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Abstract
Quantum digital signature offers an information theoretically secure way to guarantee
the identity of the sender and the integrity of classical messages between one sender
and many recipients. The existing unconditionally secure protocols only deal with the
problemof sending single-bitmessages. In this paper,wemodify themodel of quantum
digital signature protocol and construct an unconditionally secure quantum digital
signature protocol which can sign multi-bit messages at one time. Our protocol is
against existing quantum attacks. Compared with the previous protocols, our protocol
requires less quantum memory and becomes much more efficient. Our construction
makes it possible to have a quantum signature in actual application.

Keywords Quantum digital signature · Quantum commitment · Photodetection event

1 Introduction

Quantumdigital signature (QDS) offers a securemeans to send classicalmessages, and
the protocol cannot be forged or repudiated. In contrast to classical digital signature
[1,2], the security of QDS depends on quantum mechanics, so QDS is secure against
quantum attacks.

Formally, the protocol of QDS has two stages: the distribution stage and the mes-
saging stage.

– In the distribution stage, the sender needs to generate all signatures for any possible
message and sends them to all recipients. The recipients perform some types of
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nondemolition comparison [3] or symmetrization [4,5] of their states and store the
outcomes.

– In the messaging stage, the sender signs a message by sending the private key of
this message to all recipients, and recipients need to confirm that it is compatible
with their stored information.

Intuitively, in the distribution stage, the sender makes a one-to-one correspondence
between messages and signatures; then, he sends all signatures to recipients. In the
messaging stage, the sender just sends the private key which generates the correspond-
ing signature to recipients. In general, the distribution stage and the messaging stage
are independent. The distribution stage restricts the length of the signed message,
because the required quantum memory increases exponentially as the length of the
signed message increases. To my knowledge, all presented QDS protocols only deal
with the problem of signing single-bit classical messages, while signing a multi-bit
message, one needs to iterate the single-bit signing procedure, which is rather imprac-
tical in reality.

1.1 Related work

There are two categories of quantum signature (QS) according to the type of the signed
messages, i.e. QS for quantum messages and QS for classical messages.

For quantummessages, in 2002, based on theGreenberger–Horne–Zeilinger (GHZ)
triplet states [6] and quantum one-time pads [7], Zeng et al. [8] proposed an arbitrated
quantum signature (AQS) protocol, and this protocol has many merits such as it can
sign both known and unknown quantum states. In 2009, Li et al. [9] presented an AQS
protocol using two-particle entangled Bell states instead of GHZ states. This protocol
can preserve the merits in [8] while providing a higher efficiency in transmission and
reducing the complexity of implementation. In 2010, Zou et al. [10] showed that the
above AQS protocols can be repudiated by the receiver. To conquer this shortcoming,
they constructed anAQS protocol using a public board. In particular, this protocol does
not utilize entangled states and preserves the merits in the existing AQS protocols. In
2012, Luo et al. [11] suggested a QDS with weak arbitrator, and this weak arbitrator
is required only when there is a dispute between the signer and the verifier. However,
in 2014, Zou et al. [12] showed that the above suggestion can counterfeit a valued
signature by employing several known attacks.

For classical messages, in 2001, the QDS protocol presented by Gottesman and
Chuang [3] is based on a quantum analogue of a one-way function, and this protocol
requires a general SWAP test to perform nondestructive quantum state comparison
on the quantum signatures and needs long-term quantum memory which is currently
impractical in experiment. In 2006, Andersson et al. [13] presented an easily reliable
method for quantum states comparison, and this method has a higher success probabil-
ity and is experimentally feasible as the only required components are beam splitters
and photon detectors. Then Clarke et al. [4] provided a novel QDS protocol by using
Andersson et al.’s method to perform quantum states comparison instead of the SWAP
test, and this protocol is based on the interference of phase-encoded coherent states of
light, but it also needs a long-term quantum memory. In 2014, Dunjko et al. [14] gave
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a QDS protocol without the requirement of quantum memory in which the quantum
signatures are converted to classical information through quantummeasurements dur-
ing the distribution stage, and then, the procedures of authentication and verification
only process classical data during the messaging stage. In 2015, Amiri et al. [15] con-
structed a new QDS protocol without secure quantum channels. In [15], the sender
sends different signatures to recipients instead of the same signature, which improves
efficiency, and the noise threshold is less strict.

In this paper, we focus on the QS for classical message. The above QDS protocols
only deal with the problem of signing single-bit messages, while signing a multi-bit
message, one needs to iterate the single-bit signing procedure. In 2015, Wang et al. [5]
found two kinds of truncation attacks and proved that iterating the single-bit signing
procedure cannot resist the truncation attacks. In order to resist these attacks, Wang et
al. designed a special encode way to tag the start and the end of the signed message
and claimed that this method can guarantee the integrity of the signed message.

1.2 Our results and techniques

Our main result in this paper is that we construct an unconditionally secure QDS
protocol which can sign multi-bit classical messages efficiently at one time. Our QDS
protocol is secure against forging and repudiation, and our protocol is also secure
against existing quantum attacks.

The existing QDS protocols only deal with the problem of signing single-bit mes-
sages, while signing a multi-bit message, one needs to iterate the single-bit signing
procedure.Wang et al. [5] presented two algorithms to attack this iteration anddesigned
a QDS protocol which can sign multi-bit message at one time. Compared with the pro-
tocol [5], our protocol can resist the two forgery attacks presented in [5]. Moreover,
our protocol need less quantum memory and is more efficient.

In the key distribution stage, the sender sends all signatures for each possible bit
message to recipients; each signature represents specific location information and bit
information. Thus, the quantum memory we require is polynomial, not exponential.
To ensure the integrity of signed message, our technique is that the sender commits
the signed message and sends it to the recipient.

Our QDS protocol is secure against forging and repudiation. Our QDS protocol is
secure against forging; the key observation is that if m′ �≡ m mod p, where p is a
prime, the following two equations

r ′ ≡ r mod p, m′r ′ ≡ mr mod p (1)

cannot hold concurrently. That is to say, if we encode the signed message to the phase
of the quantum commitment, there is a great difference between the phases of the true
and forged quantum commitment. Thus, the recipients can detect this discrepancy by
counting the number of the photodetection events on the recipient’s signal null-port
arm. Our QDS protocol is secure against repudiation, the key is to use the multi-port,
and each recipient saves the symmetric output states in their quantum memory. That
is to say, the cost matrix C (Appendix A) that describes the probability of registering
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a photodection event on recipients’ signal null-port arm is symmetric. So the sender
cannot make recipients disagree on the validity of any signed message. Also, the last
recipient can be a judge, and he can prevent the sender from denying that she has sent
the signed message.

2 Preliminaries

In this section, we introduce some necessary preliminaries to construct an uncondi-
tionally secure QDS protocol for classical messages.

In this paper, we use [p] to denote the set {1, 2, . . . , p} and we use ‖ to denote
the concatenation of bits or bit strings. A coherent state |β〉 is a quantum state, which
closely resembles a classical electromagnetic wave, and β is a complex number. The
multi-port is made of four 50:50 beam splitters. The input states to the 50:50 beam
splitter are |α〉 and |β〉, and the output states are |(α − β)/

√
2〉 and |(α + β)/

√
2〉.

This simple operation forms the basis of the multi-port signature comparison system.
The output states of the multi-port are symmetric with respect to each recipient.

The following simple lemmas are useful for the proof of our unconditionally secure
QDS protocol.

Lemma 1 Let p be a prime and (a, p) = 1, for any b ∈ Z, and the following equation

ax ≡ b mod p (2)

has only one solution modulo p.

Lemma 2 [16] Let X1, . . . , XL be independent random variables, and each attains
values 0 or 1. Let X̄ = 1/L

∑
Xi be the empirical mean of the variables, and let

E(X̄) be the expectancy of the empirical mean. Then we have

P(X̄ − E(X̄) ≥ t) ≤ exp(−2t2L), (3)

P(|X̄ − E(X̄)| ≥ t) ≤ 2 exp(−2t2L). (4)

The above inequalities are called the Hoeffding’s inequalities. It is noted that the
inequalities also hold when the {X1, X2, . . . , XL} has been obtained using sampling
without replacement; in this case, the random variables are not independent anymore.

2.1 Quantum commitment scheme

Informally speaking, commitment scheme is like a sender putting a message in a
locked box and giving this box to a recipient. The message in the box is hidden from
the recipient who cannot open the lock himself. Since the recipient has the box, the
message inside cannot be changed, merely revealed if the sender chooses to give them
the key at some later time.

The scheme of quantum commitment has two stages: the commit stage and the
reveal stage.
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– In the commit stage, the sender transmits information related to a message in such
a way that the recipient learns nothing about the message (hiding property); at the
same time, the sender cannot change his mind later about this message (binding
property).

– In the reveal stage, the sender reveals the message and proves that this is indeed
the message that he had in mind earlier.

Let us recall the basics of quantum commitment scheme. The following is taken
verbatim from [17].

A commitment scheme consists of algorithms Com and Verify. (C, u) ←
Com(1λ,m) returns a commitment C and the opening information u for the mes-
sage m. C alone is supposed not to reveal anything about m (hiding property). To
open the commitment, the sender sends (m, u) to the recipient who checks whether
Verify(1λ,C,m, u) = 1. Com has classical input and a well-defined message space
M that depends on the security parameter λ (e.g. {0, 1}λ).

Definition 1 Let (Com,Verify) be a commitment scheme, and we define

– Completeness For any m ∈ M, the following probability declines exponentially
in terms of the length of the quantum commitment

Pr[Verify(1λ,C,m, u) �= 1 : (C, u) ← Com(1λ,m)].

– Unconditional binding For any computationally unlimited adversary A and m ∈
M, the following probability declines exponentially in terms of the length of the
quantum commitment

Pr[Verify(1λ,C,m, u) = 1 ∧ Verify(1λ,C,m′, u′) = 1 ∧ m �= m′ : (C,m, u,m′, u′) ← A(λ)].

– Unconditional hiding For any computationally unlimited adversary A and m ∈
M, the following probability declines exponentially in terms of the length of the
quantum commitment

|Pr[m ← A(1λ,C) : (C, u) ← Com(1λ,m)] − 1

|M| |.

Construction We introduce a quantum commitment scheme [18] and describe it as
follows. For simplicity, we outline the case with one sender Alice and one recipient
Bob.

1. Let p be a prime to be chosen later. To make a commitment of message m ≤ p to
Bob, Alice chooses a sequence of r = (r1, r2, . . . , rL) from [p]L randomly and
generates a sequence of coherent states

ρk = |e
2rkπ i

p α〉〈e
2rkπ i

p α|, k = 1, . . . , L, (5)

ρm
k = |e

2mrkπ i
p α〉〈e

2mrkπ i
p α|, k = 1, . . . , L, (6)
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where α is a real positive amplitude and L is a polynomial of security parameter
λ. Let

ρr =: (ρ1, . . . , ρL), ρm,r =: (ρm
1 , . . . , ρm

L ). (4)

The vector r is called the opening information and QuantComm =: (ρr, ρm,r) is
called the commitment of messagem. QuantComm is in 2L independent quantum
registers, and each register does not interfere with each other. Then Alice sends
QuantComm to Bob over an authenticated channel.

2. To open the commitment, Alice sends (m, r) to Bob over an insecure channel. Bob
generates coherent states (ρr, ρm,r) of amplitude α with the relative phase defined
by (m, r) and interferes them individually with the states QuantComm . He counts
the number of photodetection events on his signal null-port arm and accepts this
message m if the number of photodetection events is below 2svL; otherwise, he
rejects it. The parameter sv is called the verification threshold whichwill be chosen
later.

Intuitively, our commitment scheme is unconditionally secure, i.e. its security is
independent of the ability of the adversary.

Theorem 1 The above two-party quantumcommitment scheme is unconditional hiding
and binding.

Proof This theorem is proved in [18], so we omit it. ��

3 Quantum digital signature protocol

In this section, we modify the model of QDS protocol and give a new efficient QDS
protocol.Weoutline the casewith one senderAlice and two recipientsBob andCharlie.

3.1 Definition

The protocol of QDS has three stages: the key distribution stage, the signing stage and
the verification stage.

– In the key distribution stage, Alice generates all signatures for each possible bit
message and sends them to two recipients. Then recipients perform symmetrization
of their states and store the outcomes.

– In the signing stage, Alice sends the quantum commitment of the signed message
m to Charlie; then, for each bit of the signed message m = m1 ‖ m2 ‖ · · · ‖ mn ,
she sends the corresponding private key pair ( j,Privkey

m j
j ) to two recipients.

– In the verification stage, Charlie verifies the commitment QuantComm according
to the pair (m, r). If fails, the protocol has to be aborted. Otherwise, two recipients
continue to verify the signature.

The QDS protocol is required to resist two kinds of malicious activities: forging and
repudiation. The protocol being secure against forging means that any recipient will
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reject any message that is not sent by the sender. The protocol being secure against
repudiation means that the sender cannot make recipients disagree on the validity of
any signed message. Formally we have the following definitions of the secure QDS
protocol:

– We say that a protocol of QDS is robust if the probability of the signed message
being rejected is declining exponentially in terms of the length of the quantum
signature when all parties are honest.

– We say that a protocol of QDS is secure against forging if the probability in the
following case is declining exponentially in terms of the length of the quantum
signature; the case is that any adversary generates a private key of a message that
will pass verification of other recipients without receiving it from the sender.

– We say that a protocol of QDS is secure against repudiation if the probability in
the following case is declining exponentially in terms of the length of the quantum
signature; the case is that a signature of the signed message fails verification with
one recipient once it has already passed authentication with the other.

3.2 Construction

In this subsection, we describe our QDS protocol.

1. The key distribution stage

(a) Let n be the length of the message to be signed. For each j th bit, j =
1, 2, . . . , n, Alice chooses two sequences of PrivKey0j = (r0j,1, r

0
j,2, . . . , r

0
j,L)

and PrivKey1j = (r1j,1, r
1
j,2, . . . , r

1
j,L) from [p]L randomly; then, she generates

coherent states

ρ0
j,k = : |e

2r0j,kπ i

p α〉〈e
2r0j,kπ i

p α|, k = 1, . . . , L, (7)

ρ1
j,k = : |e

2r1j,kπ i

p α〉〈e
2r1j,kπ i

p α|, k = 1, . . . , L, (8)

where α is a real positive amplitude, L is polynomial of the security parameter
λ, and p is a prime depending on the properties of practical implementation.
Let

QuantSig0j =: (ρ0
j,1, . . . , ρ

0
j,L), QuantSig1j =: (ρ1

j,1, . . . , ρ
1
j,L). (9)

The vector PrivKeyμ
j with μ = 0, 1 is called j th private key of message μ,

and the sequence of such coherent states QuantSigν
j with ν = 0, 1 is called j th

quantum signature of message ν.
(b) Alice generates two copies of these sequences of coherent states QuantSig0j

and QuantSig1j . For μ = 0, 1 and j = 1, 2, . . . , n, Alice sends one copy of the

quantum signature pair ( j, μ,QuantSigμ
j ) to Bob and the other to Charlie by an

authenticated channel. ThenBob andCharlie send each sequence ofQuantSig0j
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and QuantSig1j through a multi-port, respectively, saving the output states in
quantummemory and notingwhich quantum signature corresponds tomessage
0 of j th bit and which to 1 of j th bit.

2. The signing stage

(a) To sign a message m = m1 ‖ m2 ‖ · · · ‖ mn ∈ [p], Alice makes commitment
of this message m to Charlie. She chooses a sequence of r = (r1, r2, . . . , rL)

from [p]L randomly and generates a sequence of coherent states

ρk = |e
2rkπ i

p α〉〈e
2rkπ i

p α|, k = 1, . . . , L, (10)

ρm
k = |e

2mrkπ i
p α〉〈e

2mrkπ i
p α|, k = 1, . . . , L. (11)

Let

ρr =: (ρ1, . . . , ρL), ρm,r =: (ρm
1 , . . . , ρm

L ), (12)

where the vector r is called the opening information and QuantComm =
(ρr, ρm,r) is called the quantum commitment of messagem. Then Alice sends
QuantComm to Charlie by an authenticated channel and sends the pair (m, r)
to Bob over an insecure channel.

(b) For the message m = m1 ‖ m2 ‖ · · · ‖ mn ∈ [p], Alice sends the correspond-
ing private key pairs ( j,PrivKey

m j
j ), j = 1, 2, . . . n, to Bob over an insecure

channel.

3. The verification stage

(a) To authenticate this signature, Bob generates coherent states of amplitude α

with each relative phase definedby the declaredPrivKey
m j
j , j = 1, 2, . . . n and

interferes them individually with the states QuantSig
m j
j he has in his quantum

memory one by one. For each state QuantSig
m j
j , he counts the number of

photodetection events on his signal null-port arm and authenticates this state
if the number of photodetection events is below sa L . The parameter sa is the
authentication threshold. If there is a state which cannot be authenticated, Bob
rejects the message m.

(b) Bob sends (m, r) to Charlie; then, Charlie generates coherent states of ampli-
tudeαwith the relative phase defined by (m, r) and interferes them individually
with the states QuantComm . He counts the number of photodetection events
on his signal null-port arm; if the number of photodetection events is not below
2svL , where sv is called the verification threshold, the protocol is aborted.

(c) To prove to Charlie that he received the message m from Alice, Bob sends
the corresponding private key pairs ( j,PrivKey

m j
j ), j = 1, 2, . . . n to Char-

lie. Charlie then performs an analogous procedure as Bob and he verifies the
signature of bit message m j if the number of photodetection events is below
svL , with 0 < sa < sv < 1. If there is a state which cannot be verified, Charlie
rejects this message m.
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If any of the thresholds are breached, the protocol has to be aborted.

Remark Charlie’s responsibility is the judge. When Alice and Bob are controversial,
the step (c) in the verification stage can prevent Alice from denying that she has sent
the signed message to Bob.

Lemma 3 [4] For any bit message m j , j = 1, 2, . . . n, the probability of Alice repu-
diating successfully is

Pr(repudiationm j ) ≤ 2−(sv−sa)L . (13)

Theorem 2 Our quantum digital signature protocol is secure.

Proof Wedivide our proof into three parts: robust, security against forging and security
against repudiation.

For any integer 0 ≤ a, b ≤ p − 1, let ca,b denote the probability that causes a
photodetection event on the recipient’s signal null-port arm when the phase angle of
the state he has in his quantum memory is 2aπ

p and what the sender declared is 2bπ
p .

Let X̄1 = 1
L X , X̄2 = 1

2L X . X denotes the total number of photodetection events on
recipient’s signal null-port arm and E(X̄i ) denotes the expectancy of the variable X̄i ,
where i = 1, 2. Also, we let

c = max
a∈[p]{ca,a}, ĉp1,p2 = p1 min

a∈[p]{ca,a} + p2 min
a,b∈[p],a �=b

{ca,b}. (14)

And we let g = ĉ 1
2 , 12

− c, by the experiment in Appendix A; we have that g > 0. We

set sa = c + g
3 , sv = ĉ 1

2 , 12
− g

3 . ��
Robust For any bit message m j , j = 1, 2, . . . n, if the three parties in this protocol
are honest, we have

E(X̄1) ≤ max
a∈[p]{ca,a} = c. (15)

Then the probability that the signature of bit message m j cannot be authenticated is

Pr(Bob rejects m j ) = Pr(X̄1 > sa) ≤ Pr(X̄1 − E(X̄1) >
g

3
) ≤ exp(−2

9
g2L).

(16)

Hence, the probability that the signature of message m = m1 ‖ m2 ‖ · · · ‖ mn cannot
be authenticated is

Pr(Bob rejects m) = 1 − Pr(Bob accepts m)

= 1 − [Pr(Bob accepts m j )]n
= 1 − [1 − Pr(Bob rejects m j )]n
≤ 1 − [1 − exp(− 2

9g
2L)]n ≤ n exp(− 2

9g
2L).

. (17)

123



275 Page 10 of 14 M.-Q. Wang et al.

Similarly, we have

Pr(Charlie rejects m) ≤ 1 −
[

1 − exp(−2

9
g2L)

]n
≤ n exp(−2

9
g2L). (18)

Security against forging First we assume that only Bob is dishonest. Because the
quantum commitment scheme in Sect. 2 is unconditional binding, once Bob sends
forged messagem′ �= m to Charlie, no matter how Bob chooses r′ = (r ′

1, . . . , r
′
L); the

probability that this protocol is aborted declines exponentially in terms of the length
of the quantum signature.

By Lemma 1, if m′ �≡ m mod p, the following two equations

r ′ ≡ r mod p, m′r ′ ≡ mr mod p (19)

cannot hold concurrently. Hence, if m′ �≡ m mod p, no matter how Bob chooses the
random sequence vector r′ = (r ′

1, . . . , r
′
L); there are at least L different entriesmodulo

p between the following two vectors

(r ′
1, . . . , r

′
L ,m′r ′

1, . . . ,m
′r ′
L), (r1, . . . , rL ,mr1, . . . ,mrL).

In other words, the number of the following 2L equations that do not hold

r ′
i ≡ ri mod p, m′r ′

i ≡ mri mod p, 1 ≤ i ≤ L, (20)

is at least L .
By the above discussions, we have

E(X̄2) = 1
2L E(X2)

≥ 1
2L (L min

a∈[p]{ca,a} + L min
a,b∈[p]
a �=b

{ca,b})

= 1
2 min
a∈[p]{ca,a} + 1

2 min
a,b∈[p]
a �=b

{ca,b}

= ĉ 1
2 , 12

.

. (21)

Hence, we have

Pr[Charlie accepts m′] = Pr[X̄2 ≤ sv]. (22)

By Lemma 2, we get

Pr
[
X̄2 ≤ sv

] ≤ Pr
[
X̄2 − E(X̄2) ≤ −g

3

]

≤ Pr
[
|X̄2 − E(X̄2)| ≥ g

3

]
≤ 2 exp(−4

9
g2L). (23)
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This probability declines exponentially in terms of the length of the quantum signature.
Security against repudiation First, we assume that the multi-port is ideal and Alice is
only dishonest. In this attack, Alicewants to forward amessage–signature pair that will
pass Bob’s authentication, but will be rejected by Charlie. From Lemma 3, we known
that, for any bit message m j , j = 1, 2, . . . n, the probability of Alice repudiating
successfully is

Pr(repudiation m j ) ≤ 2−(sv−sa)L . (24)

In the same way, for the signed message m = m1 ‖ m2 ‖ · · · ‖ mn , we can bound the
probability of Alice repudiating successfully as

Pr(repudiation m) ≤ 1 − [1 − 2−(sv−sa)L ]n ≤ n2−(sv−sa)L . (25)

4 Compared with the previous work

In this section, we compare our protocol with the main existing QDS protocols. Com-
pared with the previous works, our advantages can be showed in three aspects: the
length of the signed message, quantum memory and efficiency. Specifically, our pro-
tocol can sign multi-bit messages at one time, and our protocol needs less quantum
memory and is more efficient.

Proposition 1 Our unconditionally secure QDS protocol can sign multi-bit messages
at one time. If the length of the signed message is n, we need to generate 2n + 1
coherent states and iterate n times single-bit signing procedure.

Compared with our protocol, the existing unconditionally secure QDS protocols,
i.e. [4,14,15], only can sign single-bit messages at one time except the protocol [5].
If the length of the signed message is n, the protocol [5] needs to generate 6n + 12
coherent states and iterate 3n+6 times single-bit signing procedure. And there is time
delay in verification stage of the protocol [5]. Suppose that Bob is dishonest, he sends
a forged message to Charlie. In the protocol [5], Charlie needs to verify each signature
of the signed message bits; only when he find a state which cannot be verified, he
can reject this forged message, while in our protocol, Charlie can reject this forged
message only by verifying a quantum commitment. The reason for this difference is
that we encode the signed message to the phase of the quantum commitment, and
we take the signed message as a whole. Any alteration of the signed message will be
detected by verifying this quantum commitment, instead of verifying validity of each
signed message bit.

In order to be more image and specific, we build a table with columns and rows to
compare and analyse as follows.
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Quantum memory Iteration Length Time delay

[4,14,15] 1 1 Single-bit No
[5] 6n + 12 3n + 6 Multi-bit Yes
Our protocol 2n + 1 n Multi-bit No

Appendix A

Bob’s optimal strategy is to minimize the probability of causing a photodetection
event, with the cost matrix C with elements cφ,θ . In the cost matrix C, the diagonal
elements represent the cases when recipient uses the same phase as sender, and the
off-diagonal elements represent the cases when recipient uses the phase different from
sender. In the specific experimental operation, tomake our protocol to be secure against
forging, a practical requirement is that the probabilities of registering a photodetection
event on Charlie’s signal null-port arm are greatly different between the above two
cases. If so, Charlie can register distinctly more photodetection events than threshold
value when Bob (or other external party) attempts to forge a message. That is to say,
Charlie is capable of detecting a discrepancy between the true and forged messages.
To achieve this requirement, the choice of the number of possible phase encodings p
cannot be large. Clarke et al. [4] presents us a practical experimental data, they use 8
different phase states, and the average photon number per pulse is |α2| = 0.16. In this
experimental setup, the cost matrix is given by

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3.89 4.40 5.24 5.95 6.35 6.00 5.29 4.39

4.56 3.88 4.43 5.29 6.04 6.39 6.02 5.20

5.28 4.60 3.89 4.42 5.29 6.02 6.37 5.95

5.68 5.22 4.58 3.90 4.40 5.24 5.91 6.30

6.36 5.68 5.27 4.59 3.89 4.43 5.24 6.01

5.62 6.36 5.66 5.23 4.57 3.89 4.41 5.30

5.26 5.68 6.40 5.70 5.22 4.60 3.88 4.40

4.61 5.24 5.65 6.36 5.68 5.22 4.56 3.88

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

× 10−3. (26)

Appendix B

Lemma 4 For any bit message m j , j = 1, 2, . . . , n, the probability of Alice repudi-
ating successfully is

Pr(repudiationm j ) ≤ 2−(sv−sa)L . (1)

Proof For this purpose, Alice needs to forward different quantum signatures to
Bob and Charlie, or more generally, the most general state Alice prepares is
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πA,B1,C1,B2,C2,...,BL ,CL , which is a general 2L + 1-partite state. Subsystem A Alice
keeps and sends partitions B1, . . . , BL to Bob and C1, . . . ,CL to Charlie. If Alice is
honest, there is no subsystem A, Bi andCi are identical coherent states with a complex
phase known to Alice alone, as specified by the protocol.

There are two cases of this attack: security against individual repudiation and secu-
rity against coherent repudiation.

At first, we show that our protocol is secure against individual repudiation. We
assume that the system A is disentangled from the rest of Alice’s state, and the sub-
systems (BkCk) and (BlCl) are not entangled with each other for k �= l. However,
we allow the partitions Bk and Ck to be mutually entangled. This type of an attack
we refer to as an individual attack. According to the protocol specifications, Bob and
Charlie will individually run the pairs of states in the systems through the multi-port
and commit to quantum memory whatever comes out on their signal outputs of the
multi-port. For the purpose of showing security against repudiation, we can assume
that they ignore the measurement outcomes on the multi-port null-ports.

For the kth signature element, the joint system of Bob and Charlie which they store
into memory is state πout

BkCk
, which is symmetric under permutations of Bob’s and

Charlie’s subsystems as we now show. Let

π in
BkCk

=
∫

C2
P(α, β)|α >< α| ⊗ |β >< β|d2αd2β (28)

be any general two mode state given in the P representation. Then the stored output
state (when the null-port subsystems have been traced out) is

πout
BkCk

=
∫

C2
P(α, β)|(α + β)/

√
2 >< (α + β)/

√
2|

⊗|(α + β)/
√
2 >< (α + β)/

√
2|d2αd2β, (29)

which is symmetric in the sense given above. From [4], we know that the signature
states Bob and Charlie end up with are symmetric under the swap of their systems and
the probability matrix describing a priori occurrence of photodection events on Bob’s
and Charlie’s signal null-port arm is symmetric. So for every possible state πout

BkCk
,

the probability of getting event outcomes (0, 1) (only Charlie registers a photodection
event) and (1, 0) (only Bob registers a photodection event) is the same and is no more
than 1

2 . Specifically, if Alice succeeds in repudiating that Bob accepted the message
sent by Alice, but Charlie rejected, Charlie needs to register more photodection events
than Bob, so we can bound the probability of Alice repudiating successfully as

Pr(repudiation) ≤ 2−(sv−sa)L . (30)

The security against coherent repudiation of our protocol is rather obviously. In a
coherent attack, the entanglement of the states Alice may use is unrestricted. From [4],
we know that using globally entangled states cannot help Alice repudiate her signed
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message, that is to say

Pr(Alice cheats| individual attack) ≥ Pr(Alice cheats| coherent attack). (31)

��
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