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Abstract
We analyse robustness of nonlocal correlation in multiqubit entangled states—three-
and four-qubit GHZ class and three-qubit W class—useful for quantum information
and computation, under noisy conditions and weak measurements. For this, we use
a Bell-type inequality whose violation is considered as a signature for confirming
the presence of genuine nonlocal correlations between the qubits. In order to demon-
strate the effects of noise and weak measurements, an analytical relation is established
between the maximum expectation value of three and four-qubit Svetlichny operators
for the systems under study, noise parameter and strengths of weak measurements.
Our results show that for a set of three- and four-qubit GHZ class states, maximal non-
locality does not coincide with maximum entanglement for a given noise parameter
and a certain range of weak measurement parameter. Our analysis further shows an
excellent agreement between the analytical and numerical results.

Keywords Robust nonlocal correlations · GHZ and W class of states · Weak
measurement

1 Introduction

The nonlocal correlations existing between particles quantify the fundamental differ-
ences between quantum and classical systems [1–5]. Due to the advantages offered
by nonlocal correlations, theoretical as well as experimental characterization of non-
locality has been at the centre of research in foundations of quantum mechanics and
quantum information [6–24]. Such correlations have also taken the centre stage for
many efficient and potential applications in quantum information and computation
[25–29]. Therefore, the analysis of nonlocality not only satisfies the fundamental
quest to verify the foundations of quantum mechanics, but it also leads to secure and
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optimal quantum information and communication protocols. Initially, the description
of quantum correlations for bipartite and multiqubit systems was mainly associated
to entanglement and nonlocality. However, with the advent of discord, one started
raising questions of usefulness of bipartite separable states as well for quantum infor-
mation processing [30–33]. Moreover, for multiqubit systems, the characterization
of nonlocality is much more complex due to the increased complexity of the sys-
tem [34–49]. For example, in case of three-qubit systems one needs to distinguish
between bi-separable versus genuine tripartite nonlocality, and within the class of
genuinely entangled three-qubit states, one needs a way to identify all the entangled
states exhibiting genuine quantum correlations [47–51]. In order to confirm the pres-
ence of genuine long-range quantum correlations between three and four qubits, one
can use the Svetlichny inequality whose violation is a signature of genuine three or
four-qubit correlations [34].

In general, entangled resources violating three- or four-qubit Bell-type inequalities
are considered to be useful resources for quantum information and computation. These
resources, however, suffer from decoherence under real experimental set-ups, and such
degradation of nonlocal correlations may lead to nonviolation of Bell-type inequali-
ties [52–61]- questioning their usefulness for quantum information and computation.
Moreover, Acin et al. [62] have shown that robustness of nonlocality against decoher-
ence, though relevant, is not a genuine measure of nonlocality. Contrary to the general
belief that the maximally entangled states would give rise to maximum nonlocality, it
was further analysed that nonmaximally entangled states may be more nonlocal than
the maximally entangled states for different nonlocality measures [62,63]. Clearly,
this anomaly suggests that entanglement and nonlocality can be treated as distinct
resources. This fact of non-coincidence of maximal nonlocality and entanglement has
received a great deal of attention [64–71]. On the other hand, considering the numer-
ical value of a Bell-type function as a witness rather than a quantifier of nonlocality,
Fonseca et al. [64] have analysed a measure of nonlocality and found no discrepancy
between states with maximal entangled and maximal nonlocality, at least for a pair of
entangled qutrits and for entangled systems comprising of two four-level subsystems.
More recently, Rosier et al. [71] have presented a numerical analysis based on linear
programming to analyse violations of local realism by different classes of multipartite
states, and shown that the probability of violation of local realism is a witness of gen-
uine multipartite entanglement. Furthermore, a lot of studies have also been devoted
to analyse nonlocality robustness in different multiqubit entangled classes [72–75].
For the analysis presented in this article, the distinction of nonlocality robustness as
against a genuine nonlocality quantifier is valid throughout the article.

Another important aspect of multiqubit entanglement and nonlocality is to pro-
tect entanglement and nonlocality from noise by defining mechanisms to optimize
entanglement and nonlocal correlations in the presence of noise. For this, several
decoherence models have been proposed and studied [76–86]. Recently, one of the
approaches to protect entanglement and nonlocality is developed in terms of weak
measurements, i.e., partial collapse measurement operators [87–94]. The basic con-
cept behind the working principle of weak measurement and its reversal lies in the
factual possibility of reversing any partial collapse measurement. The process of per-
forming weak measurements and its reversal on individual qubits has been found
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to be a very useful technique to protect and enhance correlations under noisy con-
dition [95–102]. Moreover, the strategies to use weak measurement and its reversal
operations have been experimentally demonstrated in many quantum systems [88–
91,103–105]. Hence, the analysis of robustness of nonlocal properties in multiqubit
systems under real conditions is very important to understand the complex nature of
multiqubit entanglement and nonlocality, and to identify the set of states relevant for
quantum information processing.

In this article, we readdress the question of three and four-qubit nonlocality robust-
ness under real experimental or noisy conditions. For this, we consider different classes
of three-qubit entangled systems which are shown to be useful for quantum informa-
tion and computation, e.g., Greenberger–Horne–Zeilinger (GHZ) and W class states
[106]. The analysis of robustness of nonlocal correlations in these systems under real
conditions allows us to establish an analytical relation between the maximum expecta-
tion value of the Svetlichny operator for a given system, noise parameter, and strengths
of weak measurement and its reversal operations. As an example of noisy channel,
we use the interaction between the principal system and the environment through an
amplitude damping channel. The analytical results obtained in this article are in com-
plete agreement with the numerical results as well. Interestingly, for generalized GHZ
class, our results indicate that for certain values of weak measurement strengths and
range of τ of the initially prepared state, the violation of Svetlichny inequality is more
if one starts with a nonmaximally entangled state instead of a maximally entangled
GHZ state, i.e., nonmaximally entangled states are more robust against noise in com-
parison with maximally entangled states. Apart from GHZ and W class of states, we
also characterize nonlocal properties in Wn type of states [107–109], considering its
importance in quantum information processing. In addition, we further study nonlo-
cality robustness in four-qubit GHZ class states by establishing an analytical relation
between the maximum expectation value of the four-qubit Svetlichny operator, noise
parameter and strengths of weak measurement and its reversal operations. We believe
that the results obtained in this article will be of significant importance since the states
considered here for the analysis of nonlocal correlations are experimentally accessible
[40,41,110–114].

2 Three-qubit GHZ andW states

Three-qubit states can be classified into two different inequivalent classes, i.e., GHZ
class and W class [106]. The states of both the classes are shown to be useful for
quantum information and computation. The degree of entanglement in the GHZ class
is quantified in terms of residual entanglement, i.e., three-tangle τ [115] given by

τ = C2
i( jk) − C2

i j − C2
ik (1)

where Ci j represents concurrence and quantifies the bipartite entanglement between
qubits i and j, and Ci( jk) quantifies the entanglement between qubit i and the joint
state of qubits j and k [116]. On the other hand, the three-tangle τ fails to capture the
genuine entanglement in W class states as the states in W class satisfy
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C2
i( jk) = C2

i j + C2
ik (2)

Alternately, one can use σ [117] or sum of concurrences of the three reduced bipartite
density operators obtained from a W class of state as an entanglement monotone
for W class states [106]. In this article, we use the following two GHZ class states,
generalized GHZ states

∣
∣�g

〉 = cos θ |000〉 + sin θ |111〉 (3)

and Slice states [118]

|�ms〉 = 1√
2
[|000〉 + |11〉 {cos θ3 |0〉 + sin θ3 |1〉}] (4)

Here, θ and θ3 are state parameters. The maximally entangled GHZ state for (θ =
π/4, θ3 = π/2), has been used for deterministic transfer of information in many
theoretical protocols [119–124]. On the similar lines, we consider to use two different
W class states as well, namely

|�W 〉 = x |001〉 + y |010〉 + z |100〉 (5)

where x , y, and z are real, and

∣
∣�Wn

〉 = 1√
2 + 2n

[

|100〉 + √
neiδ |010〉 + √

n + 1eiζ |001〉
]

(6)

where n is a positive integer and δ and ζ are relative phases. Unlike the maximally
entangled GHZ states, the standardW states cannot be used for deterministic informa-
tion transfer [124,125]. On the other hand,

∣
∣�Wn

〉

states [107] can be used as resources
for deterministic teleportation and dense coding. The price one needs to pay for the
deterministic information transfer using

∣
∣�Wn

〉

is in terms of joint three-qubit mea-
surements. The use of standard single-qubit and two-qubit measurements instead of
three-qubit joint measurements leads to significant reduction in the efficiency of

∣
∣�Wn

〉

states [108]. The special class ofW states has been subsequently generalized for a case
of N qubits [109]. Considering the importance of these states for quantum informa-
tion, it is imperative to characterize nonlocal properties in these states. Such study will
certainly provide an idea regarding the usefulness of these resources in real conditions.

3 Robustness of nonlocality in the generalized GHZ class under noisy
conditions

In order to characterize the genuine tripartite nonlocality, we use the Svetlichny
inequality (SI) [34], Sv , such that

Sv (ρ) ≡ |〈ψ | Sv |ψ〉| ≤ 4 (7)
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Fig. 1 A scenario to analyse the effect of decoherence on maximum expectation value of the Svetlichny
operator

where the Svetlichny operator Sv is given by

Sv = A
(

BC + BC′ + B′C − B′C′)

+A′ (BC − BC′ − B′C − B′C′) (8)

and measurements A = �a. �σ1, and A′ = �a′. �σ1 are performed on the first qubit. Here
�a, and �a′ are unit vector, and �σi ’s are spin projection operators. The measurements B
or B′, and C or C′ are defined in a similar fashion and are performed on qubits 2 and
3, respectively. The above inequality is satisfied by all the separable and bi-separable
states, and hence, the violation of Svetlichny inequality confirms the presence of
genuine tripartite nonlocality in the underlying system.

We now proceed to investigate the effect of decoherence on the violation of
Svetlichny inequality for three-qubit GHZ states by establishing an analytical relation
between the maximum expectation value of the Svetlichny operator, and noise param-
eter. For this, we consider a scenariowhereDave prepares a three-qubit pureGHZ state
∣
∣�g

〉 = cos θ |000〉 + sin θ |111〉 and sends one qubit each to Alice, Bob and Charlie
through amplitude damping channels (Fig. 1). For the mathematical convenience and
simplicity, we consider identical decoherence parameter for all the three channels.

3.1 Amplitude damping channel

The single-qubit amplitude damping channels can be described by the followingKraus
operators [126] ,
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E0 =
(

1 0
0

√
1 − γ

)

, E1 =
(

0
√

γ

0 0

)

(9)

where γ represents the magnitude of noise parameter. The three-qubit state of the
quantum system after an amplitude damping noise is given by

ργ =
∑

k,l,m

(Ek ⊗ El ⊗ Em) ρ
(

E†
k ⊗ E†

l ⊗ E†
m

)

(10)

where k, l,m = (0, 1).
Considering that the shared three-qubit state evolves as ρ

γ
g , the maximum expecta-

tion value for the Svetlichny operator defined in Eq. (8) can be obtained by defining

a = (sin θa cosφa, sin θa sin φa, cos θa)

b = (sin θb cosφb, sin θb sin φb, cos θb)

c = (sin θc cosφc, sin θc sin φc, cos θc) (11)

where a′, b′ and c′ can be defined in similar fashion with primes on required angles.
Moreover, the expression for Sv can be further simplified by defining a pair ofmutually
orthogonal unit vectors R = �r · �σ2 and R′ = �r ′ · �σ2 such that �b+ �b′ = 2 cosχ · �r , and
�b − �b′ = 2 sin χ · �r ′, which leads to

�r · �r ′ = cos θr cos θr ′ + sin θr sin θr ′ cos (φr − φr ′) = 0 (12)

Therefore, Eq. (8) can be re-expressed as

Sv = 2| 〈ARC〉 cosχ + 〈

AR′C ′〉 sin χ

+ 〈

A′R′C
〉

sin χ − 〈

A′RC ′〉 cosχ | (13)

Equation (13) when maximized with respect to χ gives

Sv ≤ 2|
√

〈ARC〉2 + 〈AR′C ′〉2

+
√

〈A′R′C〉2 + 〈A′RC ′〉2|
= M + M ′ (14)

where M and M ′ are Mermin’s operators [127] . Here, we have used the fact that

u cos θ1 + v sin θ1 ≤ (u2 + v2)
1
2 (15)

with the equality resulting when tan θ1 = v
u . For evaluating the maximum expectation

value of Sv(ρ
γ
g ), we first consider calculating 〈ARC〉 corresponding to the first term

in Eq. (14), such that
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〈ARC〉ργ
g

=
[(

cos2 θ + (2γ − 1)3 sin2 θ
)

cos θa cos θr cos θc

+ sin 2θ (1 − γ )
3
2 sin θa sin θr sin θc cos (φarc)

]

(16)

The expectation value 〈ARC〉ργ
g
can be maximized with respect to θc, i.e.,

〈ARC〉max =
[(

cos2 θ + (2γ − 1)3 sin2 θ
)2

cos2 θa cos
2 θr

+ sin2 2θ(1 − γ )3 sin2 θa sin
2 θr

] 1
2

(17)

where cos2(φarc) = cos2(φa + φr + φc) = 1. Similarly
〈

AR′C ′〉
max can be given as

〈

AR′C ′〉
max =

[(

cos2 θ + (2γ − 1)3 sin2 θ
)2

cos2 θa cos
2 θr ′

+ sin2 2θ(1 − γ )3 sin2 θa sin
2 θr ′

] 1
2

(18)

The maximum values of the operators
〈

A′R′C
〉

and
〈

A′RC ′〉 can also be defined in a
similar way with primes on required angles. Therefore, from Eq. (14), we have

Sv

(

ρ
γ
g
)

max ≤ 2

[(

cos2 θ + (2γ − 1)3 sin2 θ
)2

cos2 θa

(

cos2 θr

+ cos2 θr ′
)

+ sin2 2θ(1 − γ )3 sin2 θa

(

sin2 θr + sin2 θr ′
)] 1

2

+ 2

[(

cos2 θ + (2γ − 1)3 sin2 θ
)2

cos2 θa′
(

cos2 θr

+ cos2 θr ′
)

+ sin2 2θ(1 − γ )3 sin2 θa′
(

sin2 θr + sin2 θr ′
)] 1

2
(19)

In order to optimize the expectation value of the Svetlichny operator, we use the fact
that the maximum of cos2 θr + cos2 θr ′ is 1, while the maximum of sin2 θr + sin2 θr ′
is 2. Further, we know that

u cos2 θ1 + v sin2 θ1 ≤
{

u, u ≥ v

v, u ≤ v
(20)

where the first inequality is realized when θ1 = 0 or π and the second inequality is
realized when θ1 = π

2 , and hence Eq. (19) can be rewritten as

Sv

(

ρ
γ
g
)

opt ≤ 2
[(

cos2 θ + (2γ − 1)3 sin2 θ
)2

cos2 θa + 2 sin2 2θ(1 − γ )3 sin2 θa

] 1
2

+ 2
[(

cos2 θ + (2γ − 1)3 sin2 θ
)2

cos2 θa′ + 2 sin2 2θ(1 − γ )3 sin2 θa′
] 1

2
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Fig. 2 Maximum expectation value of Sv(ρ
γ
g )opt with respect to three-tangle (τ (ρg)) of the initial three-

qubit GHZ state and decoherence parameter γ

=
{

4
(

cos2 θ + (2γ − 1)3 sin2 θ
)

,
(

cos2 θ + (2γ − 1)3 sin2 θ
)2 ≥ 2 sin2 2θ(1 − γ )3

4
√

2(1 − γ )3 sin2 2θ,
(

cos2 θ + (2γ − 1)3 sin2 θ
)2 ≤ 2 sin2 2θ(1 − γ )3

(21)

In case there are no environmental interactions, i.e., Dave sends all the three qubits
through perfect channels such that γ = 0, then using τ(�g) = sin2 2θ , the maximum
expectation value of Svetlichny operator is

Sv

(

�g
)

opt ≤
{

4
√

1 − τ(�g), τ (�g) ≤ 1
3

4
√

2τ(�g), τ (�g) ≥ 1
3

(22)

The inequality expressed in Eq. (22) is same as the one given in [49] as it should be
for transmission through an ideal quantum channel. The analytical result obtained here
is in complete agreement with the numerical optimization of the Svetlichny operator
for the generalized GHZ state in the presence of amplitude damping channels.

Figure 2 clearly describes that the violation of Svetlichny inequality decreases
very fast even for small values of noise parameters. Moreover, it also depicts that
for noiseless channels and τ > 1

2 , finally shared state always violates the Svetlichny
inequality. The range of violation, however, decreases with increase in the value of
decoherence parameter, e.g, see Fig. 3. Further, in the legends of Fig. 3, A and N
stand for analytical and numerical results, respectively—these abbreviations are valid
for all subsequent figures in this article. We now move forward to analyse the effect
of weak measurement and quantum measurement reversal operations to reduce the
effect of decoherence on nonlocal correlations. For this, we start with a scenario
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Fig. 3 Plot of Sv(ρ
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g )opt with respect to three-tangle (τ (ρg)) of the initial three-qubit GHZ state for

four different values of decoherence parameter: *represents analytical result (A) and solid line represents
numerical optimization (N)

represented in Fig. 4 where Dave prepares a three-qubit pure generalized GHZ state
∣
∣�g

〉 = cos θ |000〉 + sin θ |111〉, and performs weak measurements on each qubit
before distributing the qubits through amplitude damping channels. After receiving the
qubits, Alice, Bob and Charlie perform reverse quantum weak measurements on their
respective qubits. Again for the mathematical convenience and simplicity, we assume
same weak measurement strengths for all the channels. The weak measurement �wk

and reverse weak measurement �wkr operations can be described as

�wk =
(

1 0
0

√
1 − η

)

, �wkr =
(√

1 − ηr 0
0 1

)

(23)

where η and ηr are the strengths ofweakmeasurement andweakmeasurement reversal
operations, respectively [89] . Theoptimalweakmeasurement reversal strength [87,88]
is defined by ηr = η + γ (1 − η). Assuming that the strength of weak measurement
reversal operation is optimal, the expectation value 〈ARC〉 with respect to the finally
shared state is given as

〈ARC〉ρwk
g

= 1

N

[ (

cos2 θ − (1 + γ (η − 1))3 sin2 θ
)

cos θa cos θr cos θc

+ sin 2θ cos (φa + φr + φc) sin θa sin θr sin θc

]

(24)
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Fig. 4 A scenario to analyse the effects of decoherence and weak measurement and its reversal operations
on the robustness of three-qubit nonlocal correlations

where N = (

cos2 θ + (1 + γ (1 − η))3 sin2 θ
)

. Similar to the discussion on amplitude
damping channel, one can show that the optimum expectation value of the Svetlichny
operator for the finally shared state (after implementing the protocol based on weak
measurements and quantum measurement reversal operations) is given as

Sv

(

ρwk
g

)

opt

=
⎧

⎨

⎩

4
N

(

cos2 θ − (1+γ (η−1))3 sin2 θ
)

,
(

cos2 θ− (1+γ (η − 1))3 sin2 θ
)2≥2 sin2 2θ

4
N

√
2 sin2 2θ,

(

cos2 θ − (1+γ (η−1))3 sin2 θ
)2≤2 sin2 2θ

(25)

For η = 1, the expression in Eq. (25) will again be the same as for a pure three-
qubit GHZ state [49]. From Figs. 2 and 3, in the absence of weak measurement, the
Svetlichny inequality will not be violated for γ ≥ 0.3 even if the initial shared state is
a maximally entangled GHZ state. The effect of weak measurement strengths on the
maximumexpectation value of Svetlichny operator for a decoherence value of γ = 0.5
is depicted in Figs. 5 and 6. Clearly, for a given decoherence parameter the violation
of Svetlichny inequality increases with the increase in weak measurement strength,
i.e., robustness of nonlocal correlations against noise increases with the increase in
weak measurement strength. Interestingly, Fig. 6 shows that for certain values of
weak measurement strengths (except η = 1) and range of τ of the initially prepared
state, the violation of Svetlichny inequality is more if one starts with nonmaximally
entangled pure states instead of a maximally entangle GHZ state, suggesting that
nonmaximally entangled states are more robust against the noise in comparison to
maximally entangled states under the application ofweakmeasurements. For example,
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Fig. 5 Maximum expectation value of Sv(ρwk
g )opt versus three-tangle (τ (ρg)) of the initial three-qubit

GHZ state and weak measurement strength parameter η, considering γ = 0.5

if the value of weak measurement parameter is 0.7 then the maximal nonlocality
does not coincide with maximum entanglement, further confirming the existence of
nonlocality anomalies in multiqubit entangled states.

For a maximally entangled initial GHZ state, Fig. 7 describes the effects of noise
parameter and weak measurement strength on the maximum expectation value of
Svetlichny operator. Clearly, the use of weakmeasurement and quantummeasurement
reversal operations is a win–win situation for increasing the robustness of tripartite
nonlocality against noise.

4 Analysing the robustness of nonlocality in the generalized GHZ
class

In the previous section, we discussed nonlocality robustness in the generalized GHZ
class states under noisy conditions. Here, we analyse the effects of amplitude damping
and weak measurement strength on the following class of states,

∣
∣�gs

〉 = cos θ |000〉 + sin θ |11〉 [cos θ3 |0〉 + sin θ3 |1〉] (26)

where θ and θ3 are state parameters. For θ3 = π/2 and θ = π/4, the set of states in
Eq. (26) correspond to the set of states in Eqs. (3) and (4), respectively. In this case,
we assume that Charlie prepares a three-qubit state as defined in Eq. (26) and sends
qubit 1 to Alice and qubit 2 to Bob. Before distributing the qubits through amplitude
damping channels, Charlie performs weak measurements on qubits 1 and 2. Similarly,
Alice and Bob also perform reverse quantum measurements on their respective qubits
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as a function of noise parameter γ , for a maximally entangled input state
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once they receive it from Charlie. In order to find the maximum expectation value
of the Svetlichny operator in the evolved three-qubit mixed state ρwk

gs , the first term〈ARC〉 in Eq. (14) can be expressed as

〈ARC〉ρwk
gs

= 1

N ′ [(α cos θc + β cosφc sin θc) cos θa cos θr

+ sin 2θ (cos θ3 cos θc cosφar

+ sin θ3 cosφarc sin θc) sin θa sin θr ] (27)

where N ′ = [(

cos2 θ + (1 + γ (1 − η))2 sin2 θ
)]

, α = [

cos2 θ + (1 + γ (η − 1))2

sin2 θ cos 2θ3
]

, β = [

(1 + γ (η − 1))2 sin2 θ sin 2θ3
]

, cosφarc = cos (φa + φr + φc)

and cosφar = cos (φa + φr ). Equation (27) can be further maximized using Eq. (12)
with respect to (φr − φr ′) by considering θr ′ , φr , and (φr − φr ′) to be independent
variables. Thus, one can easily deduce that (φr −φr ′) = 0 and θr = π

2 . The sequential
optimization of the Mermin operator in Eq. (14) is summarized below as [128]

M
(

ρwk
gs

)

= 2
√

〈ARC〉2 + 〈AR′C ′〉2

≤ 2

N ′
[

sin2 θa sin
2 2θ

{

(cos θ3 cosφar cos θc + sin θ3 cosφarc sin θc)
2

+ (cos θ3 sin φar cos θc′ + sin θ3 sin φarc′ sin θc′)2
}

+ cos2 θa (α cos θc′ + β cosφc′ sin θc′)2
] 1
2

(28)

≤

⎧

⎪⎨

⎪⎩

2
N ′ sin 2θ

[

(cos θ3 cosφar cos θc + sin θ3 cosφarc sin θc)
2

+ (cos θ3 sin φar cos θc′ + sin θ3 sin φarc′ sin θc′)2
] 1
2

2
N ′ (α cos θc′ + β cosφc′ sin θc′)

(29)

≤

⎧

⎪⎪⎨

⎪⎪⎩

2
N ′ sin 2θ

[(

cos2 θ3 cos2 φar + sin2 θ3 cos2 φarc
)

+ (

cos2 θ3 sin2 φar + sin2 θ3 sin2 φarc′
)] 1

2

2
N ′

(

α2 + β2 cos2 φc′
) 1
2

(30)

≤

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

2
N ′ sin 2θ

√

1 + sin2 θ3
2
N ′

√

α2 + β2 = 2
N ′

[ (

cos2 θ + (1 + γ (η − 1))2 sin2 θ
)2

− (1 + γ (η − 1))2 sin2 2θ sin2 θ3

] 1
2

(31)

where we have used inequalities (15) and (20). In the above equations, the maxi-
mization is performed with respect to θr ′ in Eq. (28), θa in Eq. (29), and θc and
θc′ in Eq. (30). Furthermore, in Eq. (31) we assumed that φar = 0, φarc = 0, and
φarc′ = π

2 . Similarly, the optimized value for the operator M ′ turns out to be the
same as in Eq. (31) by considering A → A′ and C → C ′. Moreover, three-tangle
and residual concurrence for the states

∣
∣�gs

〉

are given by τ
(∣
∣�gs

〉) = sin2 2θ sin2 θ3
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Fig. 8 Maximum expectation value of Sv(ρwk
gs )opt with respect to three-tangle (τ (ρgs )) of the initial state

given in Eq. (26) for different weak measurement strengths, considering γ = 0.5, for two different values
of θ3 = ( π

4 , π
2 )

and C2
12

(∣
∣�gs

〉) = sin2 2θ cos2 θ3, respectively. Therefore, using these expressions
for three-tangle and residual concurrence of the input state, the optimum value of
Svetlichny operator can be expressed as

Sv

(

ρwk
gs

)

opt
≤

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

4
N ′ sin 2θ

√

1 + sin2 θ3
4
N ′

[ (

cos2 θ + (1 + γ (η − 1))2 sin2 θ
)2

− (1 + γ (η − 1))2 sin2 2θ sin2 θ3

] 1
2

(32)

≤

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4
N ′

√

2τ + C2
12,

[

2 + (1 + γ (η − 1))2
]

τ + C2
12 ≥ [

cos2 θ + (1 + γ (η − 1))2 sin2 θ
]2

4
N ′

[(

cos2 θ + (1 + γ (η − 1))2 sin2 θ
)2 − (1 + γ (η − 1))2 τ

] 1
2

,
[

2 + (1 + γ (η − 1))2
]

τ + C2
12 ≤ [

cos2 θ + (1 + γ (η − 1))2 sin2 θ
]2

(33)

Clearly, for perfect channels, i.e., for γ = 0, the maximum expectation value of
Svetlichny operator is same as given in [128]. Similarly, for strong weak measurement
strength, i.e., η = 1, the effect of decoherence fully vanishes and the optimum value
of Svetlichny operator is again the same as given in [128].

Figure 8 shows the relationship between Sv

(

ρwk
gs

)

opt
and three-tangle (τ ) of the

input state, for different values of weak measurement strength considering noise
parameter γ = 0.5, for two different sets of GHZ states, i.e., for θ3 = π

2 , and θ3 = π
4 .
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Fig. 9 Plot of Sv(ρwk
gs )opt with respect to three-tangle (τ (ρgs )) of the initial state given in Eq. (26) for

different weak measurement strengths, considering γ = 0.5 and θ = π
4

Similar to Fig. 6, one can clearly observe nonlocality anomalies for η = 0.7, consider-

ing θ3 = π
2 , and θ3 = π

4 .Moreover inFig. 9,we show the relation between Sv

(

ρwk
gs

)

opt
and three-tangle (τ ) of the initial input state, i.e.,MS state (θ = π

4 ), for different values
of weak measurement strength considering noise parameter γ = 0.5. Evidently, for
η = 1 the effect of decoherence is fully suppressed as the finally shared state always
violates the Svetlichny inequality; and for lower value of weak measurement strength,
finally shared state still violates the Svetlichny inequality for a considerable range of
three-tangle of initial input state. Surprisingly for MS states, our analysis does not
find any discrepancy between maximally entangled and maximally nonlocal states.
The results obtained in this section further confirm the importance of weak measure-
ments for improving three-qubit nonlocality robustness in the generalized GHZ class
in the presence of noise.

5 Analysis of robustness of nonlocal correlations in theW class and
Wn-type states

We now proceed to analyse another important class of three-qubit states, i.e., W states
as represented in Eq. (5). Ajoy and Rungta [128] have shown that the Svetlichny
inequality is more suitable to identify the tripartite nonlocality in W class of states—
the inequality, though, is violated only when the sum of concurrences of three bipartite
reduced states exceeds a certain threshold.
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In order to analyse nonlocality robustness ofW class of states in a similar communi-
cation scenario as described in the previous section, we first calculate the expectation
value of the first term, i.e., 〈ABC〉 in Eq. (8) in the evolved three-qubit state ρwk

W such
that

〈ABC〉ρwk
W

= cos θb (C31 sin θa sin θc cosφac − � cos θa cos θc)

+ sin θb (C12 cos θa sin θc cosφbc + C23 sin θa cos θc cosφab)

(34)

where � = (x2+(1+γ (η−1))(y2+z2))
(x2+(1+γ (1−η))(y2+z2))

, cosφab = cos(φa − φb), C12 =
2xy

(x2+(1+γ (1−η))(y2+z2))
,C23= 2yz

(x2+(1+γ (1−η))(y2+z2))
, andC31= 2xz

(x2+(1+γ (1−η))(y2+z2))
.

The details of further calculation for maximizing the expectation value of Svetlichny
operator are given in “Appendix A”. Therefore, the optimum expectation value of
Svetlichny operator for W class of states, as represented in Eq. (A.3), can be give as

Sv

(

ρwk
W

)

opt
≡ 4 (s1� + s2C12 + s3C23 + s4C31) (35)

Following Eq. (35), the finally shared tripartite entangled states will violate the
Svetlichny inequality iff (s1� + s2C12 + s3C23 + s4C31) > 1. Clearly, for weakmea-
surement strength η = 1, the effect of decoherence fully vanishes, and a general
tripartite entangled W state violates the SI when

(

s1 + s2C ′
12 + s3C ′

23 + s4C ′
31

)

> 1,
where C ′

12 = 2xy, C ′
23 = 2yz, and C ′

31 = 2xz are the concurrences of the three
reduced states of input state |�W 〉. Moreover, the optimum value of Svetlichny oper-
ator is 4.354 and occurs when η = 1, C ′

12 = C ′
23 = C ′

31 = 2/3, and θ ′
a = θ ′

b =
θ ′
c = 54.736◦. The violation of Svetlichny operator with respect to the varying sum
of the concurrences of the three reduced states of ρwk

W is depicted in Fig. 10. Here,
we have used sum of concurrences of three bipartite reduced states as a quantifier for
three-qubit entanglement with a condition that min

(

C2
12,C

2
13,C

2
23

)

> 0, which is the
condition for W class entanglement to be nonzero [106].

Furthermore, Pati and Agrawal [107] have shown that there is a special class of W
states, Eq. (6), which can be used for deterministic teleportation and dense coding.
Considering the importance of such a class in quantum information and computation,
we characterize the nonlocal properties of these states under noisy conditions. For this,
we consider the set of states given in Eq. (6) and assume the phase vectors δ and ζ to
be 0 for mathematical convenience. The first term 〈ABC〉 in Eq. (8) for the evolved
three-qubit state ρwk

Wn
can be represented as

〈ABC〉ρwk
Wn

= cos θb
(

C ′′
31 sin θa sin θc cosφac − �′ cos θa cos θc

)

+ sin θb
(

C ′′
12 cos θa sin θc cosφbc + C ′′

23 sin θa cos θc cosφab
)

(36)

where �′ = (2+γ (η−1))
(2−γ (η−1)) , cosφab = cos(φa − φb), and C ′′

12 = 2
√
n√

n+1(2−γ (η−1))
, C ′′

23 =
2
√
n

(n+1)(2−γ (η−1)) , and C ′′
31 = 2√

n+1(2−γ (η−1))
are the concurrences of three reduced
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Fig. 10 A plot Sv

(

ρwk
W

)

opt
with respect to the varying sum of concurrences (C12 + C23 + C31), for

different weak measurement strengths, considering γ = 0.1 and C12 = 2
3

states corresponding to finally shared state ρwk
Wn

. The optimized value of the Svetlichny

operator for the state ρwk
Wn

can be calculated in a similar fashion as in the case of ρwk
W ,

and can be given as

Sv

(

ρwk
Wn

)

opt
= 4

(

s1�
′ + s2C

′′
12 + s3C

′′
23 + s4C

′′
31

)

(37)

The violation of Svetlichny inequality for Wn class states is confirmed, when
(

s1�′ + s2C ′′
12 + s3C ′′

23 + s4C ′′
31

)

> 1. Figures 11 and 12 describe the effects of weak
measurement strength η on the robustness of nonlocality, against the noise parameter
γ = 0.1, in term of optimum expectation value of the Svetlichny operator with respect
to the varying sum of the concurrences of the three reduced states of ρwk

Wn
, and the state

parameter n for Wn states, respectively.

6 Nonlocality robustness in four-qubit GHZ class of states

The Svetlichny inequality for a four-qubit system can be expressed as

S′
v (ρ) ≡ ∣

∣〈ψ | S′
v |ψ〉∣∣ ≤ 8 (38)
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where the Svetlichny operator S′
v is given by

S′
v = (AB − A′B ′)K + (AB ′ + A′B)K ′ (39)

where K = C(D − D′) − C ′(D + D′), K ′ = C ′(D′ − D) − C(D + D′), and
measurement operators (A, B,C, D etc.) are defined in a similar fashion as for three-
qubit systems. The violation of Svetlichny inequality in Eq. (38) confirms the presence
of nonlocal correlations in the underlying state. In this section,we analyse the effects of
decoherence and weak measurements on robustness of nonlocality of the generalized
four-qubit GHZ states, i.e.,

|�G〉 = cos θ |0000〉 + sin θ |1111〉 (40)

For this, we again establish an analytical relation between the optimum expectation
value of the four-qubit Svetlichny operator for finally shared state with four-qubit
entanglement measure of the initial state |�G〉, noise parameter and the weak mea-
surement strengths.

In order to analyse the effect of decoherence and weak measurements, we consider
a scenario where Alice prepares a four-qubit pure GHZ state |�G〉, performs weak
measurements on qubits 2, 3 and 4 and then sends second qubit to Bob, third to Charlie
and fourth to Dave through amplitude damping channels. Similarly, after receiving
the qubits, Bob, Charlie and Dave perform reverse quantum measurements on their
respective qubits. For simplicity, we consider identical decoherence parameters and
identical weakmeasurement strengths for every channel. Here, the amplitude damping
channel and weak measurements can be defined by Eqs. (9) and (23), respectively.
Therefore, the expectation value 〈ABCD〉 in Eq. (39) with respect to the finally shared
state ρwk

G is

〈ABCD〉ρwk
G

= 1

N ′′ [κ cos θa cos θb cos θc cos θd

+ sin 2θ cosφabcd sin θa sin θb sin θc sin θd ] (41)

where κ = (

cos2 θ + (1 + γ (η − 1))3 sin2 θ
)

, N ′′ = (

cos2 θ + (1 + γ (1 − η))3

sin2 θ
)

and φabcd = (φa + φb + φc + φd). Similarly, one can evaluate other terms in
Eq. (39), and rearrange it as a sum of two terms so that

S′
v

(

ρwk
G

)

= 1

N ′′ |κ · t1 + sin 2θ · t2| (42)

Here, t1 and t2 are defined as

t1 = cos θa cos θbGQ + cos θa cos θb′GQ′

+ cos θa′ cos θbGQ′ − cos θa′ cos θb′GQ (43)

t2 = sin θa sin θb fab + sin θa sin θb′ fab′

+ sin θa′ sin θb fa′b − sin θa′ sin θb′ fa′b′ (44)
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where

GQ = cos θc(cos θd − cos θd ′) − cos θc′(cos θd + cos θd ′) (45)

GQ′ = cos θc′(cos θd ′ − cos θd) − cos θc(cos θd + cos θd ′) (46)

and

fab = sin θc(sin θd cosφabcd − sin θd ′ cosφabcd ′)

− sin θc′(sin θd cosφabc′d + sin θd ′ cosφabc′d ′) (47)

fab′ = sin θc′(sin θd ′ cosφab′c′d ′ − sin θd cosφab′c′d)

− sin θc(sin θd cosφab′cd + sin θd ′ cosφab′cd ′) (48)

fa′b = sin θc′(sin θd ′ cosφa′bc′d ′ − sin θd cosφa′bc′d)

− sin θc(sin θd cosφa′bcd + sin θd ′ cosφa′bcd ′) (49)

fa′b′ = sin θc(sin θd cosφa′b′cd − sin θd ′ cosφa′b′cd ′)

− sin θc′(sin θd cosφa′b′c′d + sin θd ′ cosφa′b′c′d ′) (50)

In “Appendix B”, we provide a detailed calculation to evaluate a relationship between
t1 and t2, such that (Eq. B.25),

|t2| ≤ 8
√
2 − 2

√
2|t1| (51)

Using Eq. (51), the optimum value of Svetlichny operator in Eq. (42) can now be given
as

S′
v

(

ρwk
G

)

opt
≤ 1

N ′′
[

8
√
2 sin 2θ + (κ − 2

√
2 sin 2θ)|t1|

]

(52)

Clearly, for states lying in the range

(κ − 2
√
2 sin 2θ) ≥ 0, (53)

the bound of Svetlichny operator in Eq. (52) ismaximizedwhen t1 attains itsmaximum
value of 4, and hence, the corresponding value of |t2| = 0. Therefore, the expression
for the maximum expectation value of Svetlichny operator for the states in range given
by Eq. (52) is

S′
v

(

ρwk
G

)

opt
= 4κ

N ′′ (54)

Similarly, for the states lying in the range

(κ − 2
√
2 sin 2θ) ≤ 0 (55)
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the bound of Svetlichny operator is maximized when |t1| = 0, and |t2| is 8
√
2. There-

fore, the expression for maximum expectation value of Svetlichny operator for the
states in range given by Eq. (55) is

S′
v

(

ρwk
G

)

opt
= 1

N ′′
[

8
√
2 sin 2θ

]

(56)

Hence, the optimum expectation value of the Svetlichny operator for the finally shared
state is now given by

S′
v

(

ρwk
G

)

opt
≤

{
4κ
N ′′ , 2

√
2 sin 2θ ≤ κ

8
N ′′

√
2 sin2 2θ, 2

√
2 sin 2θ ≥ κ

(57)

Equation (57) canbe re-expressed in formof the four-qubit entanglement of the initially
shared generalized GHZ state, given by τ4 = sin2 2θ , such that

S′
v

(

ρwk
G

)

opt
≤

{
4κ
N ′′ , τ4 ≤ κ

8
8
N ′′

√
2τ4, τ4 ≥ κ

8

(58)

For perfect channels, i.e., with no noise or amplitude damping (γ = 0), one can deduce
that the maximum expectation value of Svetlichny operator is

S′
v

(

ρwk
G

)

≤
{

4, τ4 ≤ 1
8

8
√
2τ4, τ4 ≥ 1

8

(59)

which is the same as in [39]. Similarly, the effect of amplitude damping channel
completely vanishes when η = 1, i.e., the finally shared state becomes a pure four-
qubit state. Therefore, the expression for optimized expectation value of Svetlichny
operator will be the same as in Eq. (59).

In the absence of weak measurement and its reversal operations, i.e., if the system
is only subjected to amplitude damping noise then the expectation value of 〈ABCD〉
(Eq. 39) with respect to the finally shared state ρ

γ

G can be given as

〈ABCD〉ργ
G

= [

κ ′ cos θa cos θb cos θc cos θd

+ (1 − γ )3/2 sin 2θ cosφabcd sin θa sin θb sin θc sin θd

]

(60)

where κ ′ = (

cos2 θ + (1 − 2γ )3 sin2 θ
)

, and φabcd = (φa +φb+φc+φd). Therefore,
the optimum expectation value of the Svetlichny operator for the finally shared state
in this scenario can be evaluated as
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Fig. 13 A plot of S′
v(ρ
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G )opt with respect to four-qubit entanglement measure (τ4) of the initial four-qubit

GHZ state considering four different values of decoherence parameter γ
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Fig. 14 Effect of weak measurement on S′
v(ρwk

G )opt with respect to four-qubit entanglement measure (τ4)

of the initial four-qubit GHZ state, considering γ = 0.5
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Fig. 15 Effect of weak measurement on the maximum expectation value of the four-qubit Svetlichny
operator as a function of noise parameter γ , for a maximally entangled input state

S′
v

(

ρ
γ

G

)

opt =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4
(

cos2 θ + (1 − 2γ )3 sin2 θ
)

(

2 (1 − γ )3/2
√
2 sin 2θ

)

≤ κ ′

8
√

2 (1 − γ )3 sin2 2θ,
(

2 (1 − γ )3/2
√
2 sin 2θ

)

≥ κ ′

(61)

Based on our results, in Fig. 13, we demonstrate the effect of noise parameter γ on the
expectation value of the Svetlichny operator against the entanglement of the initially
shared four-qubit GGHZ state. Similarly, Fig. 14 demonstrates the effect of weak
measurement strength η on the expectation value of the Svetlichny operator against
the entanglement of the initially shared four-qubit GGHZ state, considering noise
parameter γ = 0.5. Similar to the case of three-qubit GHZ states, our analysis suggests
that for four-qubit GHZ states aswell, performingweakmeasurements on all the qubits
strengthens the robustness of nonlocal correlations against noise in the finally shared
state.Moreover, for certain ranges of τ4 andη, nonlocality anomalies are also observed,
i.e., nonmaximally entangled four-qubit initial states are found to be more robust
against noise in comparison with a maximally entangled four-qubit GHZ state. For
example, the lower curve corresponding to η = 0.7 in Fig. 14 indicates that maximum
entanglement andmaximal nonlocality do not coincide. The analytical results obtained
here completely agree with the numerical results obtained for analysing nonlocality
robustness using violation of the four-qubit Svetlichny inequality. For a maximally
entangled initial state, Fig. 15 describes the effects of noise parameter γ and weak
measurement strength η on themaximum expectation value of the Svetlichny operator.
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7 Conclusion

In summary, we have analysed the effects of decoherence using an amplitude damping
channel and weak measurement and its reversal operations on robustness of three and
four-qubit nonlocality. We found that for three- and four-qubit GHZ class states, the
maximal nonlocality does not coincide with the maximum entanglement for a given
range of weak measurement strength under noisy conditions leading to nonlocality
anomalies. However, for three-qubit MS states, our analysis did not reveal any dis-
crepancy between maximum entanglement and maximal nonlocality. Our analysis for
generalized three and four-qubit GHZ states, three-qubit W class and Wn states fur-
ther allowed us to characterize the multiqubit nonlocal correlations in terms of noise
parameters and strengths of weak measurements. The results obtained here clearly
suggest that effects of amplitude damping on multiqubit nonlocality robustness can
be reduced or completely removed depending on the strengths of weak measurement
and its reversal operations. We have further shown that the analytical results obtained
in all the cases are in excellent agreement with the numerical results. In future, it will
be interesting to investigate the usefulness of finally shared three-qubit and four-qubit
mixed states for quantum information and computation.
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Appendix

A Maximization of the expectation value of the three-qubit Svetlichny operator
forW states

For maximizing the value of Svetlichny operator in Eq. (34) described in Sec. V, we
assume φi = 0 [128], and then add the first four terms in Eq. (8) to get

〈M〉 = 1

4
[(−� − C12 − C23 − C31) {cos (θa + θb + θc′)

+ cos (θa′ + θb + θc) + cos (θa + θb′ + θc) − cos (θa′ + θb′ + θc′)}
+ (−� + C12 − C23 + C31) {cos (θa + θb − θc′)

+ cos (θa′ + θb − θc) + cos (θa + θb′ − θc) − cos (θa′ + θb′ − θc′)}
+ (−� + C12 + C23 − C31) {cos (θa − θb + θc′)

+ cos (θa′ − θb + θc) + cos (θa − θb′ + θc) − cos (θa′ − θb′ + θc′)}
+ (−� − C12 + C23 + C31) {cos (θa − θb − θc′)

+ cos (θa′ − θb − θc) + cos (θa − θb′ − θc) − cos (θa′ − θb′ − θc′)}]
(A.1)

The expression forM ′ can bewritten in a similar fashion. For simplicity andmathemat-
ical convenience, let us define� = (

θ ′
a + θ ′

b + θ ′
c

)

,�k = �−2θ ′
k , θ̃k = (θk +θk′)/2,

and θ ′
k = (θk′ − θk)/2 where kε {a, b, c} such that
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Sv

(

ρwk
W

)

opt
= 1

2
[(−� − C12 − C23 − C31)

× sin
(

θ̃a + θ̃b + θ̃c

) {

K − 2 sin
(

θ ′
a − θ ′

b − θ ′
c

)}

+ (−� + C12 − C23 + C31)

× sin
(

θ̃a + θ̃b − θ̃c

) {

K − 2 sin
(

θ ′
a − θ ′

b + θ ′
c

)}

+ (−� + C12 + C23 − C31)

× sin
(

θ̃a − θ̃b + θ̃c

) {

K − 2 sin
(

θ ′
a + θ ′

b − θ ′
c

)}

+ (−� − C12 + C23 + C31)

× sin
(

θ̃a − θ̃b − θ̃c

) {

K − 2 sin
(

θ ′
a + θ ′

b + θ ′
c

)}]

= � {sin�a + sin�b + sin�c − sin�}
+C12 {sin� − sin�a + sin�b + sin�c}
+C23 {sin� + sin�a + sin�b − sin�c}
+C31 {sin� + sin�a − sin�b + sin�c} (A.2)

≡ 4 (s1� + s2C12 + s3C23 + s4C31) (A.3)

where

K = {

sin
(

θ ′
a + θ ′

b + θ ′
c

) + sin
(

θ ′
a − θ ′

b + θ ′
c

)

+ sin
(

θ ′
a + θ ′

b − θ ′
c

)

sin
(

θ ′
a − θ ′

b − θ ′
c

)}

(A.4)

and the equality in Eq. (A.2) can be achieved by considering θ̃a = θ̃b = θ̃c = π/2.

B Derivation for the relationship between t1 and t2

For evaluating the relationship between t1 and t2, we further consider two unit vectors
p and p′ where �b + �b′ = 2 �p cos θ1 and �b − �b′ = 2 �p′ sin θ1 such that

�p. �p′ = cos θp cos θp′ + sin θp sin θp′ cos(φp − φp′) = 0 (B.1)

Therefore, t1 and t2 can be re-expressed as

|t1| = |lap′cd sin θ1 − lapcd ′ cos θ1 − lapc′d cos θ1

− lap′c′d ′ sin θ1 + la′ pc′d ′ cos θ1

− la′ p′c′d sin θ1 − la′ pcd cos θ1 − la′ p′cd ′ sin θ1| (B.2)

and

|t2| = |sap′cd sin θ1 − sapcd ′ cos θ1 − sapc′d cos θ1

− sap′c′d ′ sin θ1 + sa′ pc′d ′ cos θ1

− sa′ p′c′d sin θ1 − sa′ pcd cos θ1 − sa′ p′cd ′ sin θ1| (B.3)
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where

lap′cd = 2 cos θa cos θp′ cos θc cos θd (B.4)

sap′cd = 2 sin θa sin θp′ sin θc sin θd cosφap′cd (B.5)

The other coefficients lapcd ′ , sapcd ′ etc. can be defined in a similar fashion with prime
on different angles. In order to simplify and optimize the expressions further, we
assume θc = θc′ , and define two unit vectors q and q ′ such that �d + �d ′ = 2�q cos θ2
and �d − �d ′ = 2 �q ′ sin θ2, i.e.,

�q · �q ′ = cos θq cos θq ′ + sin θq sin θq ′ cos(φq − φq ′) = 0 (B.6)

This allows us to re-express Eqs. (B.2) and (B.3) as

|t1| = |l ′ap′cq ′ sin θ1 sin θ2 − l ′apcq cos θ1 cos θ2

− l ′a′ pcq ′ cos θ1 sin θ2 − l ′a′ p′cq sin θ1 cos θ2| (B.7)

and

|t2| = |s′
ap′cq ′ sin θ1 sin θ2 − s′

apcq cos θ1 cos θ2

− s′
a′ pcq ′ cos θ1 sin θ2 − s′

a′ p′cq sin θ1 cos θ2| (B.8)

where

l ′apcq = 4 cos θa cos θp cos θc cos θq (B.9)

s′
apcq = 4 sin θa sin θp sin θc sin θq cosφapcq (B.10)

From Eqs. (B.7) and (B.8), one can get

|t1| ≤ |l ′ap′cq ′ || sin θ1|| sin θ2| + |l ′apcq || cos θ1|| cos θ2|
+ |l ′a′ pcq ′ || cos θ1|| sin θ2| + |l ′a′ p′cq || sin θ1|| cos θ2| (B.11)

|t2| ≤ |s′
ap′cq ′ || sin θ1|| sin θ2| + |s′

apcq || cos θ1|| cos θ2|
+ |s′

a′ pcq ′ || cos θ1|| sin θ2| + |s′
a′ p′cq || sin θ1|| cos θ2| (B.12)

Using these inequalities, the iterative maximization of Eq. (39) can be summarized
below as

2
√
2κ|t1| + |t2| ≤

[{

(2
√
2κ|l ′apcq | + |s′

apcq |)| cos θ1|
+ (2

√
2κ|l ′a′ p′cq | + |s′

a′ p′cq |)| sin θ1|
}

| cos θ2|
+

{

(2
√
2κ|l ′a′ pcq ′ | + |s′

a′ pcq ′ |)| cos θ1|
+ (2

√
2κ|l ′ap′cq ′ | + |s′

ap′cq ′ |)| sin θ1|
}

| sin θ2|
]

(B.13)
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2
√
2κ|t1| + |t2| ≤

[{

(2
√
2κ|l ′apcq | + |s′

apcq |)| cos θ1|

+ (2
√
2κ|l ′a′ p′cq | + |s′

a′ p′cq |)| sin θ1|
}2

+
{

(2
√
2κ|l ′a′ pcq ′ | + |s′

a′ pcq ′ |)| cos θ1|

+ (2
√
2κ|l ′ap′cq ′ | + |s′

ap′cq ′ |)| sin θ1|
}2

] 1
2

(B.14)

2
√
2κ|t1| + |t2| ≤

[

(2
√
2κ|l ′apcq | + |s′

apcq |)2 + (2
√
2κ|l ′a′ p′cq | + |s′

a′ p′cq |)2

+ (2
√
2κ|l ′a′ pcq ′ | + |s′

a′ pcq ′ |)2 + (2
√
2κ|l ′ap′cq ′ |

+ |s′
ap′cq ′ |)2

] 1
2

(B.15)

where Eq. (B.13) is maximized with respect to θ2, and the first and second terms in
Eq. (B.14) are maximized separately with respect to θ1. To simplify and optimize
Eq. (B.15), we use Eqs. (B.9) and (B.10), such that

(2
√
2κ|l ′apcq | + |s′

apcq |) = 8
√
2κ| cos θa cos θp cos θc cos θq |

+ 4| sin θa sin θp sin θc sin θq cosφapcq | (B.16)

Equation (B.16)whenmaximizedwith respect to θa , wherewe have used the inequality
(15), gives

(2
√
2κ|l ′apcq | + |s′

apcq |) ≤ 4
[

8κ2 cos2 θc cos
2 θp cos

2 θq

+ sin2 θc sin
2 θp sin

2 θq cos
2 φapcq

] 1
2

(B.17)

Similarly, the other terms in Eq. (B-15) can be evaluated as

(2
√
2κ|l ′ap′cq ′ | + |s′

ap′cq ′ |) ≤ 4
[

8κ2 cos2 θc cos
2 θp′ cos2 θq ′

+ sin2 θc sin
2 θp′ sin2 θq ′ cos2 φap′cq ′

] 1
2
(B.18)

(2
√
2κ|l ′a′ p′cq | + |s′

a′ p′cq |) ≤ 4
[

8κ2 cos2 θc cos
2 θp′ cos2 θq

+ sin2 θc sin
2 θp′ sin2 θq cos

2 φa′ p′cq
] 1
2

(B.19)

(2
√
2κ|l ′a′ pcq ′ | + |s′

a′ pcq ′ |) ≤ 4
[

8κ2 cos2 θc cos
2 θp cos

2 θq ′

+ sin2 θc sin
2 θp sin

2 θq ′ cos2 φa′ pcq ′
] 1
2

(B.20)

where, for optimization, we consider cos2 φapcq = cos2 φap′cq ′ = cos2 φa′ p′cq =
cos2 φa′ pcq ′ = 1. Therefore, using Eqs. (B.17–B.20), Eq. (B.15) can be re-expressed
as
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2
√
2κ|t2| + |t1| ≤ 4

[

8κ2 cos2 θc cos
2 θq(cos

2 θp + cos2 θp′)

+ sin2 θc sin
2 θq(sin

2 θp + sin2 θp′)

+ 8κ2 cos2 θc cos
2 θq ′(cos2 θp + cos2 θp′)

+ sin2 θc sin
2 θq ′(sin2 θp + sin2 θp′)

] 1
2

(B.21)

Considering the orthogonality of unit vectors �p and �p′, the maximum value of
(sin2 θp + sin2 θp′) is 2 and maximum value of (cos2 θp + cos2 θp′) is 1, i.e.,

2
√
2κ|t1| + |t2| ≤ 4

[

8κ2 cos2 θc(cos
2 θq + cos2 θq ′)

+ 2 sin2 θc(sin
2 θq + sin2 θq ′)

] 1
2

(B.22)

Similarly from the orthogonality of unit vectors �q and �q ′, Eq. (B.22) can be further
optimized as

2
√
2κ|t1| + |t2| ≤ 4

[

8κ2 cos2 θc + 4 sin2 θc

] 1
2

(B.23)

A further maximization on the parameter κ gives

2
√
2|t1| + |t2| ≤ 8

[

1 + cos2 θc

] 1
2 ≤ 8

√
2 (B.24)

Therefore, the relationship between t1 and t2 can be defined as

|t2| ≤ 8
√
2 − 2

√
2|t1| (B.25)
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