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Abstract
The pairwise nonclassical correlations for two-qubit states, extracted frommulti-qubit
system with exchange symmetry and parity, are quantified by local quantum uncer-
tainty and trace distance discord. The explicit expressions of local quantumuncertainty
and geometric trace distance discord forDicke states and their superpositions are given.
A comparison between the two quantum correlations quantifiers is discussed.

Keywords Pairwise nonclassical correlations · Local quantum uncertainty · Trace
distance discord · Dicke states

1 Introduction

The concept of entanglement is at the heart of the violation of Bell inequalities [1], and
it is a very useful ingredient in the field of quantum information [2–4]. Entanglement
can be used to perform several quantum tasks such as superdense coding [5], quantum
teleportation [6] and quantum states merging [7,8]. The characterization of quantum
correlations is one of the central issues in quantum information. In this sense, there
are still many open questions regarding the entanglement properties of two and more
quantum systems. Various entanglement measures are reported in the literature [3,9]
to quantify entanglement and to distinguish between entangled and separable (not
entangled) states. But, nontrivial nonclassical correlations may exist even in separa-
ble states [10]. Thereby, the general nonclassical correlations are not quantitatively
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characterized by quantum entanglement. In this respect, quantum discord [11–13] (a
measure of quantum correlation beyond entanglement) has been widely studied in
the literature as an alternative way to characterize nonclassical correlations even in
separablemixed states. The investigation of this information-theoreticmeasure of non-
classical correlations has generated an increasing interest during the last two decades
[14]. The computational complexity of quantum discord led Dakić et al. to introduce
a geometric version of quantum discord [14] using Hilbert–Schmidt norm. Another
interesting geometrical approach to describe quantum correlation is the so-called trace
distance discord (TDD). It measures, by means of the Schatten 1-norm (trace norm),
the distance between the state under consideration and its closest zero discord states
[15,16]. The explicit form of trace distance discord for two-qubit X states was derived
in [17].
Besides TDD measure, the local quantum uncertainty (LQU) has been proposed as
another prominent quantifier of nonclassical correlations in multipartite systems. It
was introduced by Girolami et al. [18] in order to quantify the uncertainty which can
arise in a given quantum state due to its noncommutativity with a measuring single
local observable. Furthermore, LQU has a relevant application in the field of quantum
metrology. It is also connected to quantum Fisher information [19] due to the link
between this quantum precision measurement and skew information [20,21] on which
is based local quantum uncertainty. Its closed form is available for qubit–qudit system
[22]. For a generic family of two-qubit X states, the analytical expression of local
quantum uncertainty was derived in [23].

In investigating quantum correlations, multipartite states have received a special
attention. The pairwise entanglement in symmetric multi-qubit systems was studied in
[24]. The quantum discord, based on theHilbert–Schmidt distance, was also employed
to determine the pairwise quantum correlations in such systems [25]. However, it
has been pointed out that the Hilbert–Schmidt quantum discord not a good measure
of quantum correlations [26] since it may increase under local reversible operation
acting on the un-measured qubit. This violates the property according to which every
quantum correlations quantifier, constructed on the basis of a distance between two
states, should be nonincreasing under any given completely positive trace preserving
map [27].

Thus, in this paper, we shall reconsider the evaluation of the pairwise quantum
correlations for a pair of two-qubit extracted from a symmetric of N two-level systems
[24]. We shall employ the local quantum uncertainty and geometric quantum discord
based on the trace distance (the Schatten 1-norm).We focus essentially onDicke states
and their superpositions [28]. They provide a rich resource for quantum information
tasks (see Ref. [29] for a comprehensive review), and they can easily be converted
to W states [30] or GHZ states [31]. Furthermore, Dicke states have attracted a lot
of attention and become the subject of both experimental [32] as well as theoretical
studies [25,29,32]. In this paper, we give the analytical expressions of local quantum
uncertainty and trace distance discord for two-qubitX-states type extracted frommulti-
qubitDicke states and someof their special superpositions such as generalizedW states
and generalized GHZ states [4,30,31] and even and odd spin coherent states [33,34].

This paper is organized as follows: In Sect. 2, we give the expressions of local
quantum uncertainty and trace distance discord for two-qubit systems extracted from
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symmetric multi-qubit system. In Sect. 3, we investigate the pairwise quantum corre-
lations in Dicke states and their superpositions (generalized W states and GHZ, the
superpositions of two Dicke states and even and odd spin coherent states). Concluding
remarks are given in Sect. 4.

2 Nonclassical correlations quantifiers for two-qubit X states with
exchange and parity symmetries

2.1 Two-qubit density matrix

In the present work, we consider an ensemble of N spin− 1
2 particles with the states |0〉

and |1〉. This system has exchange symmetry, and its properties can be described by
the collective spin operators Jμ(μ = x, y, z) defined as the sum over all elementary

spin operators (Pauli matrices) σ
(k)
μ :

Jμ = 1

2

N∑

k=1

σ (k)
μ . (1)

In order to compute the TDD and LQU for this system, we consider two-qubit states
which are extracted from the whole ensemble by tracing out the remaining (N − 2)
qubits. Specifically, we focus on the states with exchange symmetry and parity. In
this case, the two-qubit reduced density matrix in the standard computational basis
{|00〉, |01〉, |10〉, |11〉} can be written as [24,25]

ρAB =

⎛

⎜⎜⎝

μ+ 0 0 z∗
0 η η 0
0 η η 0
z 0 0 μ−

⎞

⎟⎟⎠ . (2)

The density matrix ρAB satisfies the conditions: TrρAB = 1 and μ+μ− > |z|2 to
ensure the positivity of the density matrix condition. The elements of the density
matrix (2) can be expressed in terms of the expectations values of the collective spin
operators as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μ± = N 2 − 2N + 4〈J 2z 〉 ± 4〈Jz〉(N − 1)

4N (N − 1)
,

η = N 2 − 4〈J 2z 〉
4N (N − 1)

,

z = 〈J 2+〉
N (N − 1)

(3)

where the ladder operators J± are defined by J± = Jx ± i Jy .

123



45 Page 4 of 21 Y. Khedif, M. Daoud

2.2 Local quantum uncertainty

The concept of local quantumuncertainty is regarded as a faithful quantifier of quantum
correlations. It quantifies the minimum quantum uncertainty in a quantum state due
to a measurement of a single local observable. Let ρAB be a bipartite quantum state,
and let K := KA ⊗ 1B denote a local maximally informative (with nondegenerate
spectrum) observable associated with the subsystem A, with KA being a Hermitian on
A and 1B is the identity operator acting on the subsystem B. The LQU with respect
to the subsystem A is defined as [18]

U(ρAB) := min{K } I
(
ρAB, KA ⊗ 1B

)
(4)

where I is the Wigner–Yanase skew information [20,21] defined by

I(�, K ) := −1

2
Tr

([√
�, K

]2)
. (5)

It serves as a measure of uncertainty of the observable K in the state �. For pure states
(�2 = �), the skew information reduces indeed to the conventional variance given by

Var (�, K ) = Tr
(
�K 2

)
−
(
Tr
(
�K
))2

. (6)

The analytical evaluation of the local quantum uncertainty requires a minimization
procedure over the set of all observable acting on the part A. A closed form for qubit–
qudit systems was derived in [22]. In particular, for qubits (spin- 12 particles), the local
quantum uncertainty with respect to subsystem A is given by [18]

U(ρAB) = 1 − λmax {WAB} , (7)

where λmax denotes the maximal eigenvalue of the 3 × 3 symmetric matrix WAB

whose elements are defined by

(
WAB

)

i j
≡ Tr

{√
ρAB

(
σAi ⊗ 1B

)√
ρAB

(
σAj ⊗ 1B

)}
(8)

and σAi (i = 1, 2, 3) being the standard Pauli matrices of the subsystem A. In what
follows, we recall some interesting properties of local quantum uncertainty. It can be
treated as discord-like quantifier. This means that LQU vanishes for all states which
have zero discord. It has a geometrical significance in terms of Hellinger distance
[18,35]. Besides, LQU is invariant under any local unitary operations. Based on this
last property of LQU, the phase factor z

|z| = eiθ [see Eq. (2)] can be removed. Indeed,
by means of the following local unitary transformation

|0〉A = exp
(

− iθ

2

)
|0〉A, |0〉B = exp

(
− iθ

2

)
|0〉B,
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the density matrix ρAB (2) becomes

ρ′
AB =

⎛

⎜⎜⎝

μ+ 0 0 |z|
0 η η 0
0 η η 0
|z| 0 0 μ−

⎞

⎟⎟⎠ . (9)

In the Fano-Bloch representation [36,37], the density matrix ρ′
AB writes as

ρ′
AB = 1

4

3∑

α,β=0

Rαβσ A
α ⊗ σ B

β (10)

where the nonvanishing correlations matrix elements Rαβ = Tr(ρ′
AB σ A

α ⊗ σ B
β ) are

given by

R00 = 1, R03 = R30 = μ+ − μ−, R11 = 2(η + |z|),
R22 = 2(η − |z|), R33 = 1 − 4η, (11)

and using the expressions (3), they write

R03 = 2〈Jz〉
N

, R11 = N 2 + 4
(〈J 2+〉 − 〈J 2z 〉)

2N (N − 1)
, R22 = N 2 − 4

(〈J 2+〉 + 〈J 2z 〉)
2N (N − 1)

,

R33 = −N − 4〈J 2z 〉
N (N − 1)

. (12)

To determine the local quantum uncertainty U(ρAB) = U(ρ′
AB), defined by (7), one

should compute the eigenvalues of matrix WAB (8). Explicitly, they are given by
[23,38]

ω± = √
λ

[(√
λ+ +√

λ−
)

± (R11 − R22)

2
(√

λ+ + √
λ−
)
]

, (13a)

ω = 1

2

[(√
λ+ +√

λ−
)2 + 4R2

03 − (R11 − R22)
2

4
(√

λ+ + √
λ−
)2

]
(13b)

where λ± and λ denote the nonzero eigenvalues of the density matrix ρAB . They write
in terms of the Fano-Bloch components (11) as follows:

λ± = 1

2

[
1 − R11 + R22

2

]
±
√(

R03

2

)2

+
(
R11 − R22

4

)2

, λ = R11 + R22

2
. (14)

It is must be noticed that R11 ≥ R22. This implies thatω+ > ω−. Hence, from Eq. (7),
the local quantum uncertainty quantifying the pairwise quantum correlation in the
state ρAB reads as
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U(ρAB) = 1 − max {ω+, ω} . (15)

Hence, to determine the amount of quantum correlations by means of LQU, one must
study the sign of the quantity (ω+ − ω).

2.3 Trace distance discord

The second quantifier of quantum correlations, we shall employ in this work, is the
trace distance discord. It quantifies, via the Schatten 1-norm distance (trace norm), the
quantum correlations between a given state ρ and the zero discord classical-quantum
state ρcq [39]. It is defined by

DT(ρ) = min
ρcq∈�0

‖ρ − ρcq‖1, (16)

where �0 being the set of classical-quantum states which have zero discord and

‖O‖1 = Tr
(√

O†O
)
defines the trace norm of a generic operator O. The classical-

quantum states with zero discord ρcq can be expressed as [40]

ρcq =
2∑

k=1

pk |k〉〈k|A ⊗ ρB
k , (17)

where {pk} is a set of statistical probability distribution with 0 ≤ pk ≤ 1 and {|k〉〈k|A}
denotes a set of orthogonal projectors associated with the subsystem A, on which
we assume that the measurement is performed, while ρB

k being a general reduced
density operator for the subsystem B. In the two-qubit X state case (2), the analytical
expression of TDD was recently derived in [17]. It can be written as

DT(ρAB) =
√

R2
11R

2
max − R2

22R
2
min

R2
max − R2

min + R2
11 − R2

22

, (18)

where the quantities R2
max and R2

min are expressed in terms of the Fano-Bloch compo-
nents as follows:

R2
max = max{R2

33, R
2
22 + R2

30} and R2
min = min{R2

11, R
2
33}.

The nonzero correlation matrix elements Rαβ are given by Eq. (12). Remark that,
like LQU, the trace distance quantum discord is invariant under any local unitary
transformation.

3 Local quantum uncertainty and trace discord for Dicke states and
their superpositions

In this section, we give the explicit analytical expression of pairwise quantum corre-
lation for some special instances of X -states. A particular emphasis is dedicated to
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Dicke states and their superpositions [GHZ states, the superpositions of two Dicke
states, even and odd coherent spin states (CSSs)].

3.1 Dicke states

Here, we introduce a class of permutationally symmetric states that is important from
the perspective of quantum information. The N -qubit symmetric Dicke state with n
excitations (0 ≤ n ≤ N ) is defined by

|n〉N ≡ |N
2

,−N

2
+ n〉 = 1√(N

n

)

⎡

⎢⎣
(Nn )∑

j=1

� j

(
|

N−n︷ ︸︸ ︷
000 · · · 00 111 · · · 11︸ ︷︷ ︸

n

〉
)
⎤

⎥⎦ , (19)

where {� j } is the set of all possible distinct permutations of (N − n) 0’s and n 1’s
[41]. These states are simultaneous eigenstates of the two commuting collective spin
operators Ĵ 2 and its z-component Ĵz . Indeed, we have

Ĵ 2|n〉N = N

2

(
N

2
+ 1

)
|n〉N , Ĵz |n〉N =

(
n − N

2

)
|n〉N . (20)

For later use, we give also the action of the raising Ĵ+ and lowering Ĵ− operators on
the state |n〉N . They are given by

Ĵ+|n〉N = √
(N − n) (n + 1)|n + 1〉N , Ĵ−|n〉N = √

n (N − n + 1)|n − 1〉N .

(21)

From Eq. (19), the N -qubit ground state |0〉N and the excited state |1〉N write

|0〉N = |000 · · · 00〉,
|1〉N = 1√

N

(
|000 · · · 01〉 + |000 · · · 10〉 + · · · + |100 · · · 00〉

)
. (22)

The state |1〉N is the so-called W state. To compute the local quantum uncertainty
and trace quantum discord, we first calculate the expectation values of the global spin
operators in the Dicke states (19)

〈Jz〉 = n − N

2
, 〈J 2z 〉 =

(
n − N

2

)2

, 〈J 2+〉 = 〈J 2−〉 = 0. (23)

Using Eqs. (12), (14) and (23), one can determine the eigenvalues of the matrixWAB

given by (13). After some algebra, one finds
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ωDS+ = ωDS− =
√
2n
(
N − n

)

N
(
N − 1

)
{√

n
(
n − 1

)+
√(

N − n
)((

N − n
)− 1

)}
(24)

ωDS = 1 − 2n(N − n)

N (N − 1)
. (25)

Reporting Eqs. (24) and (25) in (15), one can evaluate the amount of pairwise local
quantum uncertainty in Dicke states. It is given by

U(ρ
|n〉N
AB ) = min

⎛

⎝1 −
√
2n
(
N − n

)

N
(
N − 1

)
{√

n
(
n − 1

)+
√(

N − n
)((

N − n
)− 1

)}
,
2n(N − n)

N (N − 1)

⎞

⎠ .

(26)

Similarly, using the expression of trace distance discord (18), the pairwise quantum
correlation in Dicke states takes the explicit form

DT (ρ
|n〉N
AB ) = 2n(N − n)

N (N − 1)
. (27)

It should be noted that theTDDexpression (27) belongs to that of LQU (26). Therefore,
due to minimization process, we can easily check that

DT (ρ
|n〉N
AB ) ≥ U(ρ

|n〉N
AB ), (28)

which reflects that the trace distance discord quantifier in Dicke states displays more
quantum correlations amount than local quantum uncertainty.

On the other hand, it is clearly seen from (26) and (27) that both quantifiers in Dicke
states are invariant under the changen → N−n. Itmeans that the pairwise nonclassical
correlations, whether measured by local quantum uncertainty or by quantum trace
norm, of the states |n〉N and |N − n〉N are the same. This can be explained by the fact
that there is a local unitary transformation between these two states [25].

The pairwise local quantum uncertainty and trace quantum discord in Dicke states
are functions of the total number of qubits N and the excitation number n. Therefore,
it is interesting to analyze the variations of these two quantum correlation quantifiers
in terms of N and n. We consider first the case where N is fixed. We observe that
LQU and TDD vanish for n = 0 and n = N corresponding, respectively, to states
|0〉N and |N 〉N which are separable. More precisely, when N is divisible by 4, the
pairwise local quantum uncertainty is maximal for n = N/4 and n = 3N/4. The
local quantum uncertainty increases in the interval

{
0, 1, . . . , N

4

}
and decreases when

n ∈ { N4 , . . . , N
2

}
. It increases after for n ∈ { N2 , . . . , 3N

4

}
to reach amaximal value for

3N
4 and decreases after to vanish for n = N . These variations are illustrated in Fig. 1a
for N = 20 1. It must be noticed that the pairwise local quantum uncertainty presents

1 For a fixed odd value of N , LQU and TDD vary in function the n according to curves similar to
those of Fig. 1. The only difference lies in two concerned quantifiers extremes points. Indeed, when
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Fig. 1 (color online) Local quantum uncertainty (blue color) and trace distance discord (red color) of
Dicke states versus excitations number n with the fixed spin number N (N even). In Fig. 1a, we consider
N = 20. Nevertheless, when N + 2, which is divisible by 4 (for instance N = 22 as shown in Fig. 1b),
then both quantifiers behave similarly to the first case except that the maximal values of LQU are obtained
for (N + 2)/4 and (3N − 2)/4

a sudden change for N
4 and 3N

4 which is not exhibited by the pairwise trace quantum
discord. Besides, it turns out that, by means of (27) and numerical verification, one
can find explicitly the pairwise local quantum uncertainty expression. Indeed, when a
fixed particles number N is divisible by 4, Eq. (26) becomes

U
(
ρ

|n〉N
AB

)
=
{
1 − ωDS; n ∈ {0, 1, · · · , N

4 }⋃{ 3N4 , · · · , N }
1 − ωDS+ ; n ∈ { N4 , · · · , 3N

4 }. (29)

In analyzing the amount of pairwise quantum correlations measured by trace norm,
we see that this quantifier increases to reach a maximal value for N

2 and, due to its
spontaneous symmetry at n = N/2, decreases for states with n ∈ { N2 , . . . , N }.

It must be noticed that the two quantifiers are the same except that in a region where
TDD is convex LQU is concave conversely. This typical difference between the two
quantifiers comes back mainly from the LQU structure, as indicated in Eq. (26), on the
one hand, and to the local unitary transformation effect on the other hand. For this last
point, we can indeed notice that after the local unitary transformation, the eigenvalues
of matrix WAB given in (24) and (25) remain invariable (since the eigenvalues of a
physical quantity are invariable under unitary transformation [25]). Consequently, the
LQU in terms of WAB’s eigenvalues is also invariable. This conclusion leads to the
symmetry of the LQU and also a local minimum at n = N

2 (because the increasing or
decreasing of LQU under quantum operation on the measured party [18,42]).

Now, we consider the situation where n is fixed, and we compare the pairwise
quantum correlations in states with different number of qubits and having the same
excitation number n. We first analyze the case of W states corresponding to n = 1. In
this case, the pairwise local quantum uncertainty is given by

Footnote 1 continued
(N − 1) [Resp. (N + 1)] is a multiple of 4, the two local maxima of LQU are pointing in n− = (N + 1)/4
[Resp. (N −1)/4] and n+ = (3N −1)/4 [Resp. (3N +1)/4], while its local minimum, which corresponds
to TDD’s local maximum, is pointed in (N − 1)/2 and (N + 1)/2.
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U
(
ρ

|1〉N
AB

)
=
⎧
⎨

⎩

1 if N = 2,

1 −
√
2(N−2)
N if N ∈ {3; 4} ,

2/N if N ≥ 4,
(30)

and the pairwise trace quantum discord (27) gives

DT

(
ρ

|1〉N
AB

)
= 2/N , (31)

which is coincide with the so-calledW ’s highest possible concurrence [24]. An impor-
tant remark is that these results show that the behavior of LQU is similar to that of the
TDD to large extent inW states. More precisely, both quantifiers inW states coincide
in all points except that when N = 3 wherein TDD is greater.

In the next, our analysis will be focused on the case where the excitation number
is n = 2, 3, 4. The LQU and TDD are shown in Fig. 2a, b for n = 2 and n = 3.
They behave similarly. For each fixed n, both quantifiers coincide initially and increase
from the same vanished value corresponding to N = n wherein Dicke state reduces
to product states |n〉n . This reflects that there are no pairwise nonclassical correlations
in the product states. This result can be verified analytically. Indeed, using the results
(26) and (27) one can also straightforwardly check that

U
(
ρ

|n〉n
AB

)
= DT

(
ρ

|n〉n
AB

)
= 0. (32)

When TDD reaches its maximum value corresponding to (2n−1) and 2n, it decreases
monotonically with increasing N . Conversely, LQU has two local maxima, for (n+1)
and 4n, and between them there exists a single local minimum obtained for N =
2n. After its second local maximum, the LQU quantifier coincides again with TDD
and consequently decreases monotonically with increasing values of N . Besides, the
quantifiers monotonic decay slowly for increasing values of excitation number n.
Furthermore, when N becomes large enough, the pairwise nonclassical correlations
tend to zero. On the other hand, the trace quantum norm and local quantum uncertainty
disagree only when LQU exhibits sudden change phenomenon. Like the case when N
is fixed, the pairwise local quantum uncertainty for a fixed value of excitation number
n can be evaluated explicitly. From (26) and the plot results (Fig. 2), LQU takes the
form

U
(
ρ

|n〉N
AB

)
=
{
1 − ωDS+ ; N ∈ {n + 1, . . . , 4n}
1 − ωDS; Otherwise.

(33)

As the case where the particles number N is fixed, the amount of quantum correla-
tions quantified by local quantum uncertainty and trace norm in Dicke states coincide
except when LQU undergoes a sudden change behavior for a fixed value of excitation
number n. Indeed, it is easily seen from the results (26) and (27) that LQU and TDD
are coinciding only when the minimum of LQU (27) is given by the quantity 2n(N−n)

N (N−1) .
It should be noted that the two quantifiers are the same except for the region where

TDD is convex and conversely LQU is concave (see Figs.1, 2). This typical difference
between the two quantifiers arises mainly from the double sudden changes exhibited
by the local quantum uncertainty. In fact, in evaluating local quantum uncertainty, we
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Fig. 2 (Color online) Local quantum uncertainty (blue color) and trace distance discord (red color) of Dicke
states versus N with a fixed excitation number; n = 2 in Fig. 2a and n = 3 in Fig. 2b

need the expression given by Eq. (26). The optimization process shows that the local
quantum uncertainty can exhibit two sudden changes. In particular, between the two
pointswhere the sudden changes occur, the local quantumuncertainty attains aminimal
value when the trace distance discord is maximal (corresponding to n = N

2 for a fixed
N and N = 2n for a fixed n). It is clear that the trace geometric discord quantifier
does not exhibit any behavior change in contrast to the local quantum uncertainty.

3.2 Generalized GHZ states

The generalized GHZ state is a special superposition of the Dicke states, |0〉N and
|N 〉N [31]

|
〉GHZ = cos θ |0〉N + eiϕ sin θ |N 〉N . (34)

The spin expectation values of the global spin operators in the state |
〉GHZ are given
by

〈Jz〉 = −N

2
cos 2θ, 〈J 2z 〉 = N 2

4
, 〈J 2+〉 = 0. (35)

Using Eq. (12), one can verify that R11 = R22 = 0. It follows the trace distance
discord for the generalized GHZ states is zero

DT

(
ρGHZ
AB

)
= 0. (36)

In addition, from Eqs. (12) and (35) we verify that R03 = − cos 2θ . Thus, by straight-
forward calculation, one finds that ωGHZ± = 0 and ωGHZ = 1. Hence, one has

U
(
ρGHZ
AB

)
= 0. (37)

These results show that there are no pairwise quantum correlations for the generalized
GHZ states. This coincides with the results obtained in [25,43] where the pairwise
quantum correlations were quantified by means of concurrence and Hilbert–Schmidt
quantum discord. It is interesting to note that a GHZ state is maximally entangled,
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and its reduced density matrices are separable. Therefore, it seems that for GHZ states
the trace procedure to get bipartite states destroys the nonclassical correlations in the
system.

3.3 Superpositions of Dicke states

Now,we consider the evaluation of pairwise quantumcorrelations in the superpositions
of Dicke states of type

|
〉SD = cos θ |n〉N + eiϕ sin θ |n + 2〉N , n = 0, . . . , N − 2, (38)

with θ ∈ [0, π ] and the relative phase ϕ ∈ [0, 2π ]. It is straightforward to check that
the corresponding spin expectation values are given by

〈Jz〉 =
(
n − N

2

)
+ 2 sin2 θ, 〈J 2z 〉 =

(
n − N

2

)2

+4

(
n − N

2
+ 1

)
sin2 θ, 〈J 2+〉 = 1

2
eiϕ

√
νn sin 2θ (39)

where νn = (n + 1) (n + 2)(N − n)(N − n − 1). For θ = 0, one recovers the
expectation values given by (23). Furthermore, the expectation values in (39) are ϕ-
independents, and therefore, the local quantum uncertainty and trace discord are not
functions of ϕ. This is due to the fact that LQU and TDD are invariant under local
unitary transformations.

In the special case n = 0, the correlations matrix elements of a two-qubit state
extracted from the state |
〉SD write

R11 = 4(N−2)
N (N−1) sin

2 θ + 2| sin 2θ |√
2N (N−1)

,

R22 = 4(N−2)
N (N−1) sin

2 θ − 2| sin 2θ |√
2N (N−1)

,

R33 =
[
1 − 8(N−2)

N (N−1) sin
2 θ
]
,

R03 =
[
4
N sin2 θ − 1

]
.

(40)

This serves to evaluate straightforwardly the local quantum uncertainty and trace dis-
tance discord using the results reported hereinabove. To obtain the explicit expression
of local quantum uncertainty, one computes first the elements of the matrix WAB .
Using Eq. (13), one gets

ωSD± = 2
√

(N − 2)

N (N − 1)
| sin θ |ζN ,θ ± 4

√
2(N − 2)

N (N − 1)
sin2 θ | cos θ |ζ−1

N ,θ (41)
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Fig. 3 (Color online) Comparison of LQU (blue dashed line) and TDD (red solid line ) of superpositions
of Dicke states (38) in function of θ within one period for a various system sizes when n = 0

and

ωSD = 1

2

[(
N (N − 1) + 8

[(
3 − 2

N

)
sin2 θ − N

]
sin2 θ

)
ζ−2
N ,θ + 1

N (N − 1)
ζ 2
N ,θ

]

(42)

where ζN ,θ =
√
N (N − 1) + (√

8(N − 2)(N − 3) − 4(N − 2)
)
sin2 θ is a positive

function. Having the eigenvalues of the matrixWAB (13), one can determine the local
quantum uncertainty. Let us first consider the case N = 2 where the superposition of
Dicke state (38) reduces to so-called Bell-like (BL) states:

|
〉BL = cos θ |0〉2 + eiϕ sin θ |2〉2. (43)

In this special case, one finds the following relation between local quantum uncertainty
and trace quantum discord

DT

(
ρBL
AB

)
=
√
U (ρBL

AB

) = | sin(2θ)|. (44)

Next, we examine the variations of LQU and TDD as functions of the parameter θ

for different values of N . The results are depicted in Fig. 3.
For N = 3, it is clearly shown from Fig. 3a that local quantum uncertainty and trace
distance discord behave similarly and they are periodic functions of period π . It must
be noticed that in addition to the edges, LQU and TDD are zero for θ = π

3 , 2π
3 .

Besides, the trace distance discord is maximal for θ = π
6 , π

2 , 5π
6 , while the LQU is

maximal for θ = (
π
6 − δθ

)
, π
2 ,
(
5π
6 + δθ

)
where δθ ≈ 0.023.

Now we consider the behavior of pairwise quantum correlations in the case where
3 < N < 8. It can be seen from Fig. 3b, for instance, that the LQU and TDD are
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Fig. 4 (Color online) LQU (blue dashed line) and TDD (red solid line ) for the superpositions of Dicke
states (38) versus θ within one period; Fig. 4a n = 1, N = 3 and Fig. 4b when n = 2, N = 4

nonvanishing except for θ = 0 and θ = π . This implies that for θ ∈ ]0, π [, there
exist pairwise quantum correlations in the system for N = 5 in contrast to the case
where N = 3. The same results can be obtained for N = 8. This behavior changes for
N ≥ 10. Indeed, for instance for N = 10 the LQU is maximal for θ = π

2 but the TDD
is maximal for θ1 ≈ 57π

157 and θ2 ≈ 100π
157 , and the maximal values of TDD are greater

than the maximal value of LQU. We notice also that for θ = π
2 , the LQU coincides

with TDD.
Let us now discuss the case where the particles number N takes large values. In this
case, using Eq. (40) together with (18), one obtains

DT

(
ρSD
AB

)
= sin2 θ + | sin 2θ |

N
. (45)

The trace distance discord goes to zero for large values of N . On the other hand, it
must be noticed that for a large particles number, we have ξN ,θ ∼ N so that

U
(
ρSD
AB

)
= 0. (46)

This shows that there is no pairwise quantum correlations for higher values of N when
n = 0.

Next, we consider the analysis of LQU and TDD in the superpositions of Dicke
states with n �= 0. The results are plotted in Fig. 4 for (n = 1, N = 3) and (n =
2, N = 4).
From Fig. 4, we have seen that the curves of the TDD and LQU behave almost iden-
tically and coincide only in the absence of any pairwise quantum correlations. This
behavior is consistent with that observed in the case of a few nonexcited particles
(see Fig. 4a). Furthermore, as illustrated in Fig. 4b, increasing of n with small value
of the number of particles N reveals that both quantifiers are zero only for θ = π

2 .
We investigated also the effect of excitation number n on the amounts of a pairwise
nonclassical correlations. In this respect, we can see from Figs. 3a and 4a that each
specific quantifier change an inverse trend with θ . Furthermore, one observes that
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when (n = 1, N = 3) the quantifiers zeros, unlike the maximum values, reduce in
comparison with (n = 0, N = 3) ones.

3.4 Even and odd spin coherent states

As another instance for states with exchange and parity, we consider the even and
odd spin coherent states (SCSs) [34] and we examine the nonclassical correlations
measured by local quantum uncertainty and trace quantum distance. A SCSs are the
most quasi-classical pure quantum states of a symmetric ensemble of N elementary
1/2-spins (or N two-mode bosons) particles. They are obtained by a complex rotation
of spin ground state |0〉N , parameterized by a complex amplitude ξ . In the basis
({|n〉N , n = 0, 1, . . . , N }) generated by Dicke states |n〉N , the SCSs are given by
[33]

|ξ 〉 = (1 + |ξ |2)− N
2

N∑

n=0

√
N !

n !(N − n) !ξ
n|n〉N . (47)

In what follows, we shall focus on the pairwise quantum correlations in two-qubit
states extracted from even spin coherent states (|ξ 〉+) and odd spin coherent states
(|ξ 〉−) defined by

|ξ 〉± = 1

N ±

(
|ξ 〉 ± | − ξ 〉

)
(48)

where the normalization factors N± are given by

N± =
√
2(1 ± pN )eiφ (φ ∈ R).

The quantity p denotes the overlap between the states | − ξ 〉 and |ξ 〉 [34]. It is given
by

p = 1 − |ξ |2
1 + |ξ |2 . (49)

The expectation values of the operators Jz , J 2z and J 2+ on the even and odd coherent
states (48) are given by

〈Jz〉± = −N

2

p ± pN−1

1 ± pN
, 〈J 2z 〉± = N 2

4
± N (N − 1)

1 ± pN
q∓(p),

〈J 2+〉± = ±N (N − 1)

1 ± pN
q±(p) (50)

where

q±(p) =
(
1 − p2

)

4

(
pN−2 ± 1

)
.
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The two-qubit matrix extracted from |ξ 〉± can be obtained by tracing out the (N − 2)
qubits. Due to the symmetric property of Dicke states, all two-qubits density matrices
are identical. Therefore, it is sufficient to consider �12 tracing out the qubit 3, 4, . . . , N
from the state |ξ 〉+ (or |ξ 〉−)

�±
12 = Tr3,4,...,N |ξ 〉±〈ξ |. (51)

After some algebra, one finds

�±
12 = 1

|N±|2

⎛

⎜⎜⎝

2a4(1 ± c) 0 0 2a2b2(1 ± c)
0 2a2b2(1 ∓ c) 2a2b2(1 ∓ c) 0
0 2a2b2(1 ∓ c) 2a2b2(1 ∓ c) 0

2a2b2(1 ± c) 0 0 2b4(1 ± c)

⎞

⎟⎟⎠ , (52)

in the computational basis {|00〉, |01〉, |10〉, |11〉}, where a =
√

1−p
2 , b =

√
1+p
2

and c = pN−2. The two-qubit reduced density matrices of even and odd SCSs (52)
are X -shaped. [See the density matrix (2).] Thus, the TDD as well as LQU of these
states can be obtained as in the previous subsections. Indeed, the two-qubit states �±

12
can be written in the Fano-Bloch representation as in Eq. (10). The corresponding
nonvanishing correlations matrix elements are

R±
00 = 1; R±

11 = 1−p2

1±pN
; R±

22 = ∓
(

1−p2

1±pN

)
pN−2;

R±
33 = 1 −

(
1−p2

1±pN

) (
1 ∓ pN−2

) ; R±
03 = − p±pN−1

1±pN
.

(53)

On the other hand, by using Eq. (13), one finds the eigenvalues of the matrix WAB
(8). They are given for even and odd spin coherent states by

ω±+ =
√
1 − p2

1 + p2

√
1 − p2N−4

1 ± pN
,

ω±− = p2

√
1 − p2

1 + p2

√
1 − p2N−4

1 ± pN
, ω± = 2p2

1 + p2
1 ± pN−2

1 ± pN
. (54)

Now, we have the necessary ingredients to quantify the pairwise nonclassical corre-
lations, of both even and odd SCSs, using trace quantum distance and local quantum
uncertainty. Figure 5 displays the behavior of TDD and LQU for even and odd SCSs
pairwise as a function of the overlapping p for different spin values N .

We first start by comparing the nonclassical correlations behaviors in even and odd
SCSs that are captured by TDD and LQU. For even SCSs, it is seen that TDD and
LQU behave in terms of p almost identically. In even SCSs, the pairwise quantum
correlations vanish for p → 1 (see Fig. 5a, c). For odd SCSs, the trace quantum
discord and local quantum uncertainty does not vanish for p → 1 (see Fig. 5b, d).
Note that for p → 0, the pairwise quantum correlations is zero.

123



Pairwise nonclassical correlations for superposition... Page 17 of 21 45

N 3
N 5
N 50

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p

D
T

N 3
N 5
N 50

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p

D
T

N 3
N 5
N 50

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p

N 3
N 5
N 50

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p

(a) (b)

(c) (d)

Fig. 5 (Color online) TDD (Fig. 5a, b) and LQU (Fig. 5c, d) for even and odd SCSs (48) versus the
overlapping p = 〈ξ | − ξ 〉 for N = 3 (solid red line), N = 5 (dashed blue line) and N = 50 (black
dashed-dotted line)

Now, we examine some interesting special situations. We first consider the case
where N = 2. In this case, the expressions (54) read as

ω++ = 0 ω+− = 0 ω+ = 4p2
(
1 + p2

)2 , (55)

for even spin coherent states. For odd spin coherent states, it can be verified that
Eq. (54) give

ω−+ = 0 ω−− = 0 ω− = 0. (56)

Thus, the local quantum uncertainty is given by

U (�+
12

) =
(
1 − p2

1 + p2

)2

and U (�−
12

) = 1 (57)

while the trace quantum discord takes the values

DT
(
�+
12

) =
(
1 − p2

1 + p2

)
and DT

(
�−
12

) = 1, (58)

for even and odd SCSs, respectively.
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It is also simple to verify from Eq. (54) that in the limiting case where p → 1,

ω++ = 0, ω+− = 0, ω+ = 1 (59)

and

ω−+ =
√
2(N − 2)

N
, ω−− =

√
2(N − 2)

N
, ω− = 1 − 2

N
, (60)

so that

U (�+
12

) = 0 and U (�−
12

) =
⎧
⎨

⎩

1 if N = 2,

1 −
√
2(N−2)
N if N ∈ {3; 4} ,

2/N if N ≥ 4,
(61)

similarly, one can check that the trace quantum discord in this limiting case writes

DT
(
�+
12

) = 0 and DT
(
�−
12

) = 2

N
. (62)

It must be noticed that for p → 1 (i.e., ξ → 0 ), the even spin coherent states reduces
to the separable Dicke state |0〉N and odd spin coherent states gives the so-called W
state |1〉N .
Another interesting limiting case concerns the situation where p → 0. In this case,
the spin coherent states |ξ 〉 and | − ξ 〉 become orthogonal. The even and odd spin
coherent states reduce to states of GHZ type

|ξ → 0〉± ∼ 1√
2
(|0〉 ⊗ |0〉 · · · ⊗ |0〉 ± |1〉 ⊗ |1〉 · · · ⊗ |1〉) (63)

with |0〉 ≡ | − ξ → 0〉 and |1〉 ≡ |ξ → 0〉. From Eqs. (54), one obtains

ω±+ = 1, ω±− = 0, ω± = 0 (64)

and the pairwise local quantum uncertainty in the states (63) of GHZ type vanishes.

4 Concluding remarks

In this paper, we have derived the pairwise quantum correlations in two-qubit state
extracted frommulti-qubit stateswith exchange symmetry.Wederived the nonclassical
correlations in such system by employing the recently introduced concept of local
quantum uncertainty. The obtained results are compared to those computed by using
the trace norm (the geometric variant of quantum discord). In particular, for a variety
of special symmetric multi-qubit states (Dicke states, their superpositions and even
and odd spin coherent states), we have observed that the trace quantum discord is
always upper bounded by local quantum uncertainty.

The measure of multipartite quantum correlations constitutes an important issue
in the context of quantum information. Several attempts to provide a precise way
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to quantify and characterize the genuine multipartite correlations were discussed in
the literature yielding different approaches [44–47]. In particular, Rulli and Sarandy
[47] defined the multipartite measure of quantum correlations as the maximum of
the quantum correlations existing between all possible bipartition of the multipartite
quantum system. In a similar way, Ma et al. [44] suggested a slightly different defini-
tion to quantify the global multipartite quantum correlations. It is defined as the sum
of the correlations in all possible bipartitions. In this sense, the global nonclassical
correlations can be evaluated for the different bipartite subsystem. Two bipartitioning
schemes can be considered. The first one can be obtained by decomposing the whole
N system in a pure bipartite system where the first subsystem contains k qubits and
the second subsystem is made by (N − k) qubits (k = 1, 2, . . . , N − 1). By a suit-
able mapping, the system can be viewed as two logical qubit (see for instance Daoud
et al. [34]). The second partitioning scheme involves mixed states that one obtains
by a trace procedure similar to one discussed in this paper. The question concerning
whether the trace over some particles will destroy the quantum correlations in the
whole system constitutes a challenging issue to characterize the genuine multipartite
quantum correlations. Substantial efforts have been made to quantify multi-particle
entanglement and to explore how multi-particle entanglement manifests itself under
different partitioning schemes of the system.

The calculations reported in our work complete the results obtained with other
quantum correlations quantifiers such as entanglement of formation, geometric quan-
tum discord based on Hilbert–Schmidt distance and entropic quantum discord. Also,
the results derived in this work can be adapted to deal with nonclassical pairwise
correlations in collective spin systems such as the Dicke model [28] and the Lipkin–
Meshkov–Glick model [48]. They can extended to all possible bipartitions (pure and
mixed bipartite states) to deal with all pairwise quantum correlations. Clearly, this
extension will involve several bipartitioning schemes which require laborious (but
feasible) calculations especially for states with large number of qubits.

References

1. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)
2. Nielsen, M.A., Chuang, I.L.: QuantumComputation and Quantum Information. Cambridge University

Press, Cambridge (2000)
3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys.

81, 865 (2009)
4. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)
5. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–

Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)
6. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A.,Wootters,W.K.: Teleporting an unknown

quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895
(1993)

7. Horodecki, M., Oppenheim, J., Winter, A.: Partial quantum information. Nature 436, 673 (2005)
8. Horodecki, M., Oppenheim, J., Winter, A.: Quantum state merging and negative information. Comm.

Math. Phys. 269, 107 (2007)
9. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comput. 7, 1 (2007)

10. Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acín, A.: Almost all quantum states have
nonclassical correlations. Phys. Rev. A 81, 052318 (2010)

123



45 Page 20 of 21 Y. Khedif, M. Daoud

11. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899
(2001)

12. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev.
Lett. 88, 017901 (2001)

13. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for corre-
lations: Discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)
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