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Abstract
Edge detection, as a fundamental problem in image processing and computer vision,
is an indispensable task in digital image processing. Because of the sharp increase in
the image data in the actual applications, real-time problem has become a limitation
in classical image processing. In this paper, based on the novel enhanced quantum
image representation (NEQR) of digital images, an enhanced quantum edge detection
algorithm is investigated, which combines the classical Laplacian operator and zero-
cross method. Because NEQR utilizes the superposition state of qubit sequence to
store all the pixels of an image, the corresponding quantum image edge detection
algorithmcan realize parallel computation to implement theLaplacianfilter and further
calculate the image intensity of all the pixels according zero-cross method. The circuit
complexity analysis demonstrates that our presented quantum image edge algorithm
can reach a significant and exponential speedup compared to classical counterparts.
Hence, our proposed quantum image edge detection algorithm would resolve the real-
time problem of image edge extraction in practice image processing.

Keywords Quantum image processing · Edge detection · Laplacian operator ·
Zero-cross method

1 Introduction

Quantum image processing (QIP) is an emerging sub-discipline that is focused on
extending conventional image processing tasks and operations to the quantum comput-
ing framework. It is primarily devoted to utilizing quantum computing technologies to
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capture, manipulate, and recover quantum images in different formats and for different
purposes [1, 2]. In terms of applications, the available literature on quantum image pro-
cessing can be broadly classified into two groups: quantum-inspired image processing
and classically inspired quantum image processing [3–5], respectively. Due to some of
the astounding properties inherent to quantum computation, notably entanglement and
parallelism, it is anticipated that QIP technologies will offer capabilities and perfor-
mances that are, as yet, unrivalled by their traditional equivalents [1, 2]. The quantum
computer has demonstrated a bright prospect over the classic computer, particularly
in Feynman’s computation model [6], Deutsch’s quantum parallelism assertion [7],
Shor’s integer factoring algorithm [8], and Grover’s database searching algorithm
[9]. The development of QIP started in 1997, when Vlasov [10] proposed the quantum
computations and images recognition. This was closely followed by quantum imaging
[11], quantum signal processing [12], and pattern recognition on a quantum computer
[13].

The primary work of QIP begins with how to represent images in quantum com-
puter first. The pioneering work is the quantum image model of Qubit Lattice using
one qubit to hold one pixel [14]. Following that, entangled images, in which geomet-
ric shapes are encoded in quantum states [15], and Real Ket, where the images are
quantum states having gray levels as coefficients of the states [16], were proposed by
Venegas-Andraca and Latorre, respectively. More recently, Le et al. [17] proposed a
flexible representation of quantum image (FRQI) using quantum superposition state to
store the colors and the corresponding positions of an image. Years later, more quan-
tum image representations were proposed. A novel enhanced quantum representation
(NEQR) [18] using q qubits encoding the gray-scale values could perform the com-
plex and elaborate color operations, which is more convenient than FRQI. Quantum
log-polar image [19] was proposed as a novel quantum image representation storing
images sampled in log-polar coordinates. Color image representation utilized two sets
of quantum states to store M colors and N coordinates, respectively [20]. A normal
arbitrary quantum superposition statewas used to represent amulti-dimensional image
[21]. A simple quantum representation of infrared images is proposed based on the
characteristic that infrared images reflect infrared radiation energy of objects [22].
A novel quantum representation of color digital images was proposed in 2016 [23].
Then, based on the work of quantum image representation models, there are many
quantum image processing algorithms, including quantum image geometric transfor-
mation [24–28], quantum image scaling [29–32], quantum image scrambling [33–35],
quantum image watermarking [36–42], and quantum image matching [43, 44].

Image edge extraction is an important issue of digital image processing. Edge of
an image is defined as a set of locally connected picture elements (pixels) which are
characterized by their rapid intensity variations. In order to find all the discontinuous
pixels, all the classical algorithms need to analyze and calculate the gradient of the
image intensity of every pixel. Thus, for an image, any classical edge extraction algo-
rithms will cost the computational complexity no less than O(22n). This is the main
reason that the classical edge extraction algorithms will be low on real time with the
sharp increase in the image data. On the contrary, QIP utilizes the unique superposi-
tion and entanglement properties of quantum mechanics, which could process all the
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pixels of an image simultaneously. This is also why QIP algorithms are faster than the
classical counterparts.

At present, the research concerned quantum image edge detection is relatively rare.
Edge extraction algorithms proposed in both [45, 46] are based on the model Qubit
Lattice, which do not resolve the overwhelming computational complexity problem
becauseQubit Latticemodel does not use the unique properties of quantummechanics,
i.e., superposition, entanglement, and so on, of which computational complexity still
remains as O(22n) for an 2n × 2n image. Following that, based on FRQI and NEQR
models, Zhang et al. [47, 48] proposed two quantum image extraction algorithms,
respectively,which circuit complexity realizes an exponential decrease.However, their
proposed schemes do not consider that when the original input quantum image is a
noise image, which will misclassify the noise pixels as edge points. In order to address
this problem, we investigate an enhanced quantum image edge detection algorithm
based on NEQR model, which adopt the classical Laplacian filtering to smooth the
original image first, and then, zero-cross method is used to detected image edge.

This paper is organized as follows. Section 2 briefly introduces the quantum image
models, FRQI and NEQR, and edge detection that includes Laplacian operator and
zero-cross method. Section 3 presents a sequence of predefined quantum circuit mod-
ules that would be used in our investigated quantum edge detection algorithm. Our
proposed quantum edge detection algorithm as well as circuit design is described in
detail Sect. 4. Section 5 analyzes the circuit complexity and the simulation results.
The conclusions works are drawn in Sect. 6.

2 Related works

2.1 The flexible quantum representation (FRQI)

The quantum image model of FRQI [17] integrates information about an image into
a normalized quantum state having its formula by

|I (θ )〉 � 1

2n

22n−1∑

i�0

(cos θi |0〉 + sin θi |1〉)|i〉, (1)

where |i〉 � 0, 1, . . . , 22n − 1 are 22n − D computational basis quantum states
encoding the image positions information, and θ � (θ0, θ1, . . . , θ22n−1), θi �
cos θi |0〉 + sin θi |1〉 are the vector of angles encoding the corresponding positions
color information. The quantum state of FRQI is a normalized state meaning that
‖|I (θ )〉‖ � 1.

‖|I (θ )〉‖ � 1

2n

√√√√
22n−1∑

i�0

(
cos2 θi + sin2 θi

) � 1 (2)

A simple image and its FRQI state are shown in Fig. 1
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Fig. 1 A simple image and its FRQI state

1I 0 00 100 10 200 01 255 11
2
1 00000000 00 01100100 10
2

11001000 01 11111111 11

Fig. 2 An example of a 2×2 image and its NEQR

2.2 The novel enhanced quantum representation of digital images

The novel enhanced quantum representation of digital images [18] is described as
follows:

Supposing the range of the gray-scale value is from 0 to 2q −1, the gray-scale value
CY X of the pixel coordinate (Y , X ) can be expressed by Eq. (3).

CY X � Cq−1
Y X Cq−2

Y X . . .C1
Y XC

0
Y X ,Ck

Y X ∈ {0, 1}, CY X ∈ [0, 2q − 1] (3)

Hence, NEQR for a 2n × 2n quantum image can be written as:

|I 〉 � 1

2n

2n−1∑

Y�0

2n−1∑

X�0

|CY X 〉|Y 〉|X〉 � 1

2n

22n−1∑

Y X�0

q−1⊗
k�0

∣∣∣Ck
Y X

〉
|Y X〉 (4)

Figure 2 shows an example of a 2×2 image and the corresponding NEQR of which
is on the right.

Compare to FRQI model, NEQR model uses q-qubit sequence that contains 2q

computational basis to encode and represent the gray scale rather than only 1-qubit
superposition state that encodes the gray-scale information in amplitude of qubit state.
The color information that is stored in q-qubit sequence of NEQR model can do more
complex operations than FRQI model does. Furthermore, based on NEQR model, we
also can retrieve the pixel information exactly instead of probabilities in FRQI model.
Therefore, NEQRmodel is chosen for investigating the quantum image edge detection
algorithm rather than FRQI model.
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2.3 Edge detection

Most of the classical edge detection algorithms are based on gradient and local max-
ima, such as Sobel method, Prewitt method, and Roberts method which find edges
using their own approximation to the derivative, and return edges at those points
where the gradient of the original image is maximum. However, these methods cannot
get perfectible results of those boundaries of curves. They are effective for beeline
boundary rather than curve boundary. In order to get the ideal image edge information
of those boundaries of beelines and curves from an image, we present a new quantum
image edge detection algorithm, that is, finding edges by looking for zero crossings
after filtering the original image with a Laplacain filter.

2.3.1 Laplacian operator

The Laplacian operator [49] is constructed according to the principle that the second
derivative is zero-crossing function at the edge point, which is a two-dimensional
equivalent of the second derivative, and the function form is defined in Eq. (5)

∇2 f � ∂2 f

∂x2
+

∂2 f

∂y2
(5)

The second-order partial derivative of the x-direction is approximated by the dif-
ference equation is defined in Eq. (6)

∂2 f

∂x2
� ∂( f (i, j + 1) − f (i, j))

∂x
� f (i, j + 1) − 2 f (i, j) + f (i, j − 1) (6)

Similarly, the second-order partial derivative of the y-direction is approximated by
the difference equation in Eq. (7)

∂2 f

∂y2
� ∂( f (i + 1, j) − f (i, j))

∂y
� f (i + 1, j) − 2 f (i, j) + f (i − 1, j) (7)

In practical application, we always consider the four directions in a 3 × 3 neigh-
borhood pixels; that is to say, the mask of the Laplacian operator is defined as:

∇2 �
⎛

⎝
1 1 1
1 − 8 1
1 1 1

⎞

⎠ (8)

which can be used to smooth a noise image before implementing the image edge
extraction algorithm.

Thus, the pixels S(i, j) in smoothed image via Laplacian filtering can be calculates
as follows:

S(i, j) �
∣∣∣∣
f (i − 1, j − 1) + f (i − 1, j) + f (i − 1, j + 1) + f (i, j − 1)
+ f (i, j + 1) + f (i + 1, j − 1) + f (i + 1, j) + f (i + 1, j + 1) − 8 f (i, j)

∣∣∣∣
(9)
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Fig. 3 The 3 × 3 neighborhood pixels of pixel (Y , X), and the sub-gradients in four directions in this mask

2.3.2 Zero-cross method

It is obvious that the local maxima of the first derivative mean zero crossings of
the second derivative according to the mathematic knowledge. The edge pixels have
maxima of both the first derivative and the second derivative zero crossings. Based
on zero-cross method [50, 51], the second derivative of four directions in a 3 × 3
neighborhood pixel of (Y , X) (i.e., up and down, left and right, and two diagonals) is
calculated as follows, and the corresponding sketch map is illustrated in Fig. 3.

G1
Y X

� [ f (Y + 1, X ) − f (Y , X )] − [ f (Y , X ) − f (Y − 1, X )]

� f (Y + 1, X ) + f (Y − 1, X ) − 2 × f (Y , X )

G2
Y X

� [ f (Y + 1, X − 1) − f (Y , X )] − [ f (Y , X ) − f (Y − 1, X + 1)]

� f (Y + 1, X − 1) + f (Y − 1, X + 1) − 2 × f (Y , X )

G3
Y X

� [ f (Y , X + 1) − f (Y , X )] − [ f (Y , X ) − f (Y , X − 1)]

� f (Y , X + 1) + f (Y , X − 1) − 2 × f (Y , X )

G4
Y X

� [ f (Y + 1, X + 1) − f (Y , X )] − [ f (Y , X ) − f (Y − 1, X − 1)]

� f (Y + 1, X + 1) + f (Y − 1, X − 1) − 2 × f (Y , X ) (10)

However, in real application, there exist some points inwhich gradient is bigger than
other point and it is not an edge point in actual. Therefore, in this paper, the gradients
in four directions, i.e., G1

Y X , G
2
Y X , G

3
Y X , and G

4
Y X calculated according to zero-cross

method are compared with given threshold T and make those gradients greater than
the threshold as edge points. That is to say, if any one of them are equal or greater
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Fig. 4 Quantum circuit for quantum comparator

than the T , it will be classified into an edge point (i.e.,
∣∣G1

Y X

∣∣ ≥ T or
∣∣G2

Y X

∣∣ ≥ T or∣∣G3
Y X

∣∣ ≥ T or
∣∣G4

Y X

∣∣ ≥ T ); Otherwise, it is not.

3 Quantum arithmetic operations for image edge extraction

3.1 Quantum comparator

Quantum comparator (QC) illustrated in [52] can be used to compare two numbers
relationship. As illustrated in Fig. 4, wherein |A〉 � |an−1an−2 . . . a1a0〉 and |B〉 �
|bn−1bn−2 . . . b1b0〉, the output two qubits of QC module can be used to represent the
result of comparison as follows:

If c1c0 � 10, then A > B;
If c1c0 � 01, then A < B;
If c1c0 � 00, then A � B.
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Fig. 5 Quantum circuit for cyclic transformation: a CSx+, b CSx−

3.2 Quantum image shift transformations

Le et al. [25] defined the cyclic shift transformation, which can be used to shift the
whole image, and every pixel will access the information of its neighborhood simulta-
neously. Here, based on the cyclic shift (CS) transformation on the X-axis (i.e.,CSX+
and CSX−), its matrix expression for a NEQR image with a size of 2n×2n is discussed
as follows:

CSX+|I 〉 � 1

2n

2n−1∑

Y�0

2n−1∑

X�0

|CY X ′ 〉|Y 〉∣∣(X + 1) mod 2n
〉
, X ′ � (X − 1) mod 2n

CSX−|I 〉 � 1

2n

2n−1∑

Y�0

2n−1∑

X�0

|CY X ′ 〉|Y 〉∣∣(X − 1) mod 2n
〉
, X ′ � (X + 1) mod 2n

CSX+ �
[
0 1
I2n−1 0

]
, CSX− �

[
0 I2n−1
1 0

]
(11)

where
(
X ′ � (X ∓ 1) mod 2n

)
(Fig. 5).

Based on the above analysis, it is easy to know that CSX+ and CSX− make all the
pixels of a quantum image move one unit to the right and left, respectively. It is worth
noting that this operation is cycle, which makes the edge pixels of the image move to
the other edge in the transformed image. An example as shown in Fig. 6 demonstrates
the function of CSX+ and CSX− (Fig. 5).

For a two-dimensional digital image, the cycle shift operations onX-axis andY -axis
are symmetric and similar and the cyclic shift CSY± transformation on Y -axis is omit-
ted here for circuit simplicity. According to the circuit complexity analysis reported
in [25], it is easy to know that the time complexity of the cyclic shift transformations
on both X-axis and Y-axis is no more than O(n2) for an n-length qubit sequence.
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Fig. 6 a The original image, b the transformed image implements CSX+ operation, c the transformed image
implements CSX− operation
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Fig. 7 Quantum circuit for parallel Controlled-NOT operations

3.3 Parallel Controlled-NOT operations

The parallel Controlled-NOT (CNOT) operations utilizes n Controlled-NOT gates that
can make a copy of n-qubit quantum states |C〉 � |cn−1cn−2 . . . c0〉 into the ancillary
qubits |0〉⊗n . The quantum circuit for this operation is shown in Fig. 7.

3.4 Quantum operation of multiplied by powers of 2

Based on the particularities of binary arithmetic, we give a theorem firstly by assuming
that a n-bit binary number A � an−1an−2 . . . a1a0.

Theorem 1 2A � an−1an−2 . . . a1a00.
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Fig. 8 Quantum circuit for CAV module

Proof It is easy to know that A � an−1an−2 . . . a1a0 has another representationwritten
as follows:

A � an−1 × 2n−1 + an−2 × 2n−2 + · · · + a1 × 21 + a0 × 20

Thus,

2A � 2
(
an−1 × 2n−1 + an−2 × 2n−2 + · · · + a1 × 21 + a0 × 20

)

� an−1 × 2n + an−2 × 2n−1 + · · · + a1 × 22 + a0 × 21

� an−1an−2 . . . a1a00

�
Based on Theorem 1, we can deduce that 2n A � an−1an−2 . . . a1a0 0 · · · 0︸ ︷︷ ︸

n

.

Therefore, quantum circuit of an integer multiplied by 2n can be realized via
appending n ancillary qubits |0〉⊗n after the lowest qubit, such as 2n|A〉 �∣∣∣∣∣∣
an−1an−2 . . . a1a0 0 · · · 0︸ ︷︷ ︸

n

〉
.

3.5 Quantum absolute module

Quantum circuit for calculating the absolute value (CAV) module illustrated in [35]
can be used to calculate the two integer numbers absolute. CAV module contains
two basic quantum modules of reversible parallel subtractor (RPS) and complement
operation (CO). Figure 8 gives the simplified quantummodule of how the twomodules
of RPS and CO construct the CAV module, wherein |Y 〉 � |yn−1yn−2 . . . y0〉 and
|X〉 � |xn−1xn−2 . . . x0〉. For more detailed information, readers are referred to [35].

3.6 Quantum ripple-carry adder

Cuccaro et al. [53] proposed a new quantum ripple-carry adder (shortly namedQRCA)
based on the ripple-carry approach, which start with the low-order bits of the input
and work up to the high-order bits. Suppose that our goal is to compute the sum of two
n-bit numbers A and B, where A � an−1an−2 . . . a1a0 and B � bn−1bn−2 . . . b1b0
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Fig. 9 Quantum circuit for QRCA and its simplified module

with a0 and b0 are the lowest-order bits, respectively. The integrated quantum circuit
for QRCA is illustrated in Fig. 9. Therein, Fig. 9a shows the circuit design for the
QRCA in which two basic quantum circuit modules of MAJ and UMA are shown in
Fig. 9b. Figure 9c gives the simplified module of QRCA that omits some ancillary and
garbage qubits.

4 Quantum image edge detection based on NEQRmodel

In this section, our investigated quantum image edge detection algorithm based on
NEQR model is introduced first. Then, the corresponding quantum circuit design for
image edge extraction is presented.

4.1 Algorithms for edge detection

For the aim of detecting perfect image edge information, our proposed quantum image
edge detection algorithm can be described as follows:

1. Prepare the original quantum image |I 〉 based on NEQR model.
2. UseLaplacian filter to transact the original quantum image |I 〉, name the transacted

image as |L〉.
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Fig. 10 Workflow of our investigated quantum edge detection algorithm

3. Compute the second derivative of pixels of |L〉 in four directions according to the
zero-cross method, then record them as |G〉.

4. Compare the absolute value of pixels of |G〉with a given threshold andmake those
no less than the threshold as edge points; otherwise, it is not.

5. Get the final edge detection output as |E〉, implement the quantum measurement
operation to retrieve the classical image, and algorithm is finished (Fig. 10).

4.2 Quantum circuit design for edge detection

Based on the quantum edge detection algorithm and detailed workflow above, the
corresponding quantum circuit that achieve the goal of extracting the edge of an image
can be respected with three stages: Laplacian filtering, Calculate the second gradient,
and Classify the edge points.

4.2.1 Laplacian filtering

For enhancing the image edge extraction, the Laplacian operator is used to smooth
the original quantum image. In order to achieve this aim, we need prepare an 2n × 2n

original quantum |I 〉 with gray-scale range [0, 2q − 1] as follows (Fig. 11):

∣∣IY ,X
〉 � 1

2n

2n−1∑

Y�0

2n−1∑

X�0

∣∣CY ,X
〉|Y 〉|X〉 � 1

2n

22n−1∑

Y X�0

q−1⊗
k�0

∣∣∣cky,x
〉
|Y 〉|X〉 (12)

Based on the previous analysis, in order to implement Laplacian filtering, we need
all the pixels in a neighbor set. In this paper, for circuit simplicity, we only consider
a 3 × 3 neighbor pixel. Assume that enough auxiliary qubits are supplied to do the
whole and this task can be completed with following steps:
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Fig. 11 Obtain the nine image pixels in any 3 × 3 neighbor window

Step 1 Via some certain cyclic shift transformations and parallel Controlled-NOT
operations on

∣∣IY ,X
〉
to obtain the eight shifted quantum image pixels of any 3 × 3

neighbor set simultaneously. In this step, eight |0〉⊗q ancillary qubits are used to store
the other eight neighborhood pixels. Therefore, the ancillary qubits are the tensor
product with the original prepared quantum image states, expressed as follows:

|0〉⊗8q ⊗ ∣∣IY ,X
〉 � 1

2n

2n−1∑

Y�0

2n−1∑

X�0

|0〉⊗8q
∣∣CY ,X

〉|Y 〉|X〉

� 1

2n

2n−1∑

Y�0

2n−1∑

X�0

|0〉⊗q · · · |0〉⊗q
∣∣CY ,X

〉|Y 〉|X〉 (13)

The quantum circuit for this step is illustrated in Fig. 15. After this step, any eight
pixels of a 3 × 3 neighborhood pixel of the original quantum image

∣∣IY ,X
〉
are

computed and stored in the quantum states, encoded as follows:

1

2n

2n−1∑

Y�0

2n−1∑

X�0

∣∣CY−1,X
〉 ⊗ ∣∣CY−1,X+1

〉 ⊗ ∣∣CY ,X+1
〉 ⊗ ∣∣CY+1,X+1

〉 ⊗ ∣∣CY+1,X
〉

⊗ ∣∣CY+1,X−1
〉 ⊗ ∣∣CY ,X−1

〉 ⊗ |CY−1X−1〉 ⊗ ∣∣CY ,X
〉|Y 〉|X〉 (14)

Step 2 According to Laplacian filter method as introduced in the previous section,
the pixels value of the transacted image is calculated according to Eq. (14) via
some specific quantum arithmetic operations. Figure 14 gives the concrete quantum
circuit realization of calculating the resulting pixels value in filtered image.
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Fig. 12 Calculate the resulting pixels value after implementing Laplacian filtering

As illustrated in Fig. 12, this step can be described as follows:
∣∣∣S1Y ,X

〉
� QRCA

(∣∣CY−1,X
〉
,
∣∣CY−1,X+1

〉)
,

∣∣∣S2Y ,X

〉
� QRCA

(∣∣CY ,X+1
〉
,
∣∣CY+1,X+1

〉)

∣∣∣S3Y ,X

〉
� QRCA

(∣∣CY+1,X
〉
,
∣∣CY+1,X−1

〉)
,

∣∣∣S4Y ,X

〉
� QRCA

(∣∣CY ,X−1
〉
,
∣∣CY−1,X−1

〉)

∣∣LY ,X
〉 � CAV

(∣∣CY ,X × 8
〉
,

∣∣∣S1Y ,X + S2Y ,X + S3Y ,X + S4Y ,X

〉)
(15)

After this step, we can choose the desire quantum lines as the final output quantum
states, that is:

|L〉 � 1

2n

22n−1∑

Y X�0

∣∣LY ,X
〉|Y 〉|X〉 (16)
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4.2.2 Calculate the gradient

Based on the smooth quantum image |L〉 obtained via Laplacian filtering in the
previous section, we need to calculate the second derivative in four directions in a
3 × 3 neighborhood window further. Similar to Laplacian filtering, the eight pixels
in any 3 × 3 neighborhood window need compute and store in quantum states firstly.
Then, based on the neighbor pixels, the sub-gradients in four directions are calculated
based on zero-cross method. Therefore, the processes of calculating the gradients are
described in detail with following two steps:

Step 1. Similar to the step 1 in Lapalcian filtering, the eight pixels of any 3 × 3
neighborhood in transacted quantum image |L〉 are computed and stored in quantum
states. Because the quantum circuit realization of this step is similar to the step 1 in
Lapalcian filtering, the quantum circuit is omitted from here for circuit simplicity.
It is worth noting that eight ancillary qubits |0〉⊗8q are also in tensor product with
quantum states of image |L〉 and can be written as follows:

|0〉⊗8q ⊗ |L〉 � 1

2n

2n−1∑

Y�0

2n−1∑

X�0

|0〉⊗8q
∣∣LY ,X

〉|Y 〉|X〉

� 1

2n

2n−1∑

Y�0

2n−1∑

X�0

|0〉⊗q · · · |0〉⊗q
∣∣LY ,X

〉|Y 〉|X〉 (17)

And, the final output quantum states are encoded as follows:

1

2n

2n−1∑

Y�0

2n−1∑

X�0

∣∣LY−1,X
〉 ⊗ ∣∣LY−1,X+1

〉 ⊗ ∣∣LY ,X+1
〉 ⊗ ∣∣LY+1,X+1

〉 ⊗ ∣∣LY+1,X
〉

⊗ ∣∣LY+1,X−1
〉 ⊗ ∣∣LY ,X−1

〉 ⊗ |LY−1X−1〉 ⊗ ∣∣LY ,X
〉|Y 〉|X〉 (18)

Step 2 Based on the pixels obtained in 3× 3 neighbor window, a series of quantum
arithmetic operations are implemented to compute the gradients in four directions
according to Eq. (10). Figure 13 draws the concrete quantum circuit realization of
calculating the corresponding gradients in four directions.
Similarly, the desired output quantum states |Z〉 can be expressed as follows:

|Z〉 � 1

2n

2n−1∑

Y�0

2n−1∑

X�0

∣∣∣G4
Y ,X

〉∣∣∣G3
Y ,X

〉∣∣∣G2
Y ,X

〉∣∣∣G1
Y ,X

〉
|Y 〉|X〉 (19)

4.2.3 Classify the edge points

In order to extract the edge of original quantum image |I 〉, the calculated and stored
four sub-gradients G1

Y ,X
,G2

Y ,X
,G3

Y ,X
,G4

Y ,X
based on zero-cross method are compared
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Fig. 13 Quantum circuit for obtaining the eight pixels in a 3 × 3 neighbor window in image |L〉

with a given threshold |T 〉. It is worth noting that an ancillary qubit |0〉 is tensor product
with quantum states |Z〉 encoded as follows:

|0〉 ⊗ |Z〉 � 1

2n

2n−1∑

Y�0

2n−1∑

X�0

|0〉
∣∣∣G4

Y ,X

〉∣∣∣G3
Y ,X

〉∣∣∣G2
Y ,X

〉∣∣∣G1
Y ,X

〉
|Y 〉|X〉 (20)

The quantum circuit for detecting the edge of original quantum image is shown in

Fig. 14. Therein, the sub-gradients in four directions
∣∣∣G1

Y ,X

〉
,
∣∣∣G2

Y ,X

〉
,
∣∣∣G3

Y ,X

〉
, and

∣∣∣G4
Y ,X

〉

are compared with a given threshold |T 〉 via four quantum comparators, respectively.
It should pay attention that the result of comparison of QC can be denoted as follows:

if
∣∣∣Gi

Y ,X

〉
≥ |T 〉, then |c0〉 � |0〉

if
∣∣∣Gi

Y ,X

〉
< |T 〉, then |c0〉 � |1〉

i � 1, 2, 3, 4 (21)

Therefore, for storing the edge information into quantum states, a NOT gate and
4-CNOT are used to bi-value the edge information and store it in the ancillary qubit

|0〉. That is to say, if and only if all the gradients of
∣∣∣G1

Y ,X

〉
,
∣∣∣G2

Y ,X

〉
,
∣∣∣G3

Y ,X

〉
, and

∣∣∣G4
Y ,X

〉

are less than the threshold |T 〉, it is classified into a non-edge points denoted by |0〉;
Otherwise, it would be classified into the edge points denoted by |1〉. And, the final
desired output quantum states can be expressed as follows:

|E〉 � 1

2n

2n−1∑

Y�0

2n−1∑

X�0

∣∣EY ,X
〉|Y 〉|X〉, EY ,X ∈ {0, 1} (22)

123



Quantum image edge extraction based on Laplacian operator… Page 17 of 23 27

X

Y

0

1
,Y XG 2

,Y XG

3
,Y XG 4

,Y XG

Q
   C 

T

0

0

Q
   C 

0

T

1
,Y XG 2

,Y XG

0

Q
   C 

0

0

Q
   C 

0

T

3
,Y XG 4

,Y XG

0c

1c

0c

1c

0c

1c

0c

1c

0
,Y XE

T

Fig. 14 Detect the edge of quantum image and store it in quantum states

wherein EY ,X � 1 means that the current point is a edge point. Otherwise, it is not.
It is worth to note that for retrieving the classical image edge information, the quan-

tummeasurement will be operated on the quantum states illustrated in Eq. (). However,
in many practical applications, since edges carry important information, the edge has
been widely used in solid imaging such as image segmentation, pattern recognition,
and so on. That is to say, edge detection is just one step of image preprocessing, and
usually, we do not focus on which pixels are edge points. Many complex operations
will work on the edge superposition to obtain more significant information. Thus,
we do not need to consider the measurement time to read out the edge information.
Consequently, the detail information concerned quantum measurement operation is
omitted from here.

5 Circuit complexity and simulation results analysis

In this section, the circuit complexity of our investigated edge detection algorithm is
discussed firstly. Then, the differences in the performance between our scheme and
other edge extraction algorithms are compared.
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5.1 Circuit complexity

Here, consider a digital image with a size of 2n × 2n as an example. Because our
proposed quantum image edge detection algorithm is realized step by step, the quantum
circuit complexity analysis also is discussed step by step accordingly.

Quantum image preparation the quantum circuit will make the construction of
quantum image |I 〉 based NEQR model. From the introduction of Ref. [19], it is
known that the computational complexity of this process is no more than O(qn22n)
because some operations will be done for every pixel one by one.

Laplacian filtering this stage can be divided into two processes: the first is to obtain
the neighborhood pixels via some certain shift transformations and parallel Controlled-
NOT operations, and the other is calculating the pixels value in filtered image. Since
each shift transformation will cost the time complexity of O

(
n2

)
according to [25],

every parallel Controlled-Not operation contains q CNOT gates of which complexity
is O(q). On the other hand, the quantum circuit of calculating the pixels value of the
filtered image is composed by seven QRCA modules with additional CAV module.
For single q-qubit QRCA module illustrated in Fig. 9, it is easy to conclude that the
circuit complexity is O(q). The CAV module circuit complexity is O

(
q2

)
according

to [35]. Therefore, the circuit complexity of Laplacian filtering is O
(
n2 + q2

)
.

Calculate the gradient this stage is similar to the Laplacian filtering in the above
process, which also uses a sequence of shift transformations and parallel Controlled-
NOT operations to compute and store the relative neighbor pixels information as
well as some QRCA modules and CAV modules that are employed to calculate the
gradient based on zero-cross method. Thus, the circuit complexity of this stage also
is O

(
n2 + q2

)
.

Classify the edge points In this stage, four QCmodules are used to classify whether
the pixels points belongs to edge points or not. For single QC module that compares
two q-qubit integers, the circuit complexity is 24q2 + 6q according to [27]. Thus, the
circuit complexity of current stage is O

(
q2

)
.

Generally, the quantum image preparation andmeasurement operations are not con-
sidered as a part of quantum image processing algorithm. Therefore, if we omit the
circuit complexity in these two processes, the circuit complexity of our proposed quan-
tumedge detections algorithm for a 2n×2n NEQRquantum image is aboutO

(
n2 + q2

)
.

Hence, we can give the conclusion that our investigated quantum edge extraction algo-
rithm can reach an exponential speed than all the classical edge extraction algorithms
and all the existing quantum edge extraction algorithms. Table 1 demonstrates the
performance comparisons between our presented algorithm and other edge extrac-
tion algorithms including two famous classical algorithms [54, 55] and three existing
quantum edge extraction algorithms [45, 46], and Zhang [47, 48] for a digital image
with a size of 2n × 2n .

5.2 Simulation results analysis

In order to evaluate the performance of our investigated quantum edge extraction algo-
rithm comparedwith the other previousworks [47], this section presents the simulation

123



Quantum image edge extraction based on Laplacian operator… Page 19 of 23 27

Table 1 Performance comparisons between our method and other edge extraction algorithms for a digital
image with a size of 2n × 2n

Algorithm Quantum image model Complexity of quantum
image construction

Complexity of edge
extraction

Sobel – – O(22n )

Canny – – O(22n )

Tseng [45] Qubit Lattice O(22n ) O(22n )

Fu [46] Qubit Lattice O(22n ) O(22n )

Zhang [47] FRQI O(24n ) O(n2)

Zhang [48] NEQR O(22n ) O(n2 + q2)

Our method NEQR O(22n ) O(n2 + q2)

Fig. 15 Two tested images are used in our simulation. a Lena. b Cameraman

analysis. Due to the condition that the physical quantum hardware is not affordable
for us to execute our method, our proposed quantum watermarking technique is simu-
lated with a classical computer Intel(R) Core (TM) i7-8550UCPU 1.80 GHz, 8.00 GB
Ram equipped with the MATLAB R2016b environment. Figure 15 demonstrates two
tested gray-scale images of Lena and Cameraman with size of 128 × 128 used in
our simulation processes. Figures 16, 17, and 18 demonstrate that the experiment
results use our presented method, zero-cross method [47], and classical Laplacian
method under different thresholds. Because we only use the 3×3 neighborhood infor-
mation, it is inevitable that there exists some wrong edge information in the result
images.

Based on the experiment results shown in Figs. 16 and 17, it is easy to conclude
that our investigated method can enhance the edge information of an image. Thus, we
can obtain a better result than zero-cross method proposed in [47]. Compared with the
classical Laplacian edge detection, our proposed edge extraction can detect a small
edge points than classical edge extraction method under the same threshold.
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Fig. 16 Simulation results using our investigated method under different thresholds T

Fig. 17 Simulation results using zero-cross method under different thresholds T
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Fig. 18 Simulation results using classical Laplacian method under different thresholds T

6 Conclusions

In recent years, with the sharp increase in the image data in the actual applications,
real-time problem has become a limitation in classical image processing. In this paper,
QLaplacian, a novel quantum edge extraction algorithm is designed, which combines
the classical Laplacian algorithm and quantum image model of NEQR. The imple-
mentation circuit of QLaplacian showed that it can extract edges with no more than
O(n2 + 27q2) computational complexity for a NEQR quantum image with size of
2n × 2n . Compared with all the classical edge extraction algorithms and the existing
algorithms of quantum edge extraction, QLaplacian can reach an exponential speedup
than any classical edge extraction algorithm as shown in Table 1. Therefore, QLapla-
cian can resolve the real-time problem of image edge extraction.

In this paper, the drastic improvement in QLaplacian is liable for the peculiar
properties of the quantum imagemodelNEQR,which utilizes a quantum superposition
state to store all the pixels of an image. Therefore, we can process the information of all
the pixels simultaneously. Similarly, many algorithms of quantum image processing
can also utilize quantum computing technologies for processing big data.

However, there are still some drawbacks in this algorithm of QLaplacian. Firstly,
the Laplacian operator causes the edge information of the image to be lost; therefore,
it is necessary to design an algorithm for accurately detecting the edge of the image.
Secondly, Laplacian operator is the second derivative, which is more sensitive to noise
than the first derivative, and enhances the influence of noise on the image. Thus, the
design of quantum image smoothing algorithm is one of the future works.
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