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Abstract

Construction of good quantum codes via classical codes is an important task for quan-
tum information and quantum computing. In this work, by virtue of a decomposition
of the defining set of constacyclic codes we have constructed eight new classes of
entanglement-assisted quantum maximum-distance-separable codes.
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1 Introduction

Quantum error-correcting (QEC for brevity) codes were introduced for security of
quantum information. Construction of good quantum codes via classical codes is a
crucial task for quantum information and quantum computing (see Refs. [1,4,5,7,
17,27,28,30,31,33] for example). A g-ary quantum code Q, denoted by parameters
[n,k,d]g, isa g*-dimensional subspace of the Hilbert space C¢". A quantum code C
with parameters [n, k, d ﬂq satisfies the quantum singleton bound: k < n —2d + 2 (see
[17]). If k = n — 2d + 2, then C is called a quantum maximum-distance-separable
(MDS) code. In recent years, many researchers have been working to find quantum
MDS codes via constacyclic codes (for instance, see [6,16,18,19,22,33,34]).

Entanglement-assisted quantum error-correcting (EAQEC for short) codes use pre-
existing entanglement between the sender and receiver to improve information rate.
For further details about EAQEC for example, see [3,10,11,13,14,20,21,23,32].
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Recently, many papers have been devoted for obtaining EAQEC codes derived from
classical error-correcting codes. Some of these papers can be summarized as follows: In
[33], based on classical quaternary constacyclic codes, some parameters for quantum
codes were obtained. In [8], a decomposition of the defining set of negacyclic codes has
been proposed, and by virtue of the proposed decomposition four classes of EAQEC
codes have been constructed. Fan et al. have constructed five classes of entanglement-
assisted quantum MDS (EAQMDS for short) codes based on classical MDS codes by
exploiting one or more pre-shared maximally entangled states [9]. Qian and Zhang
have constructed some new classes of maximum-distance-separable (MDS) linear
complementary dual (LCD) codes with respect to Hermitian inner product, and as
an application, they have constructed new families of MDS maximal EAQEC codes
in [29]. In [24], Lu et al. constructed six classes of g-ary EAQMDS codes based on
classical negacyclic MDS codes. In [12], Guenda et al. have shown that the number
of shared pairs required to construct an EAQEC code is related to the hull of the
classical codes. Using this fact, they gave methods to construct EAQEC codes requiring
desirable amounts of entanglement. Further, they constructed maximal entanglement
EAQEC codes from LCD codes.

In this paper, based on a decomposition of the defining set of constacyclic codes
we have obtained eight new families of EAQMDS codes as follows:

1. [n,n—8(q —7—4r—1, % (g — D+24+4; 5], wheren = ‘121—31 << 48,
g is odd and ¢ = 7 (mod 10).
2
2. [n,n— 5(26]-}-1)—4)»4—7 (2q+1)+2k+2;9ﬂq, where n = %, 1<
A< 10,qlsoddandq—7(m0d10) i
3. [n,n—8(q — 3)—4r+3, 3 (¢ — 3)+2442; 5], wheren = 4 1 <1 < 423,
g is odd and ¢ = 3 (mod 10)
2
4. [n.n—8(q —3)—42+7, % (¢ — 3)+21+2; 9], wheren = L1 1 <) < 42
g is odd and ¢ = 3 (mod 10)
2
5. [n,n—%(q —2)—4r+4, 2 (g — 2)+22+1; 4], wheren = 3 |1 <5 < 48
g = 2°and g =2 (mod 10).
2
6. [[n,n—%(ﬁ%q — 14) —4x, @HN?’?“M where n = q5—+1, l<r< 22
g = 2°and g = 8 (mod 10) .
7. [ n=5 (g — )—41+4, 3 (g — 2)+20+1: 4], wheren = L 1 <3 < 45
g =2%and g =5 (mod 13).
6 3 . _ g*+1 g+4
8. [n,n—3(q —4)—4r-8, 5 (¢ —H+2r+4; 4], wheren = L=, 1 <A < 47
g =2%and g = 13 (mod 17).

The rest of the paper is organized as follows. In Sect. 2, we review basics
about linear codes and constacyclic codes. In Sect. 3, we review some basics about
EAQEC codes. In Sect. 4 and Sect. 5, we define a decomposition of the defining
set of constacyclic codes, and based on this method we construct eight families of
EAQMDS codes. The last section contains some comparative results and concludes
this paper.
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2 Basics about constacyclic codes

In this section, we review some preliminaries of constacyclic codes. For further and
detailed information, readers may refer to [6,15,18,19,34].
For given a positive integer e and prime number p, let ¢ = p and F 2 be the

finite field of q2 elements. The Hermitian inner product of u = (uy, ..., u,—1) and
n—1

v=(vg,...,VUy—1) € FZZ isdefined tobe (u, v)y = > uivlf’. If C is a k-dimensional
i=0

subspace of IF;2 , then C is called as a g >-ary linear code of length n and dimension k and
denoted by [n, k] q- The weight wt (¢) of acodeword ¢ € C is defined as the number of
its nonzero coordinates. The minimum nonzero weight d among all codewords of C is
said to be the minimum weight of C. A linear code C of length n is said to be constacyclic
if for any codeword (¢, ..., cy—1) € C we have that (a¢c,—1, ..., cy—2) € C, where
0 # a € F 2. It can be seen that xc (x) corresponds to a constacyclic shift of ¢ (x)
in the quotient ring F > [x]/ (x" —a), where ¢ (x) = co+ c1x + ...+ cp_1x" L.
Then, a ¢2-ary constacyclic code C of length n is an ideal of Fpolx]/(x" —a)and C
is generated by a monic polynomial g (x) such that g (x) | (x" — ). If ged (¢, n) = 1,
then x" — « does not have multiple roots.

Let m be the multiplicative order of g2 in modulo rn, where r = ¢+ 1, and suppose
that § is a primitive rn'” root of unity in FZZ such that 8" = «. Let { = 48", then ¢ is a

primitive n'" root of unity. Therefore, the roots of x" — ¢ are {8, 8!, ..., !t (=D},
. 1 ;
Hence, it follows that x" —a = [ (x — ™).
The ¢2-cyclotomic coset of i modulo rn is defined by

Ci = {iqzj (mod rn)‘j IS Z}.

The Hermitian dual of a linear code C of length n is defined as C# = {u €
IE‘ZZ [(u, v)y = 0 for all v € C}. A g*-ary linear code C of length 7 is called Hermitian

self-orthogonal if C C CLu,
Let O, = {1 4+rj|0 < j < n — 1}. Then, the defining set of a constacyclic code
C = (g (x)) of lengthnistheset Z = {i € O,,|8" is aroot of g (x)}.IfCisan [n, kl,2
a-constacyclic code with defining set Z, then the Hermitian dual C+# of C is an
a~9-constacyclic code with defining set Z1# = {z € O,,| — gz (mod rn) ¢ Z}.
As in cyclic codes, there exists BCH bound for «-constacyclic (see [2,18]) as
follows.

Proposition 1 [2,18] (The BCH bound for constacyclic codes) Let C = (g (x)) be a
q*-ary a-constacyclic code of length n, where « is an primitive r'* root of unity. If
the polynomial g (x) has the elements {81+rj | I<j<l+d- 2} as the roots, where
8 is a rn'™ primitive root of unity with 8" = a. Then, the minimum distance of C is at
least d.

The following proposition gives a criterion to determine whether or not an «-
constacyclic code of length n over IF 2 is Hermitian dual containing (see [16] Lemma
2.2).
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Proposition2 Let « € ]FZ2 be of order r. If C is an a-constacyclic code of length n

over F > with defining set Z < Oy, then C contains its Hermitian dual code if and
onlyif ZN(—qZ) =0, where —qZ = {—qz (mod rn)|z € Z}.

3 Basics about entanglement-assisted quantum codes

In this section, we review some basic notions and results of EAQEC codes. The
following result is about the singleton bound of classical linear codes.

Proposition 3 [26] (singleton bound) If an [n, k, d] linear code C over IF, exists, then
k<n—d+1.Ifk=n—d+1, then C is called an MDS code.

Let H be an (n — k) x n parity check matrix of C over F,2. Then, CH has an
n x (n — k) generator matrix H*, where H* is the conjugate transpose matrix of H
over F».

The following is called the Hermitian method and it enables us to construct EAQEC
codes from classical linear codes.

Theorem 1 [23] If C is a classical code and H is its parity check matrix over Fg2,
then there exist EAQEC codes with parameters [n,2k —n + ¢, d; cﬂq, where ¢ =
rank (HH™) .

Proposition 4 [3,11] Assume that C is an EAQEC code with parameters [n, k, d; c|,
ifd < (n+2)/2, thenC satisfies the entanglement-assisted singleton boundn+c—k >
2(d — 1). If C satisfies the equalityn +c —k = 2(d — 1) ford < (n + 2)/2, then it
is called an EAQMDS code.

A definition for decomposition of the defining set of cyclic codes was given in [23].
In the following, we give a decomposition of the defining set of constacyclic codes,
which is the same as negacyclic case defined by Chen et al. in [8].

Definition 1 Let o € F*, be a primitive 7" root of unity and C be an a-constacyclic

code of length n with defining set Z. Assume that Z; = ZN(—¢gZ) and Z, = Z\Z;,
where —gZ = {rn — gx|x € Z} r is afactor of ¢ + 1. Then, Z = Z; U Z; is called
a decomposition of the defining set of C.

In [8], Chen et al. showed that the number of entangled states required for negacyclic
codes is ¢ = |Z1|, which is the same for constacyclic codes.

Lemma 1 LetC be an a-constacyclic code of length n over F,2, where ged(n, q) = 1.
Suppose that Z is the defining set of the a-constacyclic code C and Z = Z1 U Zy is a
decomposition of Z. Then, the number of entangled states required is c = |Z1].

4 Construction of EAQMDS codes from constacyclic codes (q is odd)

2
Throughout this section, g is an odd prime,r = g+1ands = %. The multiplicative
order of ¢ modulo 7 is denoted by ord, (¢). Let « € IF‘Z2 be a primitive 7 root of
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unity. Here, we need to emphasize that the codes we give in this section are different
from the codes given in [25], because they obtained some parameters with the number
of entangled states ¢ = 1.

4.1 EAQMDS codes of lengthn = "21—“;1, where g = 7 (mod 10)

Note thatn = 10 , and so ord, ( ) = 2. This means that each qz—cyclotomic coset
2

modulo 77 includes one or two elements. Let g = 7 (mod 10) and s = %. It can be

easily seen that the g-cyclotomic cosets modulo rn containing some integers from 1

tornare Cy = {s}and Cs—rj = {s —rj,s +rj}, where 1 < j < ‘1%1

Lemma2 Let g = 7 (mod 10). If C is a q*-ary constacyclic code of length n and
defining set Z = u?zchj, where 1 < A < W + 1, then C+H C C.

Proof From Proposition 2, it is sufficient to prove that Z N (—g¢Z) = @. Assume that
Z N (—qZ) # ?. Then, there exist two integers j, k, where | < j, k < 3(‘11—87) + 1,
suchthats —rj = —q (s —rk) (mod rn) or s —rj = —q (s + rk) (mod rn) .

Case 1 Let s — rj = —q (s —rk) (mod rn). This is equivalent to s = j +
gk (mod n). As s = 0(mod n), we get j + gk = 0(mod n). Since 1 < j, k <
W+1,q+l < j+gk < W+l+q <W + 1) < 3n. Then, we have that

. _ . _ . . 241
Jj +qk =n(mod n) or j + gk = 2n (mod n).If j + gk = n, then j + gk = L5~ =

(q 7) + 7q+1 7q+l

. By division algorithm, j = . This is a contradiction, because

0<j< 3(q D If j 4+ gk = 2n, then j + gk = (q(;r]) =q2(q D4 2(7q+1) . By

division algorlthm, j= 2(7?0+ D This contradicts with the fact 0 < j< 3(”1107).
Case 2 Let s —rj = —q (s +rk)(mod rn). This is equivalent to s = j —

gk (mod n). Since s = 0 (mod n), we have j — gk = 0 (mod n). Also we have

1< j,k < 24D Thisresultsin —3n < 1-3¢ (3“’1—57) n 1) <j—gk<1l—g<0.

Thus, the solution is j — gk = —2n(mod n) or j — gk = —n(mod n). If

02
j —qk = —2n, then j — gk = 2(?()“) = —qz(q D4 2(7?0 D From division
algorithm, j = %0—1)‘ This is a contradiction, because 1 < j < 3(‘1107) + 1. If
(2
j—qk =—n, then j — gk = (q]OH) =—q (ql_()7) - (7‘11'51). By division algorithm,

j= _(7q0+1) q(‘{gﬂ (mod n). This is a contradiction, because 0 < j < 3('11—67). O

Lemma3 Let g = 7 (mod 10). If C is a q*-ary constacycllc code of length n and
defining set Z = U’ =0 Cs—yj, where 1 <t < (q , then CtH C C.
j=

Proof The proof for this lemma is very similar to the proof of Lemma 2. O

As an immediate result of Lemma 3, we have Z N (—¢Z) = ¢

Lemma4 Let g =7 (mod 10) and s = 25— Then we have the following:
1. —qCs; =C, = {s},
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_ _ _ o 3q 3g—1
2 =€,y = () = o= () o0 (50
r<2‘1;”),s+r(2‘1:.,+”}.

3 =0C,_, (24o0) = €y (1) = {s _

10

Proof 1. Since s = £ _ 5n, we have —gs = —5gn = —5gn — 5n + 5n =

—(q + 1)5n + 5n = 5n (mod rn) . This implies that —gC; = C;.
2. Observe that —g ( (q+3)> —qs +qrL= q+3) =5n+qr-= q+3) (mod rn). We

conclude that 5n + r (q gy 3q 1) =5+ r(3q D (mod rn).

3. Itis enough to show that —g (s —r (2‘71—64)) =5 — r@ (mod rn). It follows

2
that —g (s —r <%)> = —qs +rq ( —qs +r <—2(q1(;r1) — —4‘1132)

) =
(mod rn), and so we have —¢q (s —r ( )) r(zqs—H) (mod rn).

]

2
In Theorem 2, we give a class of EAQMDS codes of length n = 13 and with
entangled states ¢ = 5.

Theorem 2 Let g = 7 (mod 10). IfC is an q*-ary a-constacyclic code of length n with

34=D 4145
defining set Z = U 25 e s—rj» then there exist EAQMDS codes with parameters

6 3
[[n,n—g(q—7)—4k—l,g(q—7)+2k+4;5ﬂq,

where 1l < A < (’11—4(')3).

Proof Since the defining set of given «-constacyclic code C of length n is Z =

U 'O(q 7)HHCS_”-, and the cardinality |Z| = % (g —7) + 21 + 3, then from Propo-
smons 1 and 3, C is a g>-ary MDS a-constacyclic code with parameters

3 3
nn—\|=@-=7N+2A+3),-(@-=T7)+21+4
5 5 7
Thus, we have the following:

Z1=2n(=q2)

3
2(q-7+1 (g=T)+1+
=((ul® Cs_ri |U UIO C
(( j=0 = j=5q-n+2 57
(g=7)+1 3 (q=T)+1+A
n ( q (U 10 Csrj) U—q (Ujl'o=130(q—7)+7csrj))
3 3
io(@—7+1 fo@—D+1
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—T)+142
(q- 7)+2CA ”))
7)+1
s rj

% (q— 7)+1+,\C '
j=tq-1+2 57" )

EAQMDS codes from constacyclic codes

3
U((u]!o_(g 7)+1CA ,])ﬁ q(Ujl:<

= Q

|| o“"

1
/
3
—O(q DI+
We claim that

Z1=ZN(=qZ)=C;UC_ 31 UC__ g+3.
: 10 R ]

3 (g=7+1 2 (q-T)+1
From Lemma 2, we have U}Oz(f ) Cs—rj | N —gq U}(’:(lq ) Cs—j ) = 0. By
examining the coset structure of the defining set Z, we can see that if j = 0, then

CsN—qCs = {s}.
Hence, we need to show that

We first show that

3 3
15 (G="+1+2 _ f0@="+1 A
(Uj=ﬁ)<q—7>+2CHf M= (Y= Comrj | = Cspaat

We have the following:
3
15 (@—=D+1+A ' io(@—D+1 )
(Uj=ﬁo(q—7>+2c“f ) —4 (U Csrj )
_ 5 (@=D+1+2 _ B 6a=7+1 .
= (Cs_r&,lol U (UJ_]O(q 7)+3C5_rj>> N —q (szl Csrj
(g—7+1
= (Cs_rsqlol N —gq (Um Cs—rj))

3 3
10 @=D+1+2 f5a—D+1
o((Ui e ) na (U7,

We claim that

3
10@="7+1 ) _
(Cs_r34101 N—gq (szl Cs—rj =C,_, 3!
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and
0 (@=N+1+2 A q=T+1 AN
<UJ—10(!1 PaaCori ) N =a | Y= Csrj ) =9,

where 1 < A < ql"(’f

Contrary to the our claim, let assume that

3
15 (@—1+1+A _ T5(g—D+1 ]
(Uj=1%(q—7)+3c”f ) 1 (U Co-ry )
3
_ A _ fog—7+1 )
- <U1—3Csr(j+ﬁ)<q7>+1)) N—q <UAI=1 CHJ) =9,

q_ A _ 10 .
where | < A < H5. If Ui 3Cx ’(J+1o(‘1 7)+1)> n—q (szl Cs—rj) #*
@, then there exist two integers u’ and v’, where 3 < u’ < 0
M+1suchthats—r(u/—i—i( —N+1)=—q(s—rv)

10 10 4 = —q
r(u’+%(q—7)+ 1) =—q (s+rv’) (mod rn) .

Casellets —r (u’ + % (-7 + l) =—q (s - rv/) (mod rn). It follows that
s = (W +3(@—7+1+qv) (modn). We know that s = 0 (mod n) Then,

~ -
=)
o
[oN
~
S
~
Qo
=
[

I

0 < u’+qv’ < n. Thisis possible only when u’ +qv’ = n. Letu’ +qv' = T’ then
u' +qv = q(q D4 7q+1 . This requires that u’ = 7%”, which is in contradiction
with3 < u’ < ‘ff{f.

Case 2 Let s — r (u' + % (g—7+1) = —q(s+rv') (mod rn). Then, s =
(u’ + 13—0 qg-7+1- qv’) (mod n). It follows that —3n < u’ — qv’ < O This is
possible only when ' — qgv' = —noru’ — qv' = —2n. Letu’ — qv’ = _T’ then
u —qv =—q (qu3) 3q+1 . This requires that u = —3%’1, which contradicts with
2<u 5 ql_O The case u’ — gv’ = —2n can be shown in a similar way with the case
u —qv = —n.

The above discussions show that
3 3
S (@=T)+1+1 _ H5@=7+1 N\
(U/:ﬁ)(q—7>+2c”f N=q\Yjzi =~ Corj ) =Cun

From 4, we have —q (s - r(q—+3)> =g —r3t () (mod rn) . This fact says that
3 3
_ 5 @=T+1+x ‘ _ 5@=7+1 AN
q <<Uj:130(!17)+2cs_”) n—q (Uj=1 CS—’/>> =—qC,_, 31

and it follows that

3 3
2(g—N+1 —(q T+1+1
(U}O:l Cs—rj) N —q ( O:i) G- 7)+2Cs—rj> = Cx r(q+3>
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Contrary to the our claim, we assume that
3
io(g—D+1+Ar ] _ 10(‘1 D+1+A .
<Uj=ﬁ)(q7)+2CH-’ N=a\Yjisi- +2Co=ri
= (Urt] N—a(U*
<J=2Cs—r(j+ﬁ)(q—7>) 9 J=1Cs—r(,/+f—o(q—7>) =0,

<< q+3 A+l — A
where 1 A If<U] 2Cs r(]+10(‘1 7)))0 CI(UJ_ICS r(j—i-l%(q 7))> 75@’

then there exist two integers b’ and b”, where 1 < b',b" < q{?, such that
s — r(b’+%(q—7)) = —q (s—rb”) (mod rn) or s — r(b’ 5 (q—7)) =
—q (s +rb”) (mod rn).

Case 1 Let s — r (b’ + % (g — 7)) = —q (s - rb”) (mod rn). It follows that

s = (0 + % (g —7)+¢b") (mod n). It is known that s = 0 (mod n). Then, we
have 2 +q < b’ 4+ qb" < (qH) + g2 (q+3) =n+ 2”5“ < 2n. This is possible only

when b’ +gb" = n. Then, b’ +qb” = (‘H” 4 = _3q+1 . This means that b’ = %,
which is in contradiction with the fact 1 5 b’ < q]"(?.

Case 2 Let s — r (V' + 3 (q—7) = —q(s+rb”) (mod rn). Then, s =
(' + 2 (g —7) —gb") (mod n). It follows that —2n < —LF) _ Gaclb
b+ qb" < _9f10+3 < 0. This is possible only when b’ + ¢gb” = —n. Let
b +qb" = —21—0, then b’ + gb” = @ — ﬂ . This requires that b’ = 3‘1181,

which contradicts with 1 < b’ < %.
Consequently, we have

3 3
@D L N (o@D L)
(U/‘—fo(q—7)+2cs_” N—q Uj:i, (q— 7)+2CS—VJ =0.

From Lemma 1, we have ¢ = 5, and by Theorem 1, there exist EAQMDS codes
with parameters

6 3
[[n,n—g(q—7)—4)»—l,g(q—7)+2k+4;5ﬂq,

wherelskf%. O

Example T We present some parameters of EAQMDS codes obtained from Theorem 2
in Table 1.

Let Z and Z be the sets defined in Lemmas 2 and 3, respectively. Define T =
_ M-ﬁ- 2q+1+1+
ZL,IZUF:U].ZS0 , where F = U 52q+1+1
results of Lemmas 2—4 and Theorem 2, wessee that the number of entangled states
¢ = 9. Based on this fact, in Theorem 3, we give a class of EAQMDS codes of length

g>+1 :
n = 155~ and with entangled states ¢ = 9.

and 1 < A < %. By combining
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Table 1 Some EAQMDS codes

obtained by Theorem 5 4 [ 7 — g G- -4 -1 g (¢ =7+ 21+ 45]q
17 [17.4,12; 5]17
17 [29. 8, 14; 5] 17
37 [137, 96, 24; 5|37
37 [137,92,26; 5|37
37 [137, 88, 28; 5|37
47 [221, 168, 30; 5]47
47 [221, 164, 32; 5]47
47 [221, 160, 34; 5]47
47 [221, 156, 36; 5]47
Z;:’;ienﬁ di‘;”;lf(f;gnl\ffs codes [non—2Qq+1)—4r+7,22q+ 1) +21+2:9,
17 [29. 4, 18; 9] 17
37 [137, 80, 34: 9]37
37 [137,76,36: 9]37
37 [137,72,38: 9]37
47 [221, 148, 42; 947
47 [221, 144, 44; 9] 47
47 [221, 140, 46; 9] 47
47 [221, 136, 48; 9]47

Theorem 3 Let g = 7 (mod 10). IfC is an q*-ary a-constacyclic code of length n with
2+1
defining set T = U ; 2o H, then there exist EAQMDS codes with parameters

4 2
[0~ 5 Qg+ 1) =4 +7. 5 Qg + 1) +22.42:9],.

where 1 < A < (ql—?)
Proof The proof is a direct result of Lemmas 2—4 and Theorem 2. O

Example 2 'We present some parameters of EAQMDS codes obtained from Theorem 3
in Table 2.

2+1
4.2 EAQMDS codes of length n = %, whereq =3 (mod 10)
a>+1 2 : 2 :
Note thatn = =, and so ord,, (q ) = 2. This means that each g“-cyclotomic coset

2
modulo rn includes one or two elements. Let ¢ = 3 (mod 10) and s = q—;l. Itis
easy to see that the qz—cyclotomic cosets modulo rn containing some integers from 1
tornare Cy = {s} and Cs—,; = {s —rj,s +rj}, where | < j < ‘12;1
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Lemma5 Let g = 3 (mod 10). If C is a q*-ary constacycllc code of length n and
defining set Z = U* i1Cs—rj where 1 < ) < 3( , then C+H C C.

Proof By Proposition 2, it is sufficient to prove that Z N (—gZ) = #. Suppose that
Z N (—qZ) # (. Then, there exist two integers j, k, where 1 < j, k < %, such
thats —rj = —¢g (s —rk) (mod rn) or s —rj = —q (s + rk) (mod rn) .

Case 1 Let s —rj = —q (s —rk) (mod rn). This is equivalent to s = j +
gk (mod n). As s = O(mod n),wegetj+gk=0(modn).Sincel < j, k< %,
g+1 < j+qgk < 3 0 +q3q = _ (q+1)3(q D < 3. Then, we have that

j+gk =n(mod n)or j +gk =2n (mod n).If j +gk = n, then j + gk = L~ +1 =

(q 3) + 3q+1 . By division algorithm, j = 3‘11:;1. This is a contradiction, because

0<j< W. If j + gk = 2n, then j + gk = 20+ — ;243 | 26041 gy

division algorithm, j = %. This is a contradiction, because 0 < j < 3(‘110 )
Case 2 Let s — rj = —q (s +rk)(mod rn). This is equivalent to s = j —

gk (mod n). By s = 0(mod n), we have j — gk = 0(mod n). Since 1 <

jok < 3(‘1]—53), —4n < 1 — 3q(q 3 j—qk < _7]q0_9 < —n. We have that

j — gk = —2n(mod n) or j — qk = —3n(mod n). If j + gk = —2n, then
(2
j—qk = 2(?0“) = —q 2(%53) + 2(3?0—1). By division algorithm, k = %.
This is a contradiction, because 0 < k < %. If j + gk = —3n, then
2
— gk = @ =—g>i== 3(‘7 ) 4 q(3q D By division algorithm, k = 3“’1—53). This is
a contradlctlon, because 0 5 k< 3(q10%). |

Lemma 6 Let g = 3 (mod 10) and s = qZTH. Then we have the following:
. —qCs =Cs = {s},

— _ 3q+1 3q+1
~0C g = €y ) = o = (5) s+ (365}

Q=D +r(245‘1)].

3. —qCSir(qu> = Csfr(z(g;l) = {S —r

Lemma7 Let ¢ = 3(mod 10). If C is a q*-ary constacycllc code of length n and
defining set Z = U 34 Cs_rj, where1l <t < (q , then C*+H C C.

Proof The proof for this lemma is very similar to the proof of Lemma 5. O

As an immediate result of Lemma 7, we have Z N (—¢Z) = §.

In Theorem 4, we give a class of EAQMDS codes of length n = 20 and with
entangled states ¢ = 5.
Theorem 4 Let g = 3(mod 10). IfC is an g*-ary a-constacyclic code of length n with

3(g— 3)+
defining set Z = U, _ 2

Cs_rj, then there exist EAOMDS codes with parameters
6 3
[[n,n—g(q—3)—4/\+3,g(q—3)+2x+2;5}]q,

(g—3)
where 1 < A < L5
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Proof Since the defining set of an a-constacyclic code C of length n is Z =

3 (g—
VY ¢, and the cardinality of Z, which we denoted by |Z], is 2| =
% (g —3) + 21 + 1, then by Propositions 1 and 3 , C is a ¢g>-ary MDS a-constacyclic
code with parameters

3 3
nn—\=(@-=3)+22+1),=(@—-3)+2x+2| .
5 5 !

Hence, we have the following:

Z1=2n(-q2)

3 3
_ i6(q—3) ) io(@—3)+2 )
- ((Uj—o Cs—rj | U Uj:%(q_3)+1cs*rj

We claim that
21=Zﬂ(—qZ)=CSUCY_rMUC q=3) -
: 0 57710
From Lemma 8, we h 6= 00 ) =08
rom Lemma 8, we have szl s—rj | N —q Uj:l s—rj | = 9. By exam-

ining the coset structure of the defining set Z, we can see that if j = 0, then
CsN—qCs = {s}.
Thus, we need to show that

J=15(q—3)+1
3 3
70 (@=3)+2 3q-3
(U/=fo(q—3)+lcé” N=q\Yjmi  Csrj) =C_ a1,
3 3
w0 (g—3)+* A @=3)+A \
<Uf—fo(q—3)+lcs_” N—a Uj:%(q—3)+1CS—’J =0.

We first show that
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We have the following:

3 3
i5(@—3)+2 i6(q—3)
(U}ia)<q_3>+lcw) n—q (U}"—l c”,»)

— 10(‘1 3+ _ _ .O(q 3) _
= (Cs_rsqlg] U (U =2 (g 3)+2CS_” Nn—gq U Cs—rj

where 1 < X < ql__o3'

Contrary to the claim, we assume that

3 3
f5(@—3)+A f5@—3)
(Ujl'():ﬁ,<q—3)+2CS ’1> N—q (UJI‘O—I CSW)

Uh_,C n—q (UBY9 ¢ £ 0,
i=2C () ) T TE\Yimr G

3 (g—
where | < A < ql_O If (U)‘ C ) —q <U'.°_(q e Cy_ r]> # (, then

j=2"s— r(]+10((1 3))

there exist two integers u and v, where 2 < u < ‘110 ,and 1 < v < 3(‘11 3 such
thats—r(u+13—0(q—3)) = —q (s —rv) (mod rn) or s — (u+10(q ))
—q (s +rv) (mod rn).
Case 1 Lets —r (u+ 35 (¢ —3)) = —q (s — rv) (mod rn). It follows that s =
(u + % (g —3) +qv) (mod n). We know that s = 0 (mod n). Then, 2 + g <
3(g%+1)
10

u+quv < (qf(f) + 3q (qfoz') = — (8‘“6) < 3n. This is possible only when

u+qgv=noru+qv=>2n Letu+qgv = 10 L then u + qv —q(q 3 4 2‘7“.

This requires that u = %, which is in contradiction with 2 < u < ‘]1;3. Let
2

u+qu = qugl, then u + qv = 2¢-4-> q 3) +23q+1 This requires that u = %,

which is in contradiction with2 < u < qu .
Case2lets —r (u + % (g — 3)) = —q (s + rv) (mod rn) . Then,

3
s=<u+ﬁ(q—3)—qv> (mod n) .
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It follows that —3n < —(3q12—0+3) + % <u-—qv < ‘11—3 < 0, This is possible
only whenu —qv = —noru —quv = —2n. Letu — qv = qu ,thenu — qv =
—q% 3q+1 . This requires thatu = —%, which contradicts with2 < u < %.
Let u — qv = —2‘11—6“1, then u — qv = —2q-4> (q 3) 2(3f()+1). This requires that
u= —%, which is in contradiction with 2 < u < %.

The above discussions show that
U%(q PN U.%(q—ac N_c
j=5q=3+1 7" 7\ ~j=1 =) S—’%'

We have —¢ (s - r3"131) =s—r ("1_03) (mod rn). This fact says that

3 3
f5(a—3)+A 15(@—3) _ _
_q<<U1—Fo<q—3)+1Cs i )0 \Vimt Comni ) ) = 74 = G

and it follows that

3 3
5@—3) ) _ i5(@—3)+x A\
<U1=1 Comrj )=\ Y25 (31 G519 ) = Copiad
Contrary to the our claim, suppose that
3
15(@=3)+A _ 10(q 3)+a ]
<Uj—fo(q—3>+1CS A A
Ut N—q (U
( J=2Cs—r(j+ﬁ)(q—3>)> q( ’Z]CS"(”EO“"”)) =0

-3 : —q |V}
where 1 < A < %5 'If(Uj=2Cs—r<j+l30(q—3))>m q (Uj=1C ( + - )) #0,

then there exist two integers a’ and a”, where 1 < da’,a” < i)g, such that

s — r(a/+%(q—3)) = —q(s—ra”) (modrn) ors —r(a' + 3 (q—3)) =
—q (s + ra”) (mod rn) .
Case 1 Let s — r (a’ + 35 (¢ —3)) = —q (s —ra”) (mod rn). It follows that
s = (a/ + % (g —3)+ qa”) (mod n). We know that s = 0 (mod n). Then, 2 +¢q <
2
"< (q 3) + 3q (q 3) 3 1()“) — (8‘%@ < 3n. This is possible only when
(q 3) n 3q+l'

a +qa
2
a'+qa” =nora’ +qa” :2n.Leta’+qa” 10 T+ thena'+ga” = ¢4

This requires that a = %, which is in contradiction with 2 < a’ < q—o Let

a'+qa’ 2 10 ,thena' +qa” = 2¢~5= q g) +23q+1 This requires that a’ = '3(11:;‘1,
which is in contradiction with 2 < a’ < ‘11;0,
Case 2 Let s — r(a’+%(q_3)) —

w

—q (s + ra”) (mod rn). Then, s

2
(@' + 3 (q —3) — ga”) (mod n). It follows that —3n < —W + %
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Table 3 Some EAQMDS codes [0 — g @—3) — 413 g (@ -3 +2+2:5],

obtained by Theorem 4

13 [17. 4, 10; 5] 13

23 [53. 28, 16; 5]3

23 [53.24, 18; 5]23

43 [185. 136, 28; 5]43

43 [185. 132, 30; 5]43

43 [185. 128, 32; 5]43

43 185, 124, 34; 5]43

53 [281, 220, 34; 5] s

53 [281, 216, 36; 5] 53

53 [281, 212, 38; 5] 53

53 [281, 208, 40; 5] 53

53 [281, 204, 42; 5] 53
a —qa’ < ql—_OS < 0, This is possible only when a’ — ga” = —nora’ —qa” = —2n.
Let a’ — ga” = —qi—gl, then @’ — ga” = —q(ql—_o3) - %. This requires that
a = —%, which contradicts with 2 < a’ < %. Leta' —ga” = —2(121—5“], then
a —qa’ = —2q(ql—703) - %. This requires that ' = —%, which is in

contradiction with 2 < ¢’ < _q1—03.

This means that

3 3
T0@—3)+2 ) _ f5(a—3)+A A\
(Uj=ﬁ)(q—3>+lc“‘” M= \YVisg oy G ) =0

From Lemma 1, we have ¢ = 5, and by Theorem 1, there exist EAQMDS codes
with parameters

6 3
[[n,n—g(q—3)—4)»+3,g(q—3)+2k+2;5}]q,

Wherelfkf%. O

Example 3 We present some parameters of EAQMDS codes obtained from Theorem 4
in Table 3.

Let Z and Z be the sets defined in Lemmas 5 and 7, respectively. Define T =
4¢-3) 3@=3) 44 3

J— A = — ..
ZUZUF=U,"3 ™ where F = U S and 1< < 15" By combining

results of Lemmas 5-7 and Theorem 4, we see that the number of entangled states
¢ = 9. Based on this fact, in Theorem 5, we give a class of EAQMDS codes of length

¢’+1 i
n = “7;— and with entangled states ¢ = 9.
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Table 4 Some EAQMDS codes [0 — % G—3) —4r+7, % (-3 +2+2:9],

obtained by Theorem 4

13 [17,4,12;9]13

23 [53, 24, 20; 9] 23
23 [53, 20, 22; 9] >3
43 1185, 124, 36; 9] 43
43 185,120, 38; 9] 43
43 [185, 116, 40; 9] 43
43 [185,112,42; 9]43
53 [281, 204, 44; 9] 53
53 [281, 200, 46; 9] 53
53 [281, 196, 48; 9] 53
53 [281, 192, 50; 9] 53
53 [281, 188, 52; 9] 53

Theorem 5 Let g = 3 (mod 10). If C is an g*-ary a-constacyclic code of length n

with defining set T = ZU Z = U 1:18 )L, then there exist EAQMDS codes with
parameters

8 4
[[n,n—g(q—3)—4k+7,g(q—3)+2k+2;9}]q,

(g=3)
where 1 < A < o

4=
Proof Since the defining set of an a-constacyclic code C of lengthnis T = U ; 20 *

and the cardinality of 7', which we denoted by |T'|, is |T| = % (g —3)+2x+1, then
by Propositions 1 and 3 , C is a g>-ary MDS «-constacyclic code with parameters

4 4
nn—|=(@-=3)+2r+1),=(g—-3)+21+2
5 5 .

The remaining part of the proof is obtained directly from Theorem 4 , Lemmas 6
and 7. O

Example 4 'We present some parameters of EAQMDS codes obtained from Theorem 5
in Table 4.

5 Construction of EAQMDS codes from constacyclic codes (g is even)

2
Throughout this section, we set ¢ = 2°, r = ¢ + 1, s = 5. The multiplicative
order of ¢ modulo 7 is denoted by ord, (g). Let o € ]FZ2 be a primitive r’# root of

unity.
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5.1 EAQMDS codes of lengthn = qu'H, where g = 2 (mod 10)

2
Note thatn = "S—H, and so ord,,, (qz) = 2. This means that each ¢2-cyclotomic coset

2
modulo rn includes one or two elements. Let ¢ = 2 (mod 10) and s = u It is
easy to see that the g>-cyclotomic cosets modulo rn contalmn% some 1ntegers from 1
tornare Cg_pj ={s —rj,s +r(j+ 1)}, where 0 < j < 5=,

Lemma8 Let g = 2 (mod 10). If C is a q*-ary constacyclic code of length n and
defining set Z = U?ZOCS_”-, where 0 < A < 3(‘11—82) — 1, thenCtH C C.

Proof By Proposition 2, it is sufficient to prove that Z N (—gZ) = (. Assume that
Z N (—qZ) # @. Then, there exist two integers j, k, where 0 < j, k < % -1,
suchthats —rj = —q (s —rk) (mod rn) or s —rj = —q (s + rk) (mod rn) .

Case 1 Let s —rj = —q (s —rk) (mod rn). This is equivalent tos = j +
gk (mod n). As s = rM (mod n), we get j + gk = "_1) (mod n). Since
0<j k< 3q 16 0 < j+qgk < 3q 16+q3q 16 <(q+1)(q102) <3(q+1)(n 1)
Then, we hawz that jtqgk=r ("21) (mod n) if and only if j + gk = r ("2 D Since

g 41 2 2
(”_1) =r—=5 - rq164 = pL—2dTed—2 72’116“2‘1*4 = gr (‘172) + 2r(q;02), we obtain
j+ qk =qri-= (q 2) +2rd—=) (q 2) . By division algorithm, j = 2r ). This is a contra-
diction, becauseO <j< 3(q02) 1.

Case 2 Let s —rj = —q (s +rk)(mod rn). This is equlvalent tos = j —
gk (mod n). By s = r("gl) (mod n), we have j — gk = r' D (mod n). Since 0 <
Je< 221 23+ 1) U < g0 < jgk < 3" < (g + 1) 2D

We have that j — gk = r("—gl) (mod n) if and only if j — qk = ("+1). Since
241
LoD L 246 g?=2q+2q46 _ @2 _ ,@+d
T = Iy = g = 10 = 49710 5 0 W
obtain j — gk = —qr-+== (q 2) @. By division algorithm, k = W. This is
a contradiction, because 0 <k< 3(‘11—62) —1. O
Theorem 6 Letg = 2 (mod 10). If C is an g*-ary a-constacyclic code of length n with
3((1*2)_1 A
defining set Z =U j ] e s—rj, then there exist EAQMDS codes with parameters

6 3
[[n,n—g(q—Z)—4)t+4,g(q—2)+2k+1;4]]q,

where 1 < A < ‘Isﬁ.
Proof Since the defining set of «-constacyclic code C of length n is Z =
U'O(q - IHLCY_,j, and the cardinality of Z, which we denoted by |Z], is |Z| =

= (q 2) + 24, then by Propositions 1 and 3 , C is an g*-ary MDS «-constacyclic
code with parameters

[n,n—(§(q—2)+2)»>,§(q—2)+2)t+1i|
5 5 2
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Hence, we have the following:
Z1=7ZN(—qZ)
_ ((U;():(g—z)—lcs_rj) U <U;3:(E)—(Z)_—21)+Acs_rj>>
<_q (u;l(g‘”‘lcs_,,) U—q (Uj":(%)_(j)__;)ﬂcs_rj>>

We claim that

Z1=7ZN(—q2Z2) = Cs_r3(qlaz) U Cs_r%.

3(qg-2)-1 3(q-2)-1
By Lemma 8, we have Ujl.(’:(oq ) Csrj>ﬂ—q< jl.():(g ) Csrj)zQ).

We need to show that

—10

3
3 (q—2)—1+xr
(UIO B CH]-> N—g (U’

J
3 3
B@-2—142 ' -1 Al
(U =2 (4-2) Cs—rj )N —q Uj=0 Cs—j) = Cs_r 3(:1162) ,
i=i0(@-2) (

We first show that

3 3
Bg-—142 ' 3q-2-1 A
<Uj—ﬁo<q—z> Comrj ) =0\ Vim0 Comrj ) = € a2

We have the following:

3 3
3 (g=2)— 141 3 (g-2)—1
(Ujl.()_3(q_2) Csrj) N—q (U}O—o Csrj)
=10
U

3 3
_ T0(@—2)—1+2 ‘ 15@—2)—1 _
- (Cs—r“"laz) Y ( f—%(q—2>+1cs—”>> n—q <Uj=0 Csrj
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3
5@—2)—1
= <CS—V 3(q—2) N —q (Ujlo_g CSV]))
3 3
w5 (@—2)—1+A (g—2)—1
U <<u/{°_%(q_2)+lcs_rj> N—gq (u}OIO Cs_,j>> .

We claim that

3
fog—2)—1
(CS_,MIOZ) N—q (U}Ozo Cs—rj)) =C,_, 342

(g—=2)—14+x (g—2)—1
<UJIO -2+155- ’j)m q<ulo CS”) =7
_10

where 1 < X < "Si
Contrary to the claim, we assume that

3 3
3 (g—D)—142 3 (g-2)—1
(U}():&)(q—zmc”f) N—q (UJI'O=0 Co—rj )

(i a (a1,
= (Uj=zcsr<j+130(f12)l)) n—q <U Cs- ’f> #0,

3
a3 2 _ 7621 _
where 1 < A < == 1If <Uj:2Csr(j+130(q2)l>> N —q (Uj:() CS,]) #
u < 53 and 0 <
< 3("1—64) such that s — r(u+%(q—2)—1) = —q (s —rv) (mod rn) or
s—r(u+35@—2)—1)=—q(s+r@+1) (modrn).

Case 1 Lets —r (u+ % (g —2)—1) = —q (s — rv) (mod rn). It follows that
5= (u+1—30(q —2)+qv —1) (mod n). Then, 3(‘1102) < u+m(q —2)+qv—1<
2(q+3) + 10 ( -2) +q3(qlg4) = 3(12167(1 < qZEZq = s — %, which is in contradiction
Wlth s = 2L (mod n) .

Case 2 Lets — r(u—l—%(q—Z)—l) = —qg(s+r @+ 1)) (mod rn). Then,
s = (u + %q —2—q+1)— 1) (mod n). It follows that — 3(q D 4 3(q D _

q < u—l—%(q—Z)—q(v—i—]) 1 < 2("16’3) —i—%(q—Z)—q = _2 ,whlchlsa
contradiction, since s = *5* (mod n) .
The above discussions show that

3 3
3@-2)—1+1 ‘ 3q-2)~-1 AN
(Uj—?o(q—z) Corj )N =a\Yj=o ~ Csrj) =€ 3402

Since —gs =5 — r—(34+11)()(q_2) (mod rn), we have —g (s — r—3(q62)) =s5—r (q1—2)

(mod rn). This fact says that

and

¢, then there exist two integers u# and v, where 1 <
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3 3

3 (g=2)—14+r 15(g—2)-1

—-q (Ujl.()_3(q_2) Csrj) N—q <Uj!0—0 CS”j) = —qC 3(‘7 2 = Cv r(q 2) ’
— 10

and it follows that
3 3
3(g-2)-1 —(q72)71+x
<U]10:0 Cx—rj) —q < ]w:i(q,z) Cs—rj) = Cs—r%'

Contrary to the claim, suppose that

3
l*—o(q—Z)—H-AC ]O(q 2)—1+4A
N U Cy_pi
( i=3q-y )T\ Sy geny T
=(uU* — A
- <UJ=1Cs—r(j+13o(l]—2)—l)> N—q <U1=1C5—r(j+13o(q—2)—1)> # 9.

where 1 < A < @ Then, there exist two integers « and v, where 1 < u, v < #,

suchthats—r(u—i—%(q—Z)—l) E—q(s—(v—i-%(q—Z)—l)) (mod rn) or
s—r(u+%(q—2)—I)E—q(s+(v+l3—()(q—2))) (mod rn) .
Case 1 Let s — r(u+:5(@—-2—1) = —g(s—r(v+35@—2—1))
(mod rn). It follows that s = (u + qv + 75 (¢ + 1) (3g — 16)) (mod n). Then, we
— — —_ 2— —_ .
MDD o @EDCIZIO) | oy o @EDETI0) =2 g s

C

get
contradicts with s = *5* (mod n) .

Case2Lets —r(u+ 35 (q—2)—1)=—q(s+r(v+ 75 (g —2))). It follows
that s = (u —quv+(1—¢q) 3<q D _ ) (mod n). Then, we have % <u-—

qu+(1 —¢q) 3(q D 1= =3¢ 10 , which is in contradiction with s = 5~ (mod n) .
This means that

3 3
10(@=2)=1+2 A o (@—2)—1+1 N\
(Uj=l30(q—2) C‘T_rl N—g Uj=%(q—2) Cs—r] = 0.

From Lemma 1, we have ¢ = 4, and by Theorem 1, there exist EAQMDS codes
with parameters

6 3
[[n,n—g(q—Z)—4A+4,g(q—2)+2k+1;4]]q,

Wherelfkf"sﬁ. O

Example 5 We present some parameters of EAQMDS codes obtained from Theorem 6
in Table 5.
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Table 5 Some EAQMDS codes

6 3 .
obtained by Theorem 6 [n.n—35q -2 -4 +4.5(¢ -2 +20+ 14

HZOS, 169, 21; 4ﬂ32
[205, 165, 23; 4] 30
[205, 161, 25; 4] 32
[205, 157, 27; 4] 32
[205, 153, 29; 4] 32
[205, 149, 31; 4] 32
[205, 145, 33; 4] 3,

~N N R W N =

5.2 EAQMDS codes of lengthn = "ZT'H, where g = 8 (mod 10)

2
Let ¢ = 8(mod 10) and s = £-Z. Then, the g°-cyclotomic cosets modulo rn
containing some integers from 1 to rn are Cy_,; = {s —rj,s +7 (j + 1)}, where
0<j<4P

Lemma9 Let g =8 (mod 10). If C is a q*-ary constacycllc code of length n and its
defining set is Z = U* i20Cs—rj> where 0 < A < 3q , then CtH C C.

Proof By Proposition 2, it is sufficient to prove that Z N (—gZ) = (. Assume that

Z N (—qZ) # . Then, there exist two integers j, k,0 < j, k < 3’110 , such that

s—rj=—q(s—rk)(modrn)ors —rj=—q(s+rk)(modrn).
Casels—rj=—q (s —rk) (mod rn). ThlS 1s equivalentto s = j + gk (mod n).

Ass—r(” D (mod n), we get j + gk = r50 2 ) (mod n). Since 0 < j, k < ‘7_4,

0<j +qk < 3" 14 +q3q 4 - @+ (3"1014) < 3r("21). Then, we have that
Jj+qk = r(”gl) (mod n) if and only if j 4+ gk = r("—;l) + nt, for some integer

(qil, ) ,

) _ 5 —4 .. .

t. Then, we obtain r ("2 D _ 5 =r (g o ). This is a contradiction, because
0<j<3l4_ (11274)_

10 10
Case 25— r] —q (s + rk) (mod rn). This is equlvalent tos = j — gk (mod n).

Since s = r =1 > (mod n), we have j — gk = r( (mod n), where 0 < j, k <
3‘11014. Then, —¢ 3q 14 <j—qk < 3q 14 . We have that] —gk = r(" D (mod n) if

241
ifi_ __M . _<n+1)__"5+1_
and(;nlylf] gk = —r 5 +nt, for some integer t. Then, —r 7 = r—5— =
P46 s L _3q-14 _ . 3g—14
-rig . This is a contradiction, because —g o =J gk < T

O

Theorem7 Letqg =8 (mod 10). IfC is an g*-ary a-constacyclic code of length n with

3q—14 A
defining set Z = U2 ”’ e s—rj» then there exist EAQMDS codes with parameters

2 (3qg — 14)
n—=(3g—14)—dn, 22—
[n, n 5 Ga ) 5

+ 21 +3; 4],

where 1 < A < qTH
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Proof Because the defining set of «-constacyclic code C of length n is Z =
3g-14
U, “’ HC; _rj, then the cardinality of Z is |Z] = 3q 4 4 2 + 2. From Propo-

smons 1 and 3, C is an MDS «-constacyclic code with parameters

35— 14 35— 14
[n,n—<%+2x+2>,%+zx+3}

q2

Thus, we have the following:

Z1=2n(-q2)

3q—14 3q— 14+
= ((uj_'g CS,,-> U <u “gq 4 Cy_ ,,))
10
Cs—
N

A
3g—14 3g—14
+A
—-q U_H()) —rjJYU—qVy 1qu4cs—rj
="
3g—14
()5 5)
3g—14 3qg— 14+)L
<Uj=‘% Cs_ ,]> N q<U ‘%q s Cy_ ,,))
10
3q714+)“ 3g—14
Ujlzq s Cs— rj) N—q (Uj—l(()) Csrj))
=710

We claim that

Z1=7ZN(—q2Z2) = Cs_r% U Cs_r (34164) .

3q 14 3g—14
By Lemma 8, we have (U, 2 Cs— ,J) N —q (szl‘()) Cs_rj) =0.
It is sufficient to show that
3q—14 3g—14
<Uj=l((J) Cs—rj) n—q <Uj=l(()) Cs—rj) = Cs r(q 8)
314 4y 3g—14
<U 1oa Csm r]) n-— Q< 2 Cs—rj) =C,_,064-9,
j= 10 10
3q— 14_‘_)L 3q— 14_‘_)L
=" o
We first show that
3q-14 3g—14
(Uj_m}q4 Cs—rj) N —q (Ul:“()) Cs—rj) = Cs—r (351154).
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The following is immediate:

- 14+)~ 3g-14
<Uj 3g—4 Cs—rj) N —q <Uj=](()) Cs—rj)
=710
3q ]4+)\ ?q1014
= (Cs_r(,%qloza) U <Uj 3q+6 Cy_ r]>> N q( Cy_ rj>
3g—14
= (Cs—r(3‘14) N —gq <Uj=l% Csrj))
Yl gy 3g—14
U ((uj_%,+6 C,_ r,) N—gq (uj:lg Cs_r,)) .

We claim that

3g-14
_ 10 ) =
C._, (g4 N—q (Uj—o Cyr]> =C,_, Gqd)»

and

314 3q—014
(U 3g+6 Cs— rj) N CI( =0 Csrj) =0,

J="0

where | < A < qTJ“z.
Contrary to the our claim, assume that

=14 4y 3g—14
(Uj 103%6 C,_ ,]> N—gq ( 2 CS_,j>
= <uk._ C _ ) n— (US.KI‘OMC - ) #0
j=2 S—r(j-',—%) g\ “Yj=0 Cs—rj )

3q—14
. r(H_w 14)) N—q (szlo s— r/> = (, then there

exist two integers a and b, where | < a < qslz and0 < b < (3"1—_014) such that s —

r (a + 3‘11*0]4> = —q (s —rb) (mod rn) ors —r (a + 3 14) =—q(s+r®+1)
(mod rn).

12 A
where 1 < XA < T' If <Uj=2C

Case 1 Let s — r (a + 3= 14) = —q (s —rb) (mod rn). It follows that s =
(a+3q M—i—qb) (mod n). Then, —(3q D < g4 3q 14 +qgb < 3‘1169‘1 -1 <
¢ ;24 = s — %, which is in contradiction with s = “5* (mod n).

Case 2 Let s — r (a 4 34 ‘4) = —g(s+r(b+1) (mod rn). It follows that

SE<a+3q 14 q(b+l)> (mod ). Then, 483 | < g1 304 4 1) <

—4 — 1, which is a contradiction, since s = %5~ (mod n).
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The above arguments show that

3g-14 3q—14
10 10
(U 3g-4 Cs— r]) N—q ( -0 Csrj) = Cs—r(3qlg4)’

J="10

We have —¢q <s — r34164) =5 — r% (mod rn). This means that

34y Y14
—q <U 0311 “ Cs—rj) N —q (UJ-:% Cs—rj) = —qC St = Cs—rqu’
10

and it follows that

3g—14 3g—14
(Uj=l(()) Cs—rj) N—gq <Uj=l(()) Cs—rj) = CS r(q 8)

For the remaining part of the proof, suppose that

3g-14 =14,
<U 10%1 s Cso rj)m ‘I<U 10’3(1 4 Cs—rj

J="10 10

= (i) V0 (S £

where 1 < A < q-5|r2 Then, there exist two integers @ and b, where 2 <

a,b < "45'2, such that s —r<a+3" 14) = —q (s—(b—i—Sq 14)) (mod rn) or
s—r(a+3q 14)——q(s+r(b+1+3q 14)) (mod rn) .

Case 1 Lets —r (a + 39— 14) = —¢q ( (b + 39— 14)) (mod rn). It follows
3q 14

that s = (a +gb+(g+1) ) (mod n) . It is immediate that —(q+1)1(3q74) <

2
a+ qb +(g+ 1M < (q+l)§%q—10) = 472472 — 5 — 1. This contradicts with
= 5~ (mod n) .

Case 2 Let s — r(a+ 39— 14) = — (s+r<b+ 1+ 3= 14)) (mod rn). It
2
follows that s = g+ +1—q) 14) (mod n). We have =¢34
<a b+H)+1—-gq) 3” 14 < % — 1 < s, which is in contradiction with
s = ”T (mod n). This means that

3g—14 3g—14
+A +4
<U m%q s Cs— rj> N—q <U m%q s Cs— rj) = 0.

=" =10

From Lemma 1, we have ¢ = 4, and by Theorem 1, there exist EAQMDS codes with
parameters

+ 21+ 3;4],.

2 (3q—14)
, — —Bg — 14) — , ————
[[n” 5(61 ) 3

@ Springer



EAQMDS codes from constacyclic codes Page 250f28 44

Table 6 Some EAQMDS codes

2 3¢ 14 ]
obtained by Theorem 7 A [n.n—5Gq—14) -4, ((157) +2x+3;4]4
8 1 [13,5,7; 4]3
8 2 [13.1,9; 4]g

128 1 [3277,3125., 79; 4] 125
128 2 [3277.3121,81; 4] 05
128 3 [3277, 3117, 83; 4] 108
128 4 [3277,3113, 85; 4] 125
128 5 [3277,3109, 87; 4] 125
128 6 [3277,3105, 89; 4] 125
128 26 [3277.3025, 129; 4] 1o
where 1 < A < 4£2. o

5

Example 6 We present some parameters of EAQMDS codes obtained from Theorem 7
in Table 6.

5.3 EAQMDS codes of lengthn = "21—';1, where g = 5 (mod 13)

2
Note thatn = %, and so ord,,, (qz) = 2. This means that each ¢2-cyclotomic coset

2_ .
modulo rn includes one or two elements. Let ¢ = 5 (mod 13) and s = %. It is
easy to see that the g>-cyclotomic cosets modulo rn Containin%

some integers from 1
tornare Cg_pj ={s —rj,s +r(j+ 1)}, where 0 < j < 5=,

Lemma 10 Let ¢ = 5 (mod 13). If C is a q*-ary constacyclic code of length n and
defining set Z = U?:OCS—"J" where 0 < L < % — 1, then CtH C C.

Proof The proof is analogous to the proof of Lemma 8. O

Theorem 8 Let g = 5 (mod 13). IfC is an q*-ary a-constacyclic code of length n with

3(g—2) —1 +A
defining set Z = U j=18 Cy—rj, then there exist EAQMDS codes with parameters

6 3
[[n,n—g(q—Z)—4)\+4,g(q—2)+2k+1;4]]q,

where 1 < A < qSﬁ_
Proof The proof is analogous to the proof of Theorem 6. O

Example 7 We present some parameters of EAQMDS codes obtained from Theorem 8
in Table 7.
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Table 7 Some EAQMDS codes

6 3 .

obtained by Theorem 8 » [n.n—35q -2 -4 +4.5(¢ -2 +20+ 14

1 [20,165, 19,553, 309; 4]512

2 [20,165, 19,549, 311; 4] 512

103 [20,165, 19,145, 513; 4] 512
Table 8 Some EAQMDS codes 6 3 ]
obtained by Theorem 9 )L [ n — 5@-H-H-8 5@ - D244 4lq

1 [241, 157, 42; 464

2 [241, 153, 44; 4]6s

3 [241, 149, 46; 4] 64

4 [241, 145, 48; 4] 64

5.4 EAQMDS codes of lengthn = "21—';1, where g = 13 (mod 17)

2
Note thatn = ‘11—;1, and so ord,,, (qz) = 2. This means that each ¢2-cyclotomic coset

2— .
modulo rn includes one or two elements. Let ¢ = 13 (mod 17) and s = 452 It is
easy to see that the g2-cyclotomic cosets modulo rn containin% some integers from 1

tornare Cy_,j ={s —rj,s +r(j+ 1)}, where 0 < j < 5=

Lemma 11 Let g = 13 (mod 17). If C is a g*-ary constacyclic code of length n and
defining set Z = U?:()Cs—rjv where 0 < A < 3(‘11—84) +2, then C*+# C C.
Proof The proof is analogous to the proof of Lemma 8. O

Theorem9 Let ¢ = 13 (mod 17). If C is an q*-ary a-constacyclic code of length

3(g—2) +24A
n with defining set Z = U j:'8 Cs—yj, then there exist EAQMDS codes with

parameters

6 3
[[n,n—3(61—4)—4)»—873(4—4)4‘2)&4‘4?4]]11’

q+4
17 -

Proof The proof is analogous to the proof of Theorem 6. O

where 1 < A <

Example 8 We present some parameters of EAQMDS codes obtained from Theorem 9
in Table 8.

6 Conclusion

In this work, via a decomposition of the defining set of constacyclic codes we have
constructed eight new families of EAQMDS codes. In addition to the parameters of
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EAQMDS and EAQEC codes given in [12,24], we remark that the parameters of
EAQMDS and EAQEC codes listed below have not covered ones given in this paper.

10.
11.

12.

13.

lg> +1,9% — 2d +4,d; 1], where g is a prime power, 2 < d < 2q is an even
integer [9].

?—1 ¢*-1 ) . . g+5 3g—1
Y, 5 —2d+4,d; 2]],], where ¢ is an odd prime power, 5 =< d < 5
[9].

[n,n—25 —1,28 +2;25 + 1],, where ¢ is an odd prime power, n = > +1,
s=2rlg—1,rfg+lLand0 < s < C=D6=D [79],
[n,n—28-2,2843;25+42],, whereq =2",n = @+ rlg=1,r{qg+l,u=
"Land 0 < § < L [29].
[[n,n—28—1,26+2;28+lﬂq,whereq:2m,n=q2+1,r|q—1,r)[q+1
and 0 < § < =10=2) o),

+1,9g°+5— —4t, g +2t + 1; ,where 2 <t < 45—, g is an o

®+1,¢>+5—2q —41,q + 2t + 1; 4], where 2 i1 g dd
prime power with g > 5and g = 1 (mod 4) [8].

2 2
IS, S —2g — 41 45,9 + 2t + 155],, where 2 < 1 < 451, g is an odd

prime power with g > 7 [8].
[AMg+D,2(g+1)—21—2t—q+35, % +1+4; 4], where g is an odd prime
power withg > 7, A is an odd divisor of ¢ — 1 with A > 3 and # <t< %—i—k
[8].
20+ 1),20(g+1) —4r =2t — g + 5, ﬂ—l—t—{—2)\;4 , where ¢ is an odd
q q q 2 q q
prime power with ¢ > 13, ¢ = 1 (mod 4), A is an odd divisor of ¢ — 1 with
A>3and 42 <1 < L poa sl
2 2
[[qTH, qTH —5,d > 3;5],, where ¢ is an odd prime power with ¢ > 3 [8].
24 1, 2 _ 3,d > 3;4|,, where ¢ is an odd prime power with ¢ > 5 and
q q q q p p q
g =1 (mod 4) [8].
1 ¢*+1

%50~ S0~ —2d+3.d; 1], where g is an odd prime power of the form 10m +3,
2 <d < 6m+ 2iseven [25].

2
[[#?)Ll, % —2d+3,d; 1], where g is an odd prime power of the form 10m +7,

2 <d < 6m +4iseven [25].
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