2qt − 10h − 2

20h

= 2q2 − q(4t + 10h) − 10h − 2

20h
< n.

It is in contradiction with the congruence

0 ≡ q j ′ + −10hq − 2qt − 10h − 2

20h
+ i mod n.

(iii) When 2(ε−1)q−2(ε−1)t
20h ≤ j ≤ 2εq−20h−2εt

20h , where 3 ≤ ε ≤ t+1
2 (here, if there

exists the case of t > 3). Let j ′ = j− 2(ε−1)q−20h−2(ε−1)t
20h for 1 ≤ j ′ ≤ 2q−2t

20h .
Then we have

0 ≡ q − 1

2
+ q

(
j ′ + 2(ε − 1)q − 20h − 2(ε − 1)t

20h

)
− i mod n,

which is equivalent to

0 ≡ q j ′ + 2(ε − 1)q2 − 10hq − 2(ε − 1)qt − 10h

20h
− i

≡ q j ′ + −10hq − 2(ε − 1)qt − 10h − 2(ε − 1)

20h
− i mod n.
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Moreover,

0 <
10hq − (t − 1)(qt + 1) + 10h − (t + 1)(q − t)

20h

≤ 10hq − 2(ε − 1)(qt + 1) + 10h − (t + 1)(q − t)

20h

= q + −10hq − 2(ε − 1)qt − 10h − 2(ε − 1)

20h
− (t + 1)(q − t) − 20h

20h

≤ q j ′ + −10hq − 2(ε − 1)qt − 10h − 2(ε − 1)

20h
− i

≤ q

(
2q − 2t

20h

)
+ −10hq − 2(ε − 1)qt − 10h − 2(ε − 1)

20h

= 2q2 − q(10h + 2εt) − 10h − 2(ε − 1)

20h
< n.

It is in contradiction with the congruence

0 ≡ q j ′ + −10hq − 2(ε − 1)qt − 10h − 2(ε − 1)

20h
+ i mod n.

��

Theorem 4 Let n = q2+1
10h and s = q2+1

2 , where q is an odd prime power of the form
10hm + t , m ≥ 2 is a positive integer, both h and t are odd with 10h = t2 + 1
and t ≥ 3. Then there exist optimal quantum convolutional codes with parameters

[( q2+1
10h ,

q2+1
10h − 4δ, 1; 2, 2δ + 3)]q , where 2 ≤ δ ≤ (t+1)(q−t)−20h

20h .

Proof Assume that the defining set of the constacyclic code C is

Z = Cs−(q+1)( n−1
2 ) ∪ C

s−(q+1)
(
n−1
2 −1

) ∪ · · · ∪ C
s−(q+1)

(
n−1
2 −δ

),

where 2 ≤ δ ≤ (t+1)(q−t)−20h
20h .

Let

H
2δ+3,s−(q+1)

(
n−1
2 −δ

)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ξ s−(q+1) n−1
2 ξ

2
[
s−(q+1) n−1

2

]
· · · ξ

(n−1)
[
s−(q+1) n−1

2

]

1 ξ
s−(q+1)

(
n−1
2 −1

)
ξ
2
[
s−(q+1)

(
n−1
2 −1

)]
· · · ξ

(n−1)
[
s−(q+1)

(
n−1
2 −1

)]

...
...

...
...

...

1 ξ
s−(q+1)

(
n−1
2 −δ+1

)
ξ
2
[
s−(q+1)

(
n−1
2 −δ+1

)]
· · · ξ

(n−1)
[
s−(q+1)

(
n−1
2 −δ+1

)]

1 ξ
s−(q+1)

(
n−1
2 −δ

)
ξ
2
[
s−(q+1)

(
n−1
2 −δ

)]
· · · ξ

(n−1)
[
s−(q+1)

(
n−1
2 −δ

)]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Since 2 = ord(q+1)n(q2), from Theorem 4.2 in [36] (readers also can see Lemma 4 in
[25]), the parity check matrix H of C can be obtained from H2δ+3,s−(q+1)( n−1

2 −δ) by
expanding each entry as a column vector over some Fq2−basis of Fq4 . Therefore, C is a

constacyclic codewith parameters [ q2+1
10h ,

q2+1
10h −2δ−2, 2δ+3]q2 fromPropositions 1

and 2, where 2 ≤ δ ≤ (t+1)(q−t)−20h
20h .

Similarly, consider the case that the defining set of a constacyclic code C0 over Fq2
is

Z0 = C
s−(q+1)

(
n−1
2

) ∪ C
s−(q+1)

(
n−1
2 −1

) ∪ · · · ∪ C
s−(q+1)

(
n−1
2 −δ+1

).

Let

H
2δ+1,s−(q+1)

(
n−1
2 −δ+1

)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 ξ s−(q+1) n−1
2 ξ

2
[
s−(q+1) n−1

2

]
· · · ξ

(n−1)
[
s−(q+1) n−1

2

]

1 ξ
s−(q+1)

(
n−1
2 −1

)
ξ
2
[
s−(q+1)

(
n−1
2 −1

)]
· · · ξ

(n−1)
[
s−(q+1)

(
n−1
2 −1

)]

...
...

...
...

...

1 ξ
s−(q+1)

(
n−1
2 −δ+1

)
ξ
2
[
s−(q+1)

(
n−1
2 −δ+1

)]
· · · ξ

(n−1)
[
s−(q+1)

(
n−1
2 −δ+1

)]

⎤
⎥⎥⎥⎥⎥⎥⎦

.

From Theorem 4.2 in [36], the parity check matrix H0 of C0 can be obtained from
H2δ+1,s−(q+1)( n−1

2 −δ+1) by expanding each entry as a column vector over some

Fq2−basis of Fq4 . Then C0 is a constacyclic code with parameters [ q2+1
10h ,

q2+1
10h −

2δ, 2δ + 1]q2 from Propositions 1 and 2, where 2 ≤ δ ≤ (t+1)(q−t)−20h
20h .

Now, assume that the defining set of the constacyclic code C1 over Fq2 is Z1 =
Cs−(q+1)( n−1

2 −δ).

Let

H
2,s−(q+1)

(
n−1
2 −δ

)

=
[
1 ξ

s−(q+1)
(
n−1
2 −δ

)
ξ
2
[
s−(q+1)

(
n−1
2 −δ

)]
· · · ξ

(n−1)
[
s−(q+1)

(
n−1
2 −δ

)] ]
.

From Theorem 4.2 in [36], the parity check matrix H1 of C1 can be obtained from
H2,s−(q+1)( n−1

2 −δ) by expanding each entry as a column vector over some Fq2−basis

of Fq4 . We can see that C1 is a constacyclic code with parameters [ q2+1
10h ,

q2+1
10h −2, d ≥

2]q2 from Proposition 1.
From the above discussion, we know that rkH0 ≥ rkH1. Therefore, the con-

volutional code V generated by the matrix G(D) = H̃0 + H̃1D has parameters

(
q2+1
10h , 2δ, 2; 1, d∗

f )q2 , where H̃0 = H0 and H̃1 can be obtained from H1 by adding

zero-rows at the bottom such that H̃1 has the same number of rows as H0. We
also have d⊥h

f = 2δ + 3 from Theorem 1. From Theorem 1 and Theorem 3, one
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Table 1 Sample parameters of
optimal quantum convolutional
codes constructed from
Theorems 4 and 6

q n [(n, k, μ; γ, d f )]q
157 493 [[493, 485, 1; 2, 7]]157
157 493 [[493, 481, 1; 2, 9]]157
157 493 [[493, 477, 1; 2, 11]]157
157 493 [[493, 473, 1; 2, 13]]157
157 493 [[493, 469, 1; 2, 15]]157
157 493 [[493, 465, 1; 2, 17]]157
157 493 [[493, 461, 1; 2, 19]]157
157 493 [[493, 457, 1; 2, 21]]157
157 493 [[493, 453, 1; 2, 23]]157
157 493 [[493, 449, 1; 2, 25]]157
193 745 [[745, 737, 1; 2, 7]]193
193 745 [[745, 733, 1; 2, 9]]193
193 745 [[745, 729, 1; 2, 11]]193
193 745 [[745, 725, 1; 2, 13]]193
193 745 [[745, 721, 1; 2, 15]]193
193 745 [[745, 717, 1; 2, 17]]193
193 745 [[745, 713, 1; 2, 19]]193
193 745 [[745, 709, 1; 2, 21]]193
193 745 [[745, 705, 1; 2, 23]]193
193 745 [[745, 701, 1; 2, 25]]193
193 745 [[745, 697, 1; 2, 27]]193
193 745 [[745, 693, 1; 2, 29]]193
193 745 [[745, 689, 1; 2, 31]]193

has V ⊂ V⊥h . Therefore, there exist quantum convolutional codes with parameters

[( q2+1
10h ,

q2+1
10h − 4δ, 1; 2, 2δ + 3)]q from Theorem 2, where 2 ≤ δ ≤ (t+1)(q−t)−20h

20h .
From Proposition 3, we can see that these codes constructed here are optimal. ��

The following Theorem 5 is obtained by using the method of Theorem 3.

Theorem 5 Let n = q2+1
10h and s = q2+1

2 , where q is an odd prime power of the form
10hm+10h−t ,m is a positive integer, both h and t are oddwith10h = t2+1and t ≥ 3.
If C is a constacyclic code whose defining set is given by Z = ∪δ

i=0Cs−(q+1)( n−1
2 −i),

where 0 ≤ δ ≤ (t+1)q−(t2−t+2)−20h
20h , then C⊥h ⊆ C.

Theorem 6 Let n = q2+1
10h and s = q2+1

2 , where q = 10hm+10h− t is an odd prime,
m is a positive integer, both h and t are odd with 10h = t2 + 1 and t ≥ 3. Then there

exist quantum convolutional codes with parameters [( q2+1
10h ,

q2+1
10h −4δ, 1; 2, 2δ+3)]q ,

where 2 ≤ δ ≤ (t+1)q−(t2−t+2)−20h
20h .

123



40 Page 16 of 29 J. Chen et al.

Proof Since the proof presented here uses the same method of Theorem 4, we just
give a sketch. Assume that the defining set of the constacyclic code C is

Z = C
s−(q+1)

(
n−1
2

) ∪ C
s−(q+1)

(
n−1
2 −1

) ∪ · · · ∪ C
s−(q+1)

(
n−1
2 −δ

),

where 2 ≤ δ ≤ (t+1)q−(t2−t+2)−20h
20h . Then C is a constacyclic code with parameters

[ q2+1
10h ,

q2+1
10h −2δ − 2, 2δ + 3]q2 for 2 ≤ δ ≤ (t+1)q−(t2−t+2)−20h

20h and assume that
its parity check matrix is H . Similarly, consider the case that the defining set of the
constacyclic code C0 over Fq2 is

Z0 = C
s−(q+1)

(
n−1
2

) ∪ C
s−(q+1)

(
n−1
2 −1

) ∪ · · · ∪ C
s−(q+1)

(
n−1
2 −δ+1

).

Then C0 is a constacyclic code with parameters [ q2+1
10h ,

q2+1
10h − 2δ, 2δ + 1]q2 and

assume that its parity check matrix is H0. Now, assume that the defining set of the
constacyclic code C1 over Fq2 is Z1 = Cs−(q+1)( n−1

2 −δ). Then C1 is a constacyclic

code with parameters [ q2+1
10h ,

q2+1
10h − 2, d ≥ 2]q2 and assume that its parity check

matrix is H1.
From the above discussion, we know that rkH0 ≥ rkH1. Therefore, the con-

volutional code V generated by the matrix G(D) = H̃0 + H̃1D has parameters

(
q2+1
10h , 2δ, 2; 1, d∗

f )q2 , where H̃0 = H0 and H̃1 can be obtained from H1 by adding

zero-rows at the bottom such that H̃1 has the same number of rows as H0. We have
d⊥h
f = 2δ+3 fromTheorem 1. FromTheorems 1 and 5, one has V ⊂ V⊥h .Therefore,

there exist quantum convolutional codeswith parameters [( q2+1
10h ,

q2+1
10h −4δ, 1; 2, 2δ+

3)]q from Theorem 2, where 2 ≤ δ ≤ (t+1)q−(t2−t+2)−20h
20h . From Proposition 3, we

can see that these codes constructed here are optimal. ��
Example 1 Let h = 5, m = 3 and t = 7, then we have q = 157 and n = 493 from
Theorem4.Moreover, we can obtain some optimal quantum convolutional codes listed
in Table 1.

Example 2 Let h = 5, m = 3 and t = 7, then we have q = 193 and n = 745 from
Theorem6.Moreover, we can obtain some optimal quantum convolutional codes listed
in Table 1.

4 Constructions of optimal asymmetric quantum codes

In this section, we state some definitions and basic results in [28–30,32,33], and then
we utilize the constacyclic codes to construct some families of optimal asymmetric
quantum codes with greater asymmetry compared with those codes constructed from
[12,16,17,42,46,49] except for very a few codes.

Let H be the Hilbert space H = Cqn = Cq ⊗ · · · ⊗Cq . Let |x〉 be the vectors of
an orthonormal basis of Cq , where the notion x represents the elements of Fq . Given
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a, b ∈ Fq , the unitary operators X(a) and Z(b) in Cq are defined by

X(a) | x〉 =| x + a〉

and

Z(b) | x〉 = ωtr(bx) | x〉,

respectively, where ω = exp(2π i/p) is a pth root of unity and tr is the trace map
from Fq to Fp. Consider a = (a1, a2, · · · , an) ∈ Fn

q and b = (b1, b2, · · · , bn) ∈ Fn
q .

Let

X(a) = X(a1) ⊗ X(a2) ⊗ · · · ⊗ X(an)

and

Z(a) = Z(b1) ⊗ Z(b2) ⊗ · · · ⊗ Z(bn)

be the tensor products of n error operators. The set

En =
{
X(a)Z(b) | a, b ∈ Fn

q

}

is an error basis on the complex vector space Cqn and the set

Gn =
{
ωcX(a)Z(b) | a, b ∈ Fn

q , c ∈ Fp

}

is the error group associated with En . For a quantum error e = ωcX(a)Z(b) ∈ Gn ,
the quantum weight ωQ(e), the X -weight ωX (e) and the Z -weight ωZ (e) of e, are
defined, respectively, by

ωQ(e) = 
{i : 1 ≤ i ≤ n, (ai , bi ) �= (0, 0)},
ωX (e) = 
{i : 1 ≤ i ≤ n, ai �= 0},
ωZ (e) = 
{i : 1 ≤ i ≤ n, bi �= 0}.

Definition 2 [28] A q-ary asymmetric quantum code Q, denoted by [[n, k, dz /dx ]]q ,
is a qk-dimensional subspace of the Hilbert spaceCqn , which can control all qudit-flip
errors up to (dx − 1)/2� and all phase-shift errors up to (dz − 1)/2�.

Theorem 7 given as follows from [42] shows the construction of construct asym-
metric quantum codes. This result holds for the Euclidean and Hermitian case.

Theorem 7 [42] (CSS Construction) Let Ci be a classical code with parameters
[n, ki , di ]q2 for i = 1, 2, with C⊥h

1 ⊆ C2. Then there exists an asymmetric quan-

tum code Q with parameters [[n, k1 + k2 − n, dz/dx ]]q2 , where dx = wt(C1\C⊥h
2 )

and dz = wt(C2\C⊥h
1 ).
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40 Page 18 of 29 J. Chen et al.

Proposition 4 [42] (Quantum Singleton bound) If an [[n, k, dz/dx ]]q2 asymmetric
quantum code C exists, then

dz + dx ≤ n − k + 2.

If dz + dx = n − k + 2, then C is called an optimal asymmetric quantum code.

In the following part of this section, we focus on the construction of optimal asym-

metric quantum codes by using constacyclic codes with length q2+1
10h . Additionally,

these families of optimal asymmetric quantum codes have larger asymmetry com-
pared with most of the ones in the literature.

Theorem 8 Let n = q2+1
10h and s = q2+1

2 . Then there exist optimal asymmetric quantum
codes as follows.

(1) [[ q2+1
10h ,

q2+1
10h − 2(δ1 + δ2 + 2), 2δ1 + 3/2δ2 + 3]]q2 , where q is an odd prime

power of the form 10hm + t , m is an odd, both h and t are odd with 10h = t2 +1
and t ≥ 3, both δ1 and δ2 are integers such that 0 ≤ δ1 ≤ q−10h−t

20h and q−3
2 ≤

δ2 ≤ q−3
2 + qδ1.

(2) [[ q2+1
10h ,

q2+1
10h − 2(δ1 + δ2 + 2), 2δ1 + 3/2δ2 + 3]]q2 , where q is an odd prime

power of the form 10hm + t , m ≥ 2 is an even, both h and t are odd with
10h = t2 + 1 and t ≥ 3, both δ1 and δ2 are integers such that 0 ≤ δ1 ≤ q−20h−t

20h

and q−3
2 ≤ δ2 ≤ q−3

2 + qδ1.

Proof Let C1 be a constacyclic code with the defining set

Z1 = ∪δ1
j=0Cs−(q+1)

(
n−1
2 − j

)

from Lemma 1, where 0 ≤ δ1 ≤ q−10h−t
20h , and then C1 is an optimal constacyclic code

with parameters [n, n − 2δ1 − 2, 2δ1 + 3]q2 from Propositions 1 and 2. Let C2 be a
constacyclic code with the defining set

Z2 = ∪δ2
j=0Cs−(q+1)

(
n−1
2 − j

)

from Lemma 1, where q−3
2 ≤ δ2 ≤ q−3

2 +qδ1, then C2 is an optimal constacyclic code
with parameters [n, n − 2δ2 − 2, 2δ2 + 3]q2 from Propositions 1 and 2. For 0 ≤ δ1 ≤
q−10h−t

20h and q−3
2 ≤ δ2 ≤ q−3

2 + qδ1, we can obtain C⊥h
1 ⊆ C2, where C⊥h

1 and C2 are
both constacyclic codes from Lemma 2.5 of [11]. In fact, we only need to show that
Z2∩−qZ1 = ∅ for 0 ≤ δ1 ≤ q−10h−t

20h and q−3
2 ≤ δ2 ≤ q−3

2 +qδ1. If Z2∩−qZ1 �= ∅,
then there exist two integers 0 ≤ δ′

1 ≤ q−10h−t
20h and q−3

2 ≤ δ′
2 ≤ q−3

2 + qδ′
1 such that

s − (q + 1)

(
n − 1

2
− δ′

2

)
≡ −q

(
s − (q + 1)

(
n − 1

2
− δ′

1

))
q2k mod (q + 1)n
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for k ∈ {0, 1}.
If k = 0, we have

s − (q + 1)

(
n − 1

2
− δ′

2

)
≡ −q

(
s − (q + 1)

(
n − 1

2
− δ′

1

))
mod (q + 1)n,

i.e.,

0 ≡ q + 1

2
+ δ′

2 + qδ′
1 mod n.

Since

q − 1 ≤ q + 1

2
+ δ′

2 + qδ′
1 ≤ q − 1 + 2q

q − 10h − t

20h
= q2 − tq − 10h

10h
< n,

which is in contradiction with 0 ≡ q+1
2 + δ′

2 + qδ′
1 mod n.

If k = 1, we have

s − (q + 1)

(
n − 1

2
− δ′

2

)
≡ −q3

(
s − (q + 1)

(
n − 1

2
− δ′

1

))
mod (q + 1)n,

i.e.,

δ′
2 ≡ q − 1

2
+ qδ′

1 mod n.

Since q−3
2 ≤ δ′

2 ≤ q−3
2 +qδ′

1, it is a contradiction. Therefore, we can obtain asymmet-
ric quantum codes with parameters [[n, n − 2(δ1 + δ2 + 2), 2δ2 + 3/2δ1 + 3]]q2 from
Theorem 7, where 0 ≤ δ1 ≤ q−10h−t

20h , q−3
2 ≤ δ2 ≤ q−3

2 + qδ1. From Proposition 4,
we can see that these codes are asymmetric quantum MDS codes.

(2) The proof is similar with (1), so we omit it. ��
Example 3 Let h = 5, m = 3 and t = 7, then we have q = 157 and n = 493.
Furthermore, we have 0 ≤ δ1 ≤ 1 and 77 ≤ δ2 ≤ 77 + 157δ1. Therefore, there exist
some optimal asymmetric quantum codes from Theorem 8 listed in Table 2.

Example 4 Let h = 5, m = 2 and t = 7, then we have q = 107 and n = 229.
Furthermore, we have δ1 = 0 and δ2 = 52. Therefore, there exists an optimal asym-
metric quantum codes with parameters [[229, 121, 107/3]]q2 . Let h = 5, m = 6 and
t = 7, then we have q = 307 and n = 1885. Furthermore, we have 0 ≤ δ1 ≤ 2 and
152 ≤ δ2 ≤ 152 + 307δ1. Therefore, there exist some optimal asymmetric quantum
codes from Theorem 8 listed in Table 2.

Theorem 9 Let n = q2+1
10h and s = q2+1

2 . Then there exist optimal asymmetric quantum
codes as follows.
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Table 2 Sample parameters of
optimal asymmetric quantum
codes constructed from
Theorem 8

q n [[n, k, dz/dx ]]q2
157 493 [[493, 335, 157/3]]1572
157 493 [[493, 333, 157/5]]1572
157 493 [[493, 331, 159/5]]1572
157 493 [[493, 329, 161/5]]1572
157 493 [[493, 327, 163/5]]1572
157 493 [[493, 325, 165/5]]1572
157 493 [[493, 323, 167/5]]1572
· · · · · · · · ·
157 493 [[493, 27, 463/5]]1572
157 493 [[493, 25, 465/5]]1572
157 493 [[493, 23, 467/5]]1572
157 493 [[493, 21, 469/5]]1572
157 493 [[493, 19, 471/5]]1572
307 1885 [[1885, 1577, 307/3]]3072
307 1885 [[1885, 1575, 307/5]]3072
307 1885 [[1885, 1573, 309/5]]3072
307 1885 [[1885, 1571, 311/5]]3072
307 1885 [[1885, 1569, 313/5]]3072
307 1885 [[1885, 1567, 315/5]]3072
· · · · · · · · ·
307 1885 [[1885, 969, 913/5]]3072
307 1885 [[1885, 967, 915/5]]3072
307 1885 [[1885, 965, 917/5]]3072
307 1885 [[1885, 963, 919/5]]3072
307 1885 [[1885, 961, 921/5]]3072
307 1885 [[1885, 1573, 307/7]]3072
307 1885 [[1885, 1571, 309/7]]3072
307 1885 [[1885, 1569, 311/7]]3072
307 1885 [[1885, 1597, 313/7]]3072
· · · · · · · · ·
307 1885 [[1885, 351, 1529/7]]3072
307 1885 [[1885, 349, 1531/7]]3072
307 1885 [[1885, 347, 1533/7]]3072
307 1885 [[1885, 345, 1535/7]]3072
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Table 3 Sample parameters of
optimal asymmetric quantum
codes constructed from
Theorem 9

q n [[n, k, dz/dx ]]q2
193 745 [[745, 551, 193/3]]1932
193 745 [[745, 549, 193/5]]1932
193 745 [[745, 547, 193/5]]1932
193 745 [[745, 545, 195/5]]1932
193 745 [[745, 543, 197/5]]1932
193 745 [[745, 541, 199/5]]1932
193 745 [[745, 539, 201/5]]1932
· · · · · · · · ·
193 745 [[745, 171, 571/5]]1932
193 745 [[745, 169, 573/5]]1932
193 745 [[745, 167, 575/5]]1932
193 745 [[745, 165, 577/5]]1932
193 745 [[745, 163, 579/5]]1932
443 3925 [[3925, 3481, 443/3]]4432
443 3925 [[3925, 3479, 443/5]]4432
443 3925 [[3925, 3477, 445/5]]4432
443 3925 [[3925, 3475, 447/5]]4432
443 3925 [[3925, 3473, 449/5]]4432
· · · · · · · · ·
443 3925 [[3925, 2597, 1325/5]]4432
443 3925 [[3925, 2595, 1327/5]]4432
443 3925 [[3925, 2593, 1329/5]]4432
443 3925 [[3925, 3477, 443/7]]4432
443 3925 [[3925, 3475, 445/7]]4432
443 3925 [[3925, 3473, 447/7]]4432
443 3925 [[3925, 3471, 449/7]]4432
· · · · · · · · ·
443 3925 [[3925, 1709, 2211/7]]4432
443 3925 [[3925, 1707, 2213/7]]4432
443 3925 [[3925, 1705, 2215/7]]4432
443 3925 [[3925, 3475, 443/9]]4432
443 3925 [[3925, 3473, 445/9]]4432
443 3925 [[3925, 3471, 447/9]]4432
443 3925 [[3925, 3469, 449/9]]4432
· · · · · · · · ·
443 3925 [[3925, 821, 3097/9]]4432
443 3925 [[3925, 819, 3099/9]]4432
443 3925 [[3925, 817, 3101/9]]4432
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(1) [[ q2+1
10h ,

q2+1
10h − 2(δ1 + δ2 + 2), 2δ1 + 3/2δ2 + 3]]q2 , where q is an odd prime

power of the form 10hm + 10h − t , m is an odd, both h and t are odd with
10h = t2 + 1 and t ≥ 3, both δ1 and δ2 are integers such that 0 ≤ δ1 ≤ q−20h+t

20h

and q−3
2 ≤ δ2 ≤ q−3

2 + qδ1.

(2) [[ q2+1
10h ,

q2+1
10h − 2(δ1 + δ2 + 2), 2δ1 + 3/2δ2 + 3]]q2 , where q is an odd prime

power of the form 10hm + 10h − t , m ≥ 2 is an even, both h and t are odd with
10h = t2 + 1 and t ≥ 3, both δ1 and δ2 are integers such that 0 ≤ δ1 ≤ q−30h+t

20h

and q−3
2 ≤ δ2 ≤ q−3

2 + qδ1.

Proof We omit the proof of this theorem because it is similar with the proof of Theo-
rem 8. ��
Example 5 Let h = 5, m = 3 and t = 7, then we have q = 193 and n = 745.
Furthermore, we have 0 ≤ δ1 ≤ 1 and 95 ≤ δ2 ≤ 95 + 193δ1. Therefore, there exist
optimal asymmetric quantum codes from Theorem 9 listed in Table 3.

Example 6 Let h = 5, m = 8 and t = 7, then we have q = 443 and n = 3925.
Furthermore, we have 0 ≤ δ1 ≤ 3 and 220 ≤ δ2 ≤ 220 + 443δ1. Therefore, there
exist asymmetric quantum codes from Theorem 9 listed in Table 3.

5 Conclusion and discussion

In this paper, constacyclic codes with length n = q2+1
10h are utilized to construct

two families of optimal quantum convolutional codes, where q is an odd prime
power with the form q = 10hm + t or q = 10hm + 10h − t , where m is a pos-
itive integer, both h and t are odd with 10h = t2 + 1 and t ≥ 3. Additionally,

optimal quantum convolutional codes constructed in this paper with length q2+1
10h

are not covered in [16,34,35,38,48,50,51] except for the case of h = 1. In [50],
Zhang et al. studied a class of optimal quantum convolutional codes with parameters

[( q2+1
10 ,

q2+1
10 − 4δ, 1; 2, 2δ + 3)]q , where q is an odd prime power with the form

10m + 3 or 10m + 7, where m ≥ 2 is a positive integer and δ is a positive inte-
ger such that 2 ≤ δ ≤ 2m − 1 (the range of δ is equivalent to 2 ≤ δ ≤ q−8

5 or

2 ≤ δ ≤ q−12
5 ), while the range of δ from Theorems 4 and 6 is 2 ≤ δ ≤ q−8

5 or

2 ≤ δ ≤ q−7
5 , respectively, which implies that optimal quantum convolutional codes

with length q2+1
10 constructed from Theorem 6 are better than the ones in [50]. Finally,

we weaken the case of Hermitian dual-containing codes applied to construct optimal
asymmetric quantum codes with parameters [[n, k, dz/dx ]]q2 and obtain four families

of asymmetric quantum codes with length q2+1
10h . When h = 1, we can obtain the result

of Theorems 5 and 6 in [19] with length q2+1
10 directly. In Table 4, we state some fam-

ilies of optimal asymmetric quantum codes available in [12,16,17,42,46,49] as well
as the new families of optimal asymmetric quantum codes constructed in this paper.
We give the parameters [[n, k, dz/dx ]]q2 of optimal asymmetric quantum codes in the
first column; the range of parameters in the second column; the minimum distance
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dz of the corresponding asymmetric quantum codes in the third column, and the cor-
responding references in the fourth column. From Table 4, although the lengths are
different, the lower bound of the range of dz of those codes constructed in this paper
is larger than the upper bound of the codes in [12,16,17,42,46,49] except for very a
few codes that can achieve the bound q + 1 or q in [12,42,49]. It means that these
codes constructed from Theorems 8 and 9 can correct quantum errors with greater
asymmetry. In the future work, we will search for other methods to construct opti-
mal asymmetric quantum codes with greater asymmetry and other optimal quantum
convolutional codes.
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